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Four-Particle Condensate in Strongly Coupled Fermion Systems
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Four-particle correlations in fermion systems at finite temperatures are investigated with sp
attention to the formation of a condensate. Instead of the instability of the normal state with respe
the onset of pairing described by the Gorkov equation, a new equation is obtained which describe
onset of “quartetting.” Applying to symmetric nuclear matter, below a critical density, the four-parti
condensation (a-like quartetting) is found to be favored over deuteron condensation (triplet pairin
This pairing-quartetting competition is expected to be a general feature of interacting fermion syst
such as the exciton-biexciton system in excited semiconductors. Possible experimental consequ
are pointed out. [S0031-9007(98)05829-3]
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One of the most amazing phenomena in quantum man
particle systems is the formation of quantum condensat
Of particular interest are strongly coupled fermion sys
tems where bound states arise. In the low-density lim
where even-number fermionic bound states can be co
sidered as bosons, Bose-Einstein condensation may
expected to occur at low temperatures. At present, co
densates are investigated in systems where the crosso
from Bardeen-Cooper-Schrieffer (BCS) pairing to Bose
Einstein condensation (BEC) can be observed; see [
Among very different quantum systems such as th
electron-hole exciton system in semiconductors, atoms
traps at extremely low temperatures, etc., nuclear matte
particularly suited to study correlation effects in a quan
tum liquid.

An indication of strong correlations in nuclear matte
is the formation of bound states. The interaction in th
singlet (S ­ 0) channel is not strong enough to form a
bound state, whereas in the neutron (n)–proton (p) triplet
(S ­ 1) channel a bound state, the deuteron, arises.
nuclear matter, with increasing density the bound states a
modified and will disappear at the so-called Mott densit
[2]. In particular, treating the two-particle Green function
in ladder Hartree-Fock approximation, an effective wav
equation (in matrix notation)cl ­ K2sEld cl for the
quantum statel can be derived. Explicitly this reads

cls12d ­
X
1020

K2s12, 1020, Eld cls1020d , (1)

with

K2s12, 1020, zd ­ V s12, 1020d
1 2 fs1d 2 fs2d
z 2 Es1d 2 Es2d

. (2)

The influence of the medium is contained in the single
particle energy Es1d ­ p2

1y2m 1
P

2 V s12, 12dexfs2d
and in the Pauli blocking termf1 2 fs1d 2 fs2dg. Here
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fs1d ­ fexphEs1dyT 2 myT j 1 1g21 is the Fermi distri-
bution function and “1” stands for momentum, spin, an
isospin coordinates, whereasV s12, 1020d is the antisym-
metrized matrix element of the two-body interaction.

Including medium modifications of two-particle states,
generalized Beth-Uhlenbeck formulaNyV0 ­ n1sT , md 1

ncorr sT , md has been derived [3,4], where the uncorrelate
densityn1sT , md ­ V

21
0

P
1 fs1d is given by the quasipar-

ticle contribution (V0 being the normalization volume).
The correlated densityncorr sT , md is obtained from the two-
particleT matrix. This approach has been widely applie
to ionic plasmas as well as to the electron-hole exciton s
tem in excited semiconductors [5]. Taking into account th
Mott effect, general features of the composition of nucle
matter as a function of density and temperature are giv
in [6].

At low temperatures, it is well known that in nuclei
nuclear matter, and neutron matter (neutron stars) sup
fluidity can arise in the singlet channel [7–9]. A theo
retical description of this superfluidity can be achieved b
treating the Gorkov equationc2 ­ K2sm1 1 m2dc2 for
the critical temperatureT c

2 as a function of the chemical
potential. It allows the determination ofTc

s or Tc
t for the

singlet and triplet channels, respectively.
The solution of the Gorkov equation has been cons

ered by different authors using realistic nucleon-nucle
interactions. It has been found that, in comparison wi
the singlet channel, in the triplet channel the transition
superfluidity should arise at relatively high temperatur
[10,11]. This is a consequence of the stronger intera
tion in the triplet channel which leads to the formatio
of a bound state (deuteron) in the low-density limit whe
f ø 1. Estimates give a value of the critical tempera
ture up toT c

t ø 5 MeV at one third of the nuclear mat-
ter density. At the same time, at zero temperature a la
gap arises [11]. An interesting feature of the triplet pai
ing in symmetric nuclear matter is the crossover fro
© 1998 The American Physical Society 3177
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Bose-Einstein condensation of deuterons at low densit
to BCS neutron-proton pairing at high densities [6].

