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Synchronizing High-Dimensional Chaotic Optical Ring Dynamics
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We study chaotic ring laser systems as possible elements in a communications system. To be
useful it must be possible to synchronize the transmitter and receiver lasers. We show that chaotic
ring lasers can be synchronized using direct light injection from one laser into the optical cavity of
the second. This synchronization occurs even when both lasers are quite high dimensional and each
possesses many positive Lyapunov exponents. When the lasers are synchronized, the transmitted light
can be modulated with information bearing signals and the message accurately recovered at the receiver.
[S0031-9007(98)05715-9]

PACS numbers: 89.70.+c, 05.45.+b, 42.55.—f

The use of erbium doped ring lasers in communications The literature discusses using chaotic communications
devices [1] led us to inquire whether such lasers couldor secure or encrypted signaling. We do not address
serve as the basis for optical communications while opthis issue. There is a distinction between such commu-
erating in a chaotic regime. Our work focuses on a simnication as a means of using channel capacity and any
plified prototype of the actual erbium ring laser. Theadditional potential for security. Wide-band signaling in
delay differential equations of our model arise by integrat-optical systems is interesting, independent of whether the
ing the partial differential equations for the electric field methods are cryptographically secure. Some strategies for
in the ring, so the source of high-dimensional dynamics isecure communications based on low-dimensional dynam-
identified physically. We ask whether such optical systemgcs appear susceptible to algorithmic time-series attacks
can synchronize and support modulation and demodulatiof8]. Short also argues that systems with many positive
of information bearing messages. Applications aside, wé&yapunov exponents, such as our ring laser, might re-
demonstrate synchronization of high-dimensional dynamisist these schemes. We have not investigated our method
cal systems with many positive Lyapunov exponents. Oucryptographically.
ring lasers operate in a regime where the dimenstan, We study a “laser” which has no polarization (impor-
using physically natural coupling to synchronize. The onlytant in the erbium system), no imperfect passive medium,
high-dimensional systems previously known to synchrosuch as an optical fiber, making up the ring, and simpli-
nize were constructed of cascaded low-dimensional sulfied atomic physics of the active medium. Power comes
systems which successively synchronize [2]. from externally injected light at a frequeney;, possibly

There have been earlier discussions of synchronizatiooffset from the optical frequencyw, of the lasing line,
of chaotic lasers [3], also previous modeling of erbiumand through pumping of population inversion. The basic
ring lasers using delay differential equations [4]. Refer-model was introduced by Ikeda some years ago [9], thus
ence [5] discusses communicating using chaotic lasers, bute call the system the Ikeda Ring Laser (IRL).
the method is quite different from ours. Our method is Our model IRL consists of four mirrors with finite
not restricted to small amplitude messages, and in [5] outreflectivity arranged at the corners of a square. (See
put from the transmitter is modulated. We modulate theFig. 1). Light with electric field E;e!(@ =" (in the
message signal into the transmitter dynamics then stabilitgoordinate system rotating afty) enters the ring via the
properties of the receiver assures accurate message recoypper left mirror and passes through an idealized two-
ery. Recent results from VanWiggeren and Roy [6] ex-level atomic system. On departing the active medium,
perimentally confirm many of the effects discussed herethe light reflects off four mirrors with net reflectivit®
This includes high-dimensional dynamics and the abilityand reenters the active medium. The external injection
to modulate and demodulate messages using the methodsd external pump add power, ald< 1 attenuates it.
suggested here. After a straightforward derivation we arrive at a discrete

To augment the numerical evidence for synchronizationtime map for the complex electric field amplitudé) at
we analyze the system’s largest conditional Lyapunowa fixed spatial location coupled to a differential equation
exponent (CLE) [7]. This linear criterion is useful and for the spatially averaged population inversiofy):
powerful as .Iong as unstable sets are not closg to thée(t + 78) = E;el @@ 4 Bk £(1)eBHiaw(®)
synchronization manifold. The boundary determined by
direct simulation is near that predicted by the exponents. dw(r) 2, Gwlit
Also, the lasers synchronize for a broad range of coupling  g; 2~ 27{w(@) + 1+ 1EOPE™ = 1)/G},
parameters, improving the chance of success for a practicalith 7x the propagation time around the ring3 and «
realization. are nonlinear gain coefficients and the atomic decay
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though, there is no change from the behavior reported in

E / — this short note. We have investigated a wide range of val-

active medium ues ofy, and fory larger than order 0.5, the dynamics are
wansiter chaotic, and the essential features are the same as reported

