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Effective QCD Coupling and Power Corrections to Photon-Photon Scattering
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The scattering of two off-shell photons is an infrared-safe process in QCD. For photon virtualities
Q in the range of a few GeV, accessible at the CERNe~ collider LEP Il, power-behaved
contributions in (Aqcp/Q)" to the total cross section may become non-negligible. Based on
a dispersion relation for the running coupling, we discuss these contributions and calculate the
coefficients of the leading power correction for transversely polarized and longitudinally polarized
virtual photons. [S0031-9007(98)05796-2]

PACS numbers: 13.65.+i, 12.38.Bx

Two-photon collisions provide one of the dominant The physical origin of these powerlike contributions is
modes in experiments at high-energye~ colliders. If  an infrared one. They are associated with the loop inte-
the photons are sufficiently far off shell, the process iggrations over the regions of small momenta in Feynman
dominated by short-distance quantum chromodynamicgraphs. Based on this, the authors of Refs. [5,6] have pro-
(QCD) interactions. A survey of the QCD studies in posed a dispersion relation for the QCD running coupling
photon-photon scattering that are currently being carrieih order to relate powerlike corrections to the behavior of
out at the CERNe" e~ collider LEP Il may be found in the coupling at small momentum scales. In this paper, we
Ref. [1]. In particular, the total cross section for scatteringwill use this dispersion relation to analyze the exchange
two off-shell photons is an infrared-safe observable. Thef gluons in high-energy photon-photon interactions. This
role of this property has recently been emphasized imwill enable us to identify the leading power correction to
the context of investigations of the high-energy limit of the total photon-photon cross section.

QCD [2]. Predictions foro(y*y*) can be computed in We will discuss the scattering of two off-shell (space-
perturbation theory and tested as a function of the photolike) photons with momentags and gz, y*(ga) +

virtualities. For virtualitiesQ of the order of a few GeV, y*(¢5) — hadrons , with the virtualitieg3 = —0Q3 and
contributions too suppressed by powers ofocp/Q 4% = — Q2 being large compared m2QCD_ We will
may become non—negligible. These contributions are thﬁ)cus on the region where the center-of-mass energy
subject of this paper. J5 = /(ga + ¢p)? is much larger thar@, and Q. In

A systematic approach to the calculation of power-this region questions related to powerlike corrections be-
behaved corrections to hard processes is an open probleme especially important, because powerlike corrections
in QCD. For cases in which an operator product expang e expected to be associated with the mechanism that
sion is applicable, this provides a general framework 1q)nitarizes the total cross section at asymptotic energies.
classify higher-twist contrlb.utl.ons. However, so far this\ne will thus start with the large-form of the perturba-
has proved to be of only limited practical use. On theye cross section, in which terms that fall likg?/s are
other hand, there have been efforts to develop methoqg,gjected. In the Born approximation, the corresponding
that allow one to derive estimates of power corrections too\mplitude is given by graphs with an exchange of one

a give_n observablg from_the study of_the infrared_ beha"gluon between two quark-antiquark pairs created by the
ior of_lts perturbative series [3]. In this context different ;. o photons. In this approximation the total cross
techniques have been proposed over the past few years aggh-tion has the structure 2]

applied to a variety of hard processes (for recent reviews

see, for instance, Ref. [4]). The basic observation underly- 2 oy 1 d’k 1 2 2

ing these methods is that the factorial growth of the coeffi- oo(s, 03, Q) = ﬁf T (k2)? Gk*, 04)

cients of the QCD perturbation series in large orders gives X G(k2, 02) 1)

rise to ambiguities in the perturbative predictions which are PEB

proportional to power-behaved contributions. These ambiHere d’k denotes the integration over the transverse
guities can be interpreted as being due to an artificial sepanomentum flowing in the gluon line. The factdrg(k?)?
ration between short-distance and long-distance physics itcome from the gluon propagators. The fact@fsare
the perturbative treatment. From the requirement that thegach proportional tar,, G = a,g(k*/Q?), and describe
must cancel in the physical cross sections once higher othe coupling of the gluon to theyg system. The
ders as well as nonperturbative contributions are includedgxplicit form of the functionsg(k?/Q?) depends on the
one is able to derive information on the structure of thephoton polarization. In what follows we will discuss
power correction. first the cross section averaged over the two transverse
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polarizations and then we will extend our results to thedistribution ofé a.¢r is concentrated at small scales. These
case of the longitudinal polarization. terms are responsible for power-behaved correctiows. to
The cross sectionry has a scaling behavior in the We will see that in the case of the leading power correction
photon virtualities of the typer = 1/Q?, modulated by the quadratic term ifa.; does not contribute and the
logarithmic scaling-violation factors in the ratio of the two correction comes entirely from the linear termdi.g;.
virtualities. To evaluate the corrections to this behavior To study the form of the functios at smallu?, we use
that are suppressed by powers of the photon virtualitieghe explicit expression fog. For transversely polarized
we begin by introducing the running coupling (k?) for  photons, this is given by [2]
each one of the factor§ in the integral (1). Following 1 1
the method of Refs. [5,6], we consider the dispersive g(k>/Q?%) = 8a > 2 f dz P(Z)[ dA P(2)
representation of the QCD coupling in terms of the a 0 0