In spite of the relatively strong interaction, cf. cal
culations with effective pairing forces by Goodman [12
triplet pairing seems less apparent in nuclear structu
systematics [13]. However, it should become importa
for heavierN ­ Z nuclei produced in the new radioactive
beam facilities.

In this Letter we show that in the low-density region th
transition to triplet pairing is not realized, because fou
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particle correlations are more dominant there. Obviousl
at chemical equilibrium, in the low-density region at low
temperatures the dominant part of nuclear matter will b
found in a particles which are much stronger bound tha
the deuteron. Therefore, the triplet pairing (Bose con
densation of deuterons) has to compete with “quartetting
(Bose condensation ofa particles).

The four-particle correlations are obtained from th
four-particle Green function (compare [14]) that is given
in ladder Hartree-Fock approximation by the equation
G4s1234, 10203040, zd ­
fs1dfs2dfs3dfs4d

g4s1234d
d110d220d330d440

z 2 E4s1234d
1

X
100200300400

K4s1234, 100200300400,zdG4s100200300400, 10203040, zd ,

(3)
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where we use the abbreviationEns12 · · · nd ­ Es1d 1

Es2d 1 · · · 1 Esnd, andgns12 · · · nd ­ hexpfEns12 · · · nd 2

nmgyT 2 1j21 being the Bose distribution function.
The instantaneous part of interaction kernel is obtain

by using the technique of Matsubara Green functions as

K4s1234, 10203040, zd ­ V s12, 1020d
fs1dfs2d
g2s12d

3
d330d440

z 2 E4s1234d
1 perm, (4)

where the terms obtained by renumbering are not giv
explicitly. We have used the identitȳfs1df̄s2d · · · f̄snd 2

fs1dfs2d · · · fsnd ­ g21
n s12 · · · ndfs1dfs2d · · · fsnd with

f̄ ­ 1 2 f.
Near a pole the Green functionG4 can be factor-

ized, G4 s1234, 10203040, zd ø cns1234dcp
ns10203040dysz 2

End. The eigenvaluesEn and eigenstatescns1234d follow
from the solution of the four-particle Schrödinger-like
wave equationcn ­ K4sEndcn. The eigenvalueE0sT , md
of the lowest bound state (a particle) depends on tem-
peratureT and chemical potentialm and also on its
center-of-mass momentum due to the medium-depend
self-energy, as well as the phase space occupation fact

From the four-particle Green function, the four-particl
density matrix is obtained as

ka1
1 a1

2 a1
3 a1

4 a40a30 a20a10 l

­
Z dv

p
g4svd Im G4s1234, 10203040, v 2 i0d . (5)

Obviously, the four-particle density (5) diverges when, a
a given temperatureT , the chemical potential takes the
value mc ­ E0sT , mcdy4. Then, the delta function pro-
duced by the pole ofG4 coincides with the singularity
of the Bose function. Values for the chemical potentia
m exceeding the value of the lowest bound state ener
E0sT , mdy4 are not admissible because the diagonal el
ments of the four-particle density are positive definite.

The main objective of this Letter is to give an estimat
of the critical temperatureT c
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four-particle condensate. This is obtained by solving t
equation

c4s1234d ­
X

10203040

K4s1234, 10203040, 4mdc4s10203040d .

(6)

In the low-density limit, where the distribution functions
occurring inK4 are small compared with 1, this equatio
coincides with the Schrödinger equation for the fou
particle bound state, i.e., thea particle in free space.