A here for v = 1. The time-asymptotic dynamics has

sufficiently high dimension that the standard time-series

analysis tools used for low-dimensional chaos, such as

- ~ correlation dimension, false nearest neighbors, etc. [10],
E fail to give useful results. Specifically, false nearest

neighbors calculations did not show low dimensionality
with any embedding dimension up to 12, beyond which
Ej . . we fail to have confidence in the algorithm.
active medium We can, however, evaluate the entire spectrum of Lya-
punov exponents directly from the equations and use them
receiver to estimate the dimension [11]. Specifically, we find the
exponents of the predictor-corrector integration algorithm.
This is a map taking the state vect®( ;) of the system
< - —~ to the state one time stejr later:S(j) — S(j + 1) =
M[S(j)]. S(j) is large:2N + 5 components for a time
interval of N = 7x/(8¢) parts. 2N are from the saved
values of/, one for w(r), and four for recent deriva-

. . tives of w used in the integration. We find the Jaco-
rate related to transitions between.lasmg photons and g\, DM(S[j]) of the map along the trajectory of the
ex;ernal loss bath( IS another gain-related parameter. system simultaneously generated by the integration algo-
KIS the pha;e a(_:qwr_ed bY a plane wave traversing thginm -~ The Jacobian is too large to represent efficiently as
ring. Measuring time in units of we see that only the 5 explicit matrix in the computation, but its sparseness
dimensionless quantity 7 is important in the dynamics. gjiows us to write a subroutine to multiply an arbitrary
Physically we cannot vary, but we can changer by  yector by DM(S[ j]), and thus, any matrix, by operating
varying the length of the cavity. Our time scale chooseg)n columns independently.
7r = 1. Physically acqessible time scale variations are Tpe Lyapunov exponents are evaluated by a variant of
expressed as changesjin the standard recursive QR algorithm [10]. Given an ini-

This is a delay differential system. Such systems mayis| random orthogonal matriQ[0] with 2N + 5 rows
exhibit both low-dimensional and very high-dimensionalandNL columns (whereV, = 2N + 5 is the number of
behavior: complexity generally increases with the delay yanunov exponents to evaluate): successively multiply
time. We integrated with a simple fixed time stefy, by DM(S[1]), DM(S[2)), ..., DM(S[k]) up to a normali-
being chosen so thagdr = 107°. The value forw(r)  zation intervalk, perform the explicit QR decomposition,
is advanced onér using a standard flft_h.order Adams resulting inQ[1] and R[1]. The LAPACK subroutine li-
predictor-corrector scf;eme, dsv/dr explicitly depends  prary offers standard routines to perform the QR decom-
only onw(s) and[Z(1)|*. At ¢ the value for{(z + 1)is  posjtion for nonsquare matrices, needed since typically
computed from the map and saved for future use. N; < 2N + 5. Accumulate the sum of the logarithm of

We chose parameter values corresponding to the stagye N, diagonal elements oR, and repeat starting with
dard “Ilkeda map,” often _used as an example of a two deQ[l]. In the asymptotic time limit, the averaged loga-
grees of frgedom c_ha}otlc system [10]. We recover thgjihm of R’s diagonal converges to th§; largest Lya-
lkeda map in the limity — «, G — 0, @; = wo, and  yynoy exponents. This requires QR decompositions of a
dw/dr =0, large full-rank matrix, but it is not required frequently.

_ (o1t ik (—B—ia) /(1412 The calculation time is dominated by the evaluation of
L+ 1) = el ot 4 Belre A/ HEON(r). DM(S[k]). The overall algorithm is a numerically supe-
Identifying our parameters with canonical values [10]fior version of the Gram-Schmidt orthogonalization used
yields E;, =1, B=09, k =04, B =0,a =6, and Dby Farmer [12]. From the exponenfs, we choosek
w; = wo. From a related experiment [4] we estimatesuch that} X, A, > 0 and >~' A; < 0, and form the
G = 0.01, and chosey = 1 and Q = 0 for the calcu- Lyapunov dimension [11]D; = K + Zfil A/ Ak +1l.
lations reported here. Whew; # w,, the dynamical The main free parameter governing the dimensiow:is
structure can be more complex than we report here, anfbr y = 0.5, D, increases nearly linearly witly. At
similarly whenQ > 0. We will report on these situations y = 1, the Lyapunov dimension is about 22.
in a larger report of this work. In the matters of synchro- We investigate the synchronization of two= 1 IRLs.
nization and modulation for information transmission, The coupling is unidirectional: the unaltered output of

FIG. 1. Schematic of unidirectionally coupled Ikeda ring laser
systems.
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a transmitter feeds into a receiver; this is depicted in 500 reeeee :
Fig. 1. After investigating a variety of coupling schemes \ (@)
we settled on the following: 400 ¢ 1

Ot + 1) = fI4 @), wi@)], T 300 \

dwi(1)/dt = glwi (1), 14 ()], s ~

£ 200 |
Zeomb(1) = (1 = &) + (o), .

