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The effect of ambient disorders and sequence heterogeneities on the reptation of a long poly
studied with the aid of a disordered tube model. The dynamics of a random heteropolymer is f
to be much slower than that of a homopolymer due to collective pinning effects. The asymp
properties belong to the universality class of a directed path ins1 1 1d-dimensional random media.
[S0031-9007(98)05771-8]

PACS numbers: 83.20.Fk, 36.20.Ey, 83.10.Nn
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The stochastic motion of a polymer chain entangled
a disordered medium such as a gel is of much scient
and technological interest. A convenient starting poi
for understanding the polymer dynamics is de Genne
reptation model, which describes the polymer’s wormlik
motion along a fictitious tube threaded through an arr
of fixed obstacles [1–3]. In the original reptation mode
the polymer was assumed to be homogeneous, and eff
due to randomness in the medium (e.g., spatial variatio
in the pore size of a gel) were neglected. A later arg
ment by Harris [4] showed that the static configuratio
of a self-avoiding polymer is, in fact, not affected by th
randomness, a result supported by numerical simulatio
[5,6]. However, extensive numerical [6–8] and exper
mental [9,10] studies found thedynamicsof polymers in
random media to be much slower than the classical rep
tion dynamics [1–3]. These results are understood qua
tatively within an “entropic trapping” framework [6,11].

It should be noted that although some of the be
known applications of reptation theory are concerned w
the behavior of biopolymers which are inherentlyhet-
erogeneous,there has been little theoretical work on th
reptation of heteropolymers beyond a restricted mod
analyzed by de Gennes many years ago [12]. In this L
ter, we address the combined effect of the heterogene
of the polymer and the randomness of the media. Po
mer motion is separated into two components: reptati
within a tube and diffusive motion of the center of mas
For a homopolymer, the disorder does not affect the rep
tional motion, but the center-of-mass motion is drastica
slowed down due to entropic trapping. For a heteropo
mer, the reptational motion is also drastically affecte
The well-known algebraic reptation time becomes exp
nentially long, making the dynamics of the heteropolym
even much slower. Our results are obtained with the a
of a disordered tube model, which we find to be analogo
to the well-known problem of a directed path in random
media [13].

Consider first a long, flexible homopolymer entangle
in a covalently cross-linked gel matrix, characterized b
a typical pore sizea. We shall takea . j ¿ b, j

being the persistence length of the polymer andb be-
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ing the monomer size. (For example, double-strande
DNA in agarose gel hasa , 5000 Å, j ø 500 Å, and
b ­ 3.4 Å [14]; pore sizes are typically much smaller
in polyacrylamide gels [10].) Since the equilibrium con-
figuration of the polymer is that of a self-avoiding walk,
described by the size exponentn * 1y2 even in the pres-
ence of disorders [4–6], we shall describe the dynam
ics of the polymer by the reptation tube model [3]. In
this model, the polymer is confined to a tube of diam
eter ,a [1], and modeled as “beads” linearly connected
by (entropic) springs of spring constantK ­ 3

2 kBTyj2.
Configurational entropy associated with the exponentia
number of (self-avoiding) tube trajectories results in a
effective tensile force acting on the two ends of the bead
spring chain as in the disordered-free case [3]. This e
fect is incorporated into the model by letting the spring
acquire a finite equilibrium length of the ordera [3].
Each link of this bead-spring chain therefore represents a
elementary “blob” ofMblob , a2ybj monomers whose
physical size is,Osad. Confinement of the polymer
to the tube costs a free energy (per blob) of the orde
V ­ kBT sjyad2 [2]. Since the diameter of the reptation
tube embedded in the disordered gel matrix is nonuniform
along its length, we describe the variable confinement e
tropy by a “random potential”V ssd, wheres denotes the
curvilinear coordinate along the tube. For a typical self
avoiding tube trajectory,V may be modeled by a short-
range correlated random variable, characterized by th
variancedVssddV ss0d ­ DV dass 2 s0d, wheredVssd ;
V ssd 2 V , dassd is an exponentially damped function
of range a, and the overline denotes average over th
ensemble of tubes. Assuming that the fractional varianc
in tube diameter variation isOs1d, we haveDV , V

2.
A key advantage of the original tube model [3] is

that the nonlocal excluded-volume interaction between th
beads can be neglected. This results from the entrop
generated stretching forces, which makes the chainex-
tendedin the tube, i.e., the contour length of the chain
being linearly proportional to the number of beads. Con
sequently, the large scale dynamics of the polymer is o
tained simply as the 1D Rouse dynamics of the bead
Let us assume that the nonlocal interaction betwee
© 1998 The American Physical Society 3145
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the beads (confined in the self-avoiding tube) can
neglected also for the disordered case. Then the sta
tical mechanics of a long polymer with degree of poly
merizationM ¿ Mblob is given by a bead-spring chain
of N . MyMblob ¿ 1 links, with the “Hamiltonian”

H0 ­
NX

n­0

Ω
K
2

ssn11 2 sn 2 ad2 1 V ssnd
æ

, (1)

wheresn denotes the coordinate of thenth bead along the
tube.