To discuss the competition between two-particle pairin
and the condensation of four-particle states, we perfo
an exploratory calculation for a simple model syste
which contains the formation of a two-particle boun
state in the triplet channel and a singlet four-partic
bound state. We use a separable interaction of Gau
ian form Vsyts12, 1020d ­ 2lsytV

21
0 exps2p2

12yb2d 3

exps2p02
12yb2ddsq12 2 q0

12d with the relative mo-
mentum p12 ­ sp1 2 p2dy2 and the center-of-mass
momentumq12 ­ p1 1 p2. At given range parameter
b ­ 1.54 fm21, the interaction strengths are adopted
lt ­ 1213.8 MeV fm3 and ls ­ 536 MeV fm3 to repro-
duce the free deuteron binding energyEt ­ 22.225 MeV
in the neutron-proton triplet channel, as well as the freea

binding energyE0 ­ 228.29 MeV for the four-particle
ground state (see below). In principle, it is possible
extend the calculations to more realistic nucleon-nucle
potentials as given in [15].

We begin with the discussion of neutron-proton triple
pairing. The critical temperatureTc

t obtained from the
solution of the Gorkov equation is presented as a functi
of the reduced chemical potentialmp in Fig. 1 and
as a function of the uncorrelated densityn1sT , md ­
V

21
0

P
1 fs1d in Fig. 2 (dotted lines). For the sake o

simplicity the self-energy shift is taken to be a consta
that is incorporated into a shift of the chemical potentia
mp ­ m 2

P
2 V s12, 12dexfs2d, at p1 ­ 0.

The four-particle wave equation (6) is solved within
variational ansatz where the four-particle wave functio
with zero total momentum is given as a product of tw
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FIG. 1. Critical temperatures for the onset of quantum co
densation in symmetric nuclear matter, model calculation. T
critical temperature of the onset of two-particle pairingTc

t is
compared withTc

4 for the onset of a four-particle condensate
as a function of the chemical potential.

wave functions for the relative motion (quasideuteron
fspd and the center-of-mass wave functioncsqd,

c4s1234d ­ fsp12dfsp34dcsq12ddq121q34,0 . (7)

The wave function for the relative motionfspd is
optimized in a space of functions containing the exa
solution for the wave function of the in-medium deutero
[Eqs. (1) and (2)], whereas for the center-of-mass wa
functioncsqd a simple Gaussian form is adopted.

The results for the critical temperatureTc
4 as a function

of the chemical potentialmp and the uncorrelated density
n1 are displayed in Figs. 1 and 2, respectively (sol
lines). In the low-temperature limit, with increasing
chemical potential the transition to quartetting occu
prior to the pairing transition. This is a consequence
the fact that the valueE0y4 for the four-particle bound
state lies below the valueEty2 of the triplet bound state.

FIG. 2. The same as Fig. 1 but as a function of the uncor
lated densityn1.
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The Gorkov equation, which predicts a normal state fo
temperaturesT . Tc

t , is not applicable in that region,
because already at a higher temperatureT c

4 the normal
state was removed due to the onset of quartetting.

A simple argument for the behavior ofTc
4 , T c

t as a func-
tion of n1 in the limit of low densities can be given from
the law of mass action. Neglecting medium correction
the critical temperaturesT c

t andTc
4 as functions ofn1 are

found as solutions ofn1 ­ 4smT c
t y2p h̄2d3y2 exphEty2Tc

t j
andn1 ­ 4smTc

4 y2p h̄2d3y2 exphE0y4Tc
4 j, respectively.