O+ 1) = flécomn (1), wa()], 100 1 \,\‘\’

dwa(0)/dt = g[wa (1), |Zcom (D] 0 e,
The free running transmitter has state variallgs) and 02 [ ]
wi(t). Into the receiver we inject the transmitted electric 'E (b)
field £1(¢), scaled byc, along with a fraction(l — ¢) = 0.0 *
of &(r). When((r) = {(t) the equations are precisely S o2l \\
the same. Ordinary synchronization is thus possible, 3
and generalized synchronization [13] is not required. Té -04 ¢ \,\
It is not physically possible to couple the population g 6 \\
inversion dynamics, so no information abowut(7) is g \
transmitted to the receiver. When was larger than -08 ¢
=(.3, synchronization was observed for a wide range of 10 ‘ , ‘ \.\
parameter values. 0.0 0.2 0.4 0.6 0.8

We computed the mean time to achieve synchronization coupling constant

over an ensemble of initial conditions. Two IRLs were |G, 2. (a) Mean time to synchronization and (b) largest CLE
run with ¢ = 0 for a sufficiently long time for each to for y = 1.0. The average time to synchronization starts to

reach asymptotic behavior. The coupling was then turnegharply decrease from the maximum run time (which implies
on. We evaluated the timg past which|&(r) — £(2)| no synchronization) at approximately the same coupling where
remained less than some small value forralip to some the largest CLE becomes negative.
largeT. If the systems do not synchronize, the average of
t; over the ensemblés,), would beT. Synchronization m(r). Subtract the differential equations,
is exhibited by(¢;) < T. Simultaneously, we computed
the CLEs of[ (1), wa(¢)], evaluated along the synchro- d[w; — ws]
nization manifold/>(¢) = £1(2), wa(t) = wi(z), with £1(z) dt
andw () treated as given in the evaluation of the Jacobian.
The results of our computations are shown in Fig. 2(a).

In Fig. 2(b) we plot the largest CLE and the average . 4 "
time to synchronization as a function ef A largest CLE ~ Sincée” — 1 = A ande” = 0 for realA,
below zero is necessary, but not sufficient, to guaranteed[Wl — wa] s ow
synchronization [14]. In our system, the difference be- = — = —2y[wi — wal{l + |&1 + m[Ze™"},
tween them was small: the largest CLE becoming negative
is a good predictor of the boundary of synchronization.showing thaw,(r) — wa(f)] — 0 faster thare 2", We
Though not showny,(7) and w(z) also fully synchro-  found numerically that the size of the electric field is large
nized:w; (1) — wa(z)| converged to zero. enough that even whep is quite small, as in the erbium

With ¢ = 1 the receiver is an “open loop” demodulator case “the producy|¢; () + m(t)|? remains order unity
of any signal modulated ont6 (). In this special case, or Jarger. This means that the communications method
we may prove thalw, (1) — wa(1)| approaches zero faster syggested by us will be robust against noise contamination
than e 2", and when this occurs;i(r) — (1) 100.  which bumps the system off the synchronization manifold.

= =2y{wi — wy

+ 14 + m|PeC 2 (Sl — 1) /G).

Write the equations for two coupled IRLs with= 1, Similar reasoning shows the maps ff¢) and & (¢) also

Lt + 1) = fla@) + m@),w (1], converge:|£(t) — &H(¢)l — 0. This synchronization is

_ 5 independent of the external pumping and the pumping rate
dwi(t)/dt = glwi(2),151(1) + m(1)7], 0, so the application of this result to the equations for the
OH(t+ 1) = fIL() + m(t), wa(2)], erbium ring laser is direct.

The second laser receives(r) + m(r) and produces

— 2

dwa(1)/dt = glwa(0),16(2) + m(1)I"], (1) = £41(r) in its optical cavity. This allows us to re-

wherem(t) is added to the electric field amplitude of the coverm(r) from the difference betweefy and the trans-
first laser. The outpuf;(z) is nonlinearly dependent on mitted signal. The basic idea works for any invertible
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combination of; and m(z). In a real connection be- tigating high bandwidth information transmission utilizing
tween lasers the properties of the optical fiber channethaos in coupled ring-laser systems. It also confirms that
must be considered, but here we have taken it as a pesynchronization and information transmission using high-
fectly transmitting, lossless, dispersion free medium. Waealimensional optical chaos is mathematically feasible. Fi-
implemented this idea using a sample of speech from oneally, we note again that VanWiggeren and Roy [6] have
of the authors. In Fig. 3 we show the message (uppeexperimentally verified the essentials of our methods for
panel), the actual transmitted [Re(z)] (central panel), synchronization of and communication with chaotic ring
and the recovered message (lower panel) for both petasers.

fect parameter matching (solid line) and a 1% difference This work was part of a joint UCS[Georgia

in v between transmitter and receiver (dashed line). Evefiech/Cornell effort, and we are grateful to Steve Strogatz
with parameter mismatch, fidelity is good. We have ob-and Raj Roy and others in that program for detailed
served successful recovery of messages using significanttliscussion of the issues here. This work was supported
smallerc using the obvious generalization of the modula-by the U.S. Department of Energy and the National
tion method to closed loops, starting with= 0.3. Also  Science Foundation.

using binary messages af1 and a suitable digital deci-
sion rule, we have found bit error ratesl0—> even with
mismatches iny of as much as 50%.
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