The legitimacy of neglecting the nonlocal bead-bea
interaction certainly deserves scrutiny: As in the disorde
free case, the approximation is justified provided the cha
is in an extended conformation. On the other hand,
Gaussian chain in a tube can, in principle, collapse [15]
a region wheredV is large and negative, correspondin
to a section of the tube with wider openings. If th
chain described by (1) collapses, then the tube mo
would not be self-consistent. What opposes the collap
of the Gaussian chain are again the tensile stretch
forces generated by the configurational entropy of t
self-avoiding tube. This physics is reflected in the mod
(1) as a competition between the “elastic energy” co
against chain collapse, of the orderK

2 a2 per spring,
and the disorder energy gain, of the order

p
DV . The

outcome of this competition has been obtained recently
the context of “non-Hermitian quantum mechanics” [16
A discontinuous phase transition between the collaps
and the extended state is found at a certain critic
point given by the conditionK

2 a2 ,
p

DV . Using the
expressions given above forK and DV for the polymer
problem at hand, we find thatthe extended state is always
preferred under the presumed conditiona * j. Thus,
the disordered tube model (1) is justified self-consistent
It will be used from here on to generate the large sca
dynamics of self-avoiding polymers in random media.

Classical reptation dynamics is characterized by t
reptation timetR,0 , N3, which is the time it takes for
the polymer to reptate from a given tube to a complete
different tube in the adjacent neighborhood. For tim
scales much exceedingtR,0, the polymer behaves as a
point particle undergoing Brownian motion. This lead
to a diffusion coefficientD0sNd , N2nytR,0sNd. In the
presence of randomness, the reptation timetR is modified
(see below); but more significantly, the large scale moti
becomes one of thermally activated barrier hopping, sin
adjacent tubes may be narrower and hence higher
energy [11]. The typical barrier heightEbsNd can be
taken as the free energy variation of a polymer confined
cells of size,Nn. This variation is bounded to be within
the order of6N1y2 and is found numerically [17] to scale
asNv, with v ø 0.15 in 3D andv ø 0.28 in 2D. Thus
the overall diffusion coefficient is reduced drastically t
D , fN2nytRsNdge2Eb sNdykBT for largeN.

To estimate the reptation timetRsNd itself for the ran-
dom system, it is necessary to separate the sliding m
3146
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tion of a polymer along its prescribed tube from the
thermally activated barrier hopping. This can be accom
plished within the disordered tube model (1) by artificially
imposing aperiodic boundary conditionon the random
potential V , i.e., V ssd ­ V ss 1 Nad. With this simpli-
fication, the extended state of the chain can be obtain
straightforwardly, by observing a discrete translationa
symmetrysn ! sn11 which the model (1) possesses even
in the presence of disorder: The polymer can move alon
the tube by the propagation of a longitudinal “defect”
or “kink” (e.g., a configuration withsn ­ sn11) much
like what was proposed in the original reptation mode
[1]. Thus, the random potential is irrelevant in the ex
tended state [16], and the scaling properties in the slidin
regime are the same as those in the disorder-free case.
example,tR , tR,0, accompanied by a contour length
fluctuationdL0sNd ø fskBTyKdNg1y2.

The above analysis clarifies the role of entropic trap
ping for a homopolymer: The very slow motion of a
long homopolymer in random media is dominated by th
exponentially long waiting time,tR,0eNvykBT needed to
overcome large spatial variations in themeanconfinement
potential. It is not a result of local “bottlenecks” which
impedes the reptational motion along the tube. To stud
this behavior experimentally or numerically, it is neces
sary to have sufficiently long polymers such that eac
polymer threads throughmanylocal bottlenecks.

We next consider a heteropolymer which may carr
sidegroups of vastly different sizes, or may have differen
degrees of partial charges, hydrophobicities, etc. Follow
ing de Gennes [12], we model the coarse-grained effe
of the sidegroups by assigning a “charge”qn [ h6Qj to
each beadn. Then the interaction energyV in Eq. (