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The scattering of two off-shell photons is an infrared-safe process in QCD. For photon virtuali
Q in the range of a few GeV , accessible at the CERNe1e2 collider LEP II, power-behaved
contributions in sLQCDyQdn to the total cross section may become non-negligible. Based o
a dispersion relation for the running coupling, we discuss these contributions and calculate
coefficients of the leading power correction for transversely polarized and longitudinally polariz
virtual photons. [S0031-9007(98)05796-2]

PACS numbers: 13.65.+ i, 12.38.Bx
-
n
o-
g
f
e
e
s

-

y

-
s
at
s.

g
e
e

e

se
Two-photon collisions provide one of the dominan
modes in experiments at high-energye6e2 colliders. If
the photons are sufficiently far off shell, the process
dominated by short-distance quantum chromodynam
(QCD) interactions. A survey of the QCD studies i
photon-photon scattering that are currently being carr
out at the CERNe1e2 collider LEP II may be found in
Ref. [1]. In particular, the total cross section for scatterin
two off-shell photons is an infrared-safe observable. T
role of this property has recently been emphasized
the context of investigations of the high-energy limit o
QCD [2]. Predictions forssgpgpd can be computed in
perturbation theory and tested as a function of the pho
virtualities. For virtualitiesQ of the order of a few GeV,
contributions tos suppressed by powers ofLQCDyQ
may become non-negligible. These contributions are
subject of this paper.

A systematic approach to the calculation of powe
behaved corrections to hard processes is an open prob
in QCD. For cases in which an operator product expa
sion is applicable, this provides a general framework
classify higher-twist contributions. However, so far th
has proved to be of only limited practical use. On th
other hand, there have been efforts to develop meth
that allow one to derive estimates of power corrections
a given observable from the study of the infrared beha
ior of its perturbative series [3]. In this context differen
techniques have been proposed over the past few years
applied to a variety of hard processes (for recent revie
see, for instance, Ref. [4]). The basic observation under
ing these methods is that the factorial growth of the coe
cients of the QCD perturbation series in large orders giv
rise to ambiguities in the perturbative predictions which a
proportional to power-behaved contributions. These am
guities can be interpreted as being due to an artificial se
ration between short-distance and long-distance physic
the perturbative treatment. From the requirement that th
must cancel in the physical cross sections once higher
ders as well as nonperturbative contributions are includ
one is able to derive information on the structure of th
power correction.
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The physical origin of these powerlike contributions is
an infrared one. They are associated with the loop inte
grations over the regions of small momenta in Feynma
graphs. Based on this, the authors of Refs. [5,6] have pr
posed a dispersion relation for the QCD running couplin
in order to relate powerlike corrections to the behavior o
the coupling at small momentum scales. In this paper, w
will use this dispersion relation to analyze the exchang
of gluons in high-energy photon-photon interactions. Thi
will enable us to identify the leading power correction to
the total photon-photon cross section.

We will discuss the scattering of two off-shell (space
like) photons with momentaqA and qB, gpsqAd 1

gpsqBd ! hadrons , with the virtualitiesq2
A ; 2Q2

A and
q2

B ; 2Q2
B being large compared toL2

QCD . We will
focus on the region where the center-of-mass energ
p

s ;
p

sqA 1 qBd2 is much larger thanQA and QB. In
this region questions related to powerlike corrections be
come especially important, because powerlike correction
are expected to be associated with the mechanism th
unitarizes the total cross section at asymptotic energie
We will thus start with the large-s form of the perturba-
tive cross section, in which terms that fall likeQ2ys are
neglected. In the Born approximation, the correspondin
amplitude is given by graphs with an exchange of on
gluon between two quark-antiquark pairs created by th
virtual photons. In this approximation the total cross
section has the structure [2]

s0ss, Q2
A, Q2

Bd ­
1

2p

Z d2k
p

1
sk2d2 Gsk2, Q2

Ad

3 Gsk2, Q2
Bd . (1)

Here d2k denotes the integration over the transvers
momentum flowing in the gluon line. The factors1ysk2d2

come from the gluon propagators. The factorsG are
each proportional toas, G ­ asgsk2yQ2d, and describe
the coupling of the gluon to theqq̄ system. The
explicit form of the functionsgsk2yQ2d depends on the
photon polarization. In what follows we will discuss
first the cross section averaged over the two transver
© 1998 The American Physical Society



VOLUME 80, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 13 APRIL 1998

se

on

at
d
-
is,

in

n

r

f

er
polarizations and then we will extend our results to th
case of the longitudinal polarization.