With increasing density the critical temperatureTc
4

approachesTc
t from above at a critical densityn0

1 ­
0.03 fm23 (mp

0 ø 10 MeV). For n1 , n0
1 (mp , m

p
0) the

four-particle condensate arises, whereas forn1 . n0
1 the

system goes over to a BCS pairing state.
The fact that at higher densitiesa-particle condensation

disappears faster than deuteron Cooper pairing is at fi
sight quite astonishing because of the very strong bindi
of a’s in free space. This feature, one of the main re
sults of our work, can, however, be explained qualitative
with simple arguments and is generic for any Fermi syste
where pairing and quartetting may interfere. Indeed, th
competition between pair and quartet condensation in
tractive Fermi liquids is also known from the field of semi
conductors, where both exciton and biexciton condensa
have been suggested. The qualitative features of that co
petition are easily understood. Since they do not depe
crucially on the triplet nature of the condensate, we discu
the simpler case of singlet pairing as a function of densit
In the weak coupling limit (high density), the ground stat
is described by the standard BCS wave function. Howev
weak the attraction is, a pairing amplitudekaal appears
due to the finite density of states at Fermi level for pair
with zero total momentumq (the two-particle kernel has
a logarithmic singularity). In contrast, a quartet conden
satekaaaal fi 0 does not exist on its own. Because of th
exclusion principle the corresponding density of states f
q ­ 0 vanishes at the Fermi level, and it takes a minimum
attraction to develop a Cooper pole.

In the opposite limit of dilute systems with attraction
strong enough to bind individual pairs and quartets, a
atomic regime prevails. Single pairskaal may be viewed
as bosonskFl and the quartet as a bound pair of two
bosons. The competition between particle and pair co
densation in Bose liquids was discussed in [16]. In th
dilute limit we expect “molecular” Bose condensation o
bound bosons, as described long ago by Valatin and But
[17]. In the dense limit the quartets dissociate, and sing
boson condensation takes over. As the density decreas
a variational ansatz [16] shows that the condensate fract
n0 ­ jkFlj2 goes down, vanishing at a criticalnc beyond
which only kFFl survives (nc also marks the appearance
of a gap).

Altogether, we expect a quartet atomic condensate f
very low densities and a BCS pair condensate for ve
high densities. In between, the interpolation depends
the pair and quartet binding energies,E2 and 2E2 1 E4,
3179
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as compared to the Fermi energy. IfE2 ¿ E4 the pair
condensate enters the atomic regime well before it disa
pears in favor of quartets. If, on the other hand,E2 , E4,
the system goes directly from a BCS pair superfluid to
quartet Bose-Einstein condensation.

Possible signatures of quartetting have been discusse
the past in the context of nuclear structure [18]. Accordin
to the present studies quartet correlations may be of imp
tance in the outer regions of nuclei. We can make a rou
estimate for the critical temperature ofa-particle conden-
sation in nuclei in convertingTc

4 snd of Fig. 2 via the lo-
cal density approximation into a radius dependenceT c

4 srd
and averaging over a typical nuclear density. This pr
cedure applied to ordinary neutron-neutron pairing yiel
Tc ø 1 MeV in good agreement with more microscopi
calculations [19]. In this way we predict that the increas
of the critical temperature due toa-particle condensation
is about0.2 MeV. In spite of our limited variational ap-
proach, we think that this value should be correct with
30% to 40%. Also the critical densityn0

1 ­ 0.03 fm23 for
the onset of quartetting should be reliable within these lim
its, and therefore our estimate can be of interest for clu
tering phenomena in stellar collapse and the outer crus
neutron stars [9]. We believe that in the far tail of nu
clear densities (n , n0

1) quartetting can occur as well as
in a number of nuclear processes such as the emission
a particles from the heaviest elements [20] and unusua
largea-decay rates of neutron deficient lead isotopes [2
Bose-Einstein effects may also be of relevance in heav
ion collisions at a relatively late stage where the tempe
ture of expanding matter has dropped below 5 MeV.

In conclusion, we have shown that prior to the tran
sition to pairing, a transition from the normal state t
four-particle condensation according to Eq. (6) can occ
However, as a generic phenomenon four-body conden
tion always loses against weak coupling Cooper pairi
at sufficiently high densities. For demonstration purpos
we have considered nuclear matter as a strongly coup
quantum liquid. The possibility of quartetting and highe
correlated condensates is of interest also in other syste
e.g., electron-hole pairs in semiconductors forming biex
tons [1,22] or quarks forming two-pion states [23].
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