spectral density;, X k @
) % A1 — Ak2 + z(1 — 2)0%°
a,(k7) = —]0 TkZpY(’U’ ), (2)  wherea is the electromagnetic fine structure, is the

quark electric charge in units of = V47, and P is
the vector— fermion splitting function,P(x) = [x*> +
(1 — x)*]/2. From Egs. (6) and (7), we may observe that
(u?) = esr(u2) 3) for small u the function¢ vanishes. This is associated
Pttt 9 In u? e with the fact that they*y* cross section is an infrared-
We thus have safe quantity in perturbation theory [see Eq. (1)], that is,
the factorsg vanish like k?/Q? (times logarithms) as
a,(k?) = sz T (). (4) k%> — 0. For largeu the function¢ also vanishes. This
(k2 + 2)? is associated with the fact that Eq. (1) is well behaved in
The effective couplingy.s; differs from the perturbative the ultraviolet, that is, the factogsdo not grow more than
coupling in the infrared region. The form af.; is  logarithmically at largek?.
determined by nonperturbative physics. As we shall see, We now evaluate the functios numerically. In Fig. 1
the main point of this approach is that, if this form we plot theu dependence of the dimensionless function
can be assumed to be universal, then power-behave@dsQgp¢ for fixed (small) values ofus, working atQ, =
contributions to the cross section can be parametrized i@z. First, we note thatp peaks in the region where
terms of moments of the effective coupling variation atthe ratio u/up of the dispersion variables is of order

and we define the effective couplings according to the
relation

low transverse momentum scales. 1 and their product is of orde@,Qp. Then the leading
Replacing the strong coupling in Eg. (1) by Eg. (4) contribution to the termypr X apr from the integral (5)
yields is obtained by pulling out of the integral the factors of
1 ® 4 /LA apr evaluated at a scale of ordér Qp. We thus recover
o= _— et (13) the leading perturbative result (1). Second, we consider
2 KA the termd avese () vpr(u3). We see from Fig. 1 that for

ood 2
X f —MzB aerr(ng) b (03, OFs w3, 13), (5)
0 HB ¢ T T T T

with the function¢ being given by
B0} Ok wh) = iy [

s(k2/QDg(k2/0F)

(k2 + ud) (k2 + pg)?
Introducing the variatiord a.¢r Of the strong coupling at
low scales, we decomposes as aerr = apr + O e, 001
with apr denoting the form of the coupling in perturbation
theory. This decomposition gives rise to termsuigy X
apr, apt X Odesr, and daesr X Saesr IN Eqg. (5) The
integration of the terms invpr X apr is dominated by
values of the dispersion variables of the order of the hard
scales,Q4 and Qp, as we will see below. Thus, these ne/(Q, Qp)
terms gi_ve rise to the standard leading re;ult fo.r the CloOSS;5 1. The dependence of the functigh on one of the
section in perturbation theory. The terms involvidger,  gispersion variablesus) for different values of the other
on the other hand, probe the behavior of the funciyon one (u4). We take Q4 = Qp and plot the rescaled func-
at small values of the dispersion variables, because thion ® = 0,056 /(8a X, ;) versusu}/(0405).
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small w4 the functiong peaks at a valug proportional  structure of the effective coupling variatiaha.g; [6,8].

to /0405 and toy/ 3. Then we approximately perform Let us define the moments

the w3 integration by pulling out of the integral the factor n
_2 . (n 1 d

of apr evaluated at the scalgz and computing the Ayp = 2 d

integral of ¢. By adding the symmetric term witlx 4 ™ ap"

and up interchanged, we write the contributieny from  In order that the ultraviolet behavior of the running

j 2 sae(nd). (9)
u?

the terms of the first order iia.s as coupling is not ruined by the variatio®w.¢, the moments
d/LA with n = 0 and p integer have to vanish [6,8,9]. This
oy = ; 0 12 Saere(pn}) implies that only terms |r’¢ that are nonanalytic inuj

~ for small x5 can contribute to power corrections. To
[2 2 2. ,,2
X apr[QaQpV ua/(Qa08) 16(Q4, O a) . () find these terms, we examine the dominant region of

where the functionp is defined ash = [ (du3/u})$.  integrationin Eq. (6)ui < k* = Q4Qp. By evaluating
Next we use the fact that the requirement of consistenc{he contribution from this region, we obtain the following
with the operator product expansion [7] constrains ﬂheapproxmate expression for the functldnn

TPy N A Y e | 35 1 L0k 1+ 7
¢ (03, 0 ma) —<8QZ€>QAQ 77)[9L|3( 7]>+27LI2( 7l>+|:324+36 In (Q§>j|ln< ;. >

49 1 (0} 1 pi
+| = — —=In*( =5 = 10
[324 36n(Q§>j|1+7]]’ T 04058 (10
where ! n = u3/(0405) and up to the single logarithms. Higher
2 dt z powers inn as well as constants associated with the
Liz(2) _fo 7|n(1 — 1), Lis(2) f — Lia(1) leading power are changed by the terms that we have

11 dropped in performing the integral (6). To determine
(11) the nonanalytic behavior that controls the leading power
This formula is accurate up to the leading power |incorrection too, we expand aroung = 0:

1 1 1 1 35 0i
(02, (80[ e) niIn® — + —In* — |:6(2)————|2( >j||n
¢ QA QB MA Z 0405 27 n ) 7 4 QB ”fl
+ {analytic term};] + 0(n?), [(2) = 1.64. (12)
Thus, from Egs. (8) and (9), we find
8a Y e2)2a
o = (a2 e)) . PTZ(QAQB) |:—(3L2 + L+ kAl + <3L + )A2 A(23):|, (13)
270405 2
where | in A(zl) andA(zz) are enhanced by double and single loga-
35 rithms of the hard scal@,053.
L = In(Q403), k=6,(2) — i | 2<QA> So far, there have been attempts to study the nonper-
03 turbative moments}xz based on data for deeply inelastic

(14) Iepton nucleon scattering and for hadronic final states in

Here we have writtervpr(QaQs./7) = apr(QaQs) + ete” annlhllatlon. Data on the structure functiéh sug-

O (aprInn) and neglected the higher order term on thedest thatd} = —0 15 GeV? [10]. Very little is known

right-hand side. In the definition df in Eq. (14) we have aboutAz) andA ! at present. A(22) enters in the power

implicitly taken the scale in the logarithm to heGe\~. correction to the mean value of the three-jet resolution in
Equation (13) gives the result for the leading powere*e™ annihilation. A recent analysis of data recorded at

correction to they*y™ cross section in terms of the di- PETRA suggests that this correction should be very small

mensionful nonperturbative parametettg). These pa- [11]. Assuming that the contribution (Af(zl) predominates
rameters are thought of as being universal and should Ha Eq. (13), owing to its enhanced coefficient, we expect
determined by fits to experimental data. The coefficientshe leading power correction to be positive.

of these parameters are given in Eq. (13) up to terms that To complete our analysis, we need to show that,
vanish likeQ?/s at larges. We see that the contributions as anticipated, the term of the second orderSif.;

3200



VOLUME 80, NUMBER 15 PHYSICAL REVIEW LETTERS 13 ARIL 1998

in Eq. (5) does not contribute to the leading powerof the phase space where botlf and x3 are small.

correction. We write this term as We may restrict thek? integration in Eq. (6) to the re-
1 [ dul “ dud gion k? = Q?, with Q2 being of the order of the hard
»=5-) —25aeff(,ui)[o 5~ daerr(up)d . scalesQ3, Q3 and we may rewrite the functiorp
MA MB

as a sum of two pieces, each proportional to a loga-
(15 rithmic derivative with respect to one of the dispersion
This contribution probes the functiog in the corner | variables:

$(0F ik mh) =~ wh [T 0 0hec /)
bR onpd | Wk - wdrJo W+ 43’ A8 B
d 2 0 k2
C alnud |:(M/24 ﬁAM%)zj; K2 + 0 8(k2/Qi)g(k2/Q§):|. (16)

B

The poles atui = w3 cancel in the sum of the twd data for studying the momentﬂ({) and for testing
pieces. This may be checked, for instance, by substituthe dispersive structure of the power-behaved terms.

ing the expression fog, expanding it for smalk?, and | greatly benefited from discussions with Yu.
performing the integrals explicitly. Taking this cancella- Dokshitzer, D. Soper, and B. Webber. | thank the
tion into account, the first piece gives rise to terms thaHigh Energy Theory group at Brookhaven National
are analytic inu3 and possibly have nonanalytic contri- Laboratory, the RIKEN-BNL Research Center, and the
butions inx3. Analogously, the second piece gives riseorganizers of the RIKEN Workshop on Perturbative
to terms that are analytic in3 and possibly have nonana- QCD for hospitality and support while part of this work
lytic contributions inw3. Since, as already noted, integer was being done. This research was partially funded by
moments of a.¢ vanish, for each term we get a vanish- the U.S. Department of Energy Grant No. DE-FGO3-
ing contribution in Eq. (15) from either the integral iy, ~ 96ER40969.

or the integral inu. Therefore,o, does not contribute
to the leading power correction.
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