The cross sections0 has a scaling behavior in the
photon virtualities of the types ~ 1yQ2, modulated by
logarithmic scaling-violation factors in the ratio of the two
virtualities. To evaluate the corrections to this behavio
that are suppressed by powers of the photon virtualitie
we begin by introducing the running couplingassk2d for
each one of the factorsG in the integral (1). Following
the method of Refs. [5,6], we consider the dispersiv
representation of the QCD coupling in terms of th
spectral densityrs,

assk2d ­ 2
Z `

0

dm2

m2 1 k2
rssm2d , (2)

and we define the effective couplingaeff according to the
relation

rssm2d ­
≠

≠ ln m2
aeffsm2d . (3)

We thus have

assk2d ­ k2
Z `

0

dm2

sk2 1 m2d2
aeffsm2d . (4)

The effective couplingaeff differs from the perturbative
coupling in the infrared region. The form ofaeff is
determined by nonperturbative physics. As we shall se
the main point of this approach is that, if this form
can be assumed to be universal, then power-behav
contributions to the cross section can be parametrized
terms of moments of the effective coupling variation a
low transverse momentum scales.

Replacing the strong coupling in Eq. (1) by Eq. (4
yields

s ­
1

2p

Z `

0

dm
2
A

m
2
A

aeffsm2
Ad

3
Z `

0

dm
2
B

m
2
B

aeffsm2
BdfsQ2

A, Q2
B; m2

A, m2
Bd , (5)

with the functionf being given by

fsQ2
A, Q2

B; m2
A, m2

Bd ­ m2
Am2

B

Z `

0
dk2

3
gsk2yQ2

Adgsk2yQ2
Bd

sk2 1 m
2
Ad2sk2 1 m

2
Bd2

. (6)

Introducing the variationdaeff of the strong coupling at
low scales, we decomposeaeff as aeff ­ aPT 1 daeff,
with aPT denoting the form of the coupling in perturbation
theory. This decomposition gives rise to terms inaPT 3

aPT , aPT 3 daeff, and daeff 3 daeff in Eq. (5). The
integration of the terms inaPT 3 aPT is dominated by
values of the dispersion variables of the order of the ha
scales,QA and QB, as we will see below. Thus, these
terms give rise to the standard leading result for the cro
section in perturbation theory. The terms involvingdaeff,
on the other hand, probe the behavior of the functionf

at small values of the dispersion variables, because
e
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distribution ofdaeff is concentrated at small scales. The
terms are responsible for power-behaved corrections tos.
We will see that in the case of the leading power correcti
the quadratic term indaeff does not contribute and the
correction comes entirely from the linear term indaeff.

To study the form of the functionf at smallm2, we use
the explicit expression forg. For transversely polarized
photons, this is given by [2]

gsk2yQ2d ­ 8a

0@X
q

e2
q

1A Z 1

0
dz Pszd

Z 1

0
dl Psld

3
k2

ls1 2 ldk2 1 zs1 2 zdQ2 , (7)

where a is the electromagnetic fine structure,eq is the
quark electric charge in units ofe ­

p
4pa, and P is

the vector! fermion splitting function,Psxd ­ fx2 1

s1 2 xd2gy2. From Eqs. (6) and (7), we may observe th
for small m the functionf vanishes. This is associate
with the fact that thegpgp cross section is an infrared
safe quantity in perturbation theory [see Eq. (1)], that
the factorsg vanish like k2yQ2 (times logarithms) as
k2 ! 0. For largem the functionf also vanishes. This
is associated with the fact that Eq. (1) is well behaved
the ultraviolet, that is, the factorsg do not grow more than
logarithmically at largek2.

We now evaluate the functionf numerically. In Fig. 1
we plot themB dependence of the dimensionless functio
QAQBf for fixed (small) values ofmA, working atQA ­
QB. First, we note thatf peaks in the region where
the ratio mAymB of the dispersion variables is of orde
1 and their product is of orderQAQB. Then the leading
contribution to the termaPT 3 aPT from the integral (5)
is obtained by pulling out of the integral the factors o
aPT evaluated at a scale of orderQAQB. We thus recover
the leading perturbative result (1). Second, we consid
the termdaeffsm

2
AdaPTsm

2
Bd. We see from Fig. 1 that for

FIG. 1. The dependence of the functionf on one of the
dispersion variablessmBd for different values of the other
one smAd. We take QA ­ QB and plot the rescaled func-
tion F ­ QAQBfys8a

P
q e2

qd2 versusm
2
BysQAQBd.
3199
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smallmA the functionf peaks at a valuem2
B proportional

to
p

QAQB and to
p

m
2
A. Then we approximately perform

them
2
B integration by pulling out of the integral the facto

of aPT evaluated at the scalem2
B and computing the

integral of f. By adding the symmetric term withmA

and mB interchanged, we write the contributions1 from
the terms of the first order indaeff as

s1 .
1
p

Z `

0

dm
2
A

m
2
A

daeffsm2
Ad

3 aPTfQAQB

p
m

2
AysQAQBd gefsQ2

A, Q2
B; m2

Ad , (8)

where the functionef is defined asef ­
R`

0 sdm
2
Bym

2
Bdf.

Next we use the fact that the requirement of consisten
with the operator product expansion [7] constrains th
3200
r

cy
e

structure of the effective coupling variationdaeff [6,8].
Let us define the moments

A
snd
2p ­

1
2p

dn

dpn

Z `

0

dm2

m2 sm2dpdaeffsm2d . (9)

In order that the ultraviolet behavior of the runnin
coupling is not ruined by the variationdaeff, the moments
with n ­ 0 and p integer have to vanish [6,8,9]. This
implies that only terms inef that are nonanalytic inm2

A

for small m
2
A can contribute to power corrections. T

find these terms, we examine the dominant region
integration in Eq. (6),m2

A & k2 & QAQB. By evaluating
the contribution from this region, we obtain the followin
approximate expression for the functionef:
efsQ2
A, Q2

B; m2
Ad .

√
8a

X
q

e2
q

!2
1

QAQB
s2hd

(
2
9

Li 3

√
2

1
h

!
1

1
27

Li 2

√
2

1
h

!
1

"
35

324
1

1
36

ln2

√
Q2

A

Q2
B

!#
ln

√
1 1 h

h

!

1

"
49

324
2

1
36

ln2

√
Q2

A

Q2
B

!#
1

1 1 h

)
, h ;

m
2
A

QAQB
, (10)
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Li 2szd ­ 2
Z z

0

dt
t

lns1 2 td, Li 3szd ­
Z z

0

dt
t

Li 2std .

(11)

This formula is accurate up to the leading power
 n

h ­ m
2
AysQAQBd and up to the single logarithms. Highe

powers in h as well as constants associated with th
leading power are changed by the terms that we ha
dropped in performing the integral (6). To determin
the nonanalytic behavior that controls the leading pow
correction tos, we expand aroundh ­ 0:
efsQ2
A, Q2

B; m2
Ad .

√
8a

X
q

e2
q

!2
1

QAQB

1
27

h

(
ln3 1

h
1

1
2

ln2 1
h

1

"
6z s2d 2

35
12

2
3
4

ln2

√
Q2

A

Q2
B

!#
ln

1
h

1 hanalytic termsj

)
1 O sh2d, z s2d . 1.64 . (12)

Thus, from Eqs. (8) and (9), we find

s1 .
s8a

P
e2

qd22aPTsQAQBd

27Q2
AQ2

B

"
2s3L2 1 L 1 kdAs1d

2 1

√
3L 1

1
2

!
A

s2d
2 2 A

s3d
2

#
, (13)
e

b
t

a-

er-
c
in

in
at
all

ct

at,
where

L ­ lnsQAQBd, k ­ 6z s2d 2
35
12

2
3
4

ln2

√
Q2

A

Q2
B

!
.

(14)

Here we have writtenaPTsQAQB
p

h d ­ aPTsQAQBd 1

O sa2
PT ln hd and neglected the higher order term on th

right-hand side. In the definition ofL in Eq. (14) we have
implicitly taken the scale in the logarithm to be1 GeV2.

Equation (13) gives the result for the leading powe
correction to thegpgp cross section in terms of the di-
mensionful nonperturbative parametersA

sid
2 . These pa-

rameters are thought of as being universal and should
determined by fits to experimental data. The coefficien
of these parameters are given in Eq. (13) up to terms th
vanish likeQ2ys at larges. We see that the contributions
r

e
s
at

in A
s1d
2 and A

s2d
2 are enhanced by double and single log

rithms of the hard scaleQAQB.
So far, there have been attempts to study the nonp

turbative momentsA
sid
2 based on data for deeply inelasti

lepton-nucleon scattering and for hadronic final states
e1e2 annihilation. Data on the structure functionF2 sug-
gest thatA

s1d
2 . 20.15 GeV2 [10]. Very little is known

aboutA
s2d
2 and A

s3d
2 at present. A

s2d
2 enters in the power

correction to the mean value of the three-jet resolution
e1e2 annihilation. A recent analysis of data recorded
PETRA suggests that this correction should be very sm
[11]. Assuming that the contribution ofA

s1d
2 predominates

in Eq. (13), owing to its enhanced coefficient, we expe
the leading power correction to be positive.

To complete our analysis, we need to show th
as anticipated, the term of the second order indaeff
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in Eq. (5) does not contribute to the leading pow
correction. We write this term as

s2 ­
1

2p

Z `

0

dm
2
A

m
2
A

daeffsm2
Ad

Z `

0

dm
2
B

m
2
B

daeffsm2
Bdf .

(15)

This contribution probes the functionf in the corner
rof the phase space where bothm
2
A and m

2
B are small.

We may restrict thek2 integration in Eq. (6) to the re-
gion k2 & Q2, with Q2 being of the order of the hard
scales Q2

A, Q2
B, and we may rewrite the functionf

as a sum of two pieces, each proportional to a log
rithmic derivative with respect to one of the dispersio
variables:
fsQ2
A, Q2

B; m2
A, m2

Bd . 2
≠

≠ ln m
2
A

"
m

2
B

sm2
A 2 m

2
Bd2

Z Q2

0

dk2

k2 1 m
2
A

gsk2yQ2
Adgsk2yQ2

Bd

#

2
≠

≠ ln m
2
B

"
m

2
A

sm2
A 2 m

2
Bd2

Z Q2

0

dk2

k2 1 m
2
B

gsk2yQ2
Adgsk2yQ2

Bd

#
. (16)
.
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The poles atm2
A ­ m

2
B cancel in the sum of the two

pieces. This may be checked, for instance, by substit
ing the expression forg, expanding it for smallk2, and
performing the integrals explicitly. Taking this cancella
tion into account, the first piece gives rise to terms th
are analytic inm

2
B and possibly have nonanalytic contri-

butions inm
2
A. Analogously, the second piece gives ris

to terms that are analytic inm2
A and possibly have nonana-

lytic contributions inm
2
B. Since, as already noted, intege

moments ofdaeff vanish, for each term we get a vanish
ing contribution in Eq. (15) from either the integral inm

2
A

or the integral inm
2
B. Therefore,s2 does not contribute

to the leading power correction.
Finally, let us consider the scattering of longitudinall

polarized photons. The functiongsLd for this case has
a structure analogous to Eq. (7) but with a differen
splitting function,PsLd ­

p
2 xs1 2 xd [2]. This splitting

function vanishes at the end points. This can be seen
being associated with the absence of aligned-jet terms
longitudinal photon scattering at high energies [12]. A
a result, by performing a calculation analogous to the o
described above for the transverse case, we find that
small-h expansion ofefsLd has, at most, single logarithms:

efsLdsQ2
A, Q2

B; hd .

√
8a

X
q

e2
q

!2
1

QAQB

h

9

3

"
ln

1
h

1 hanalytic termsj

#
1 O sh2d . (17)

Therefore, for the power correction to the longitudina
gpgp cross sectionssLd, we get

s
sLd
1 .

s8a
P

e2
qd22aPTsQAQBd

9Q2
AQ2

B
s2A

s1d
2 d . (18)

We observe that the structure of the power correctio
is considerably more complicated in the transverse ca
In the longitudinal case, the power correction depen
only on one nonperturbative moment,A

s1d
2 . Moreover, in

the longitudinal case the coefficient is not enhanced
logarithms ofQAQB. For both transverse and longitudina
scattering, it would be interesting to use experiment
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data for studying the momentsA
sid
2 and for testing

the dispersive structure of the power-behaved terms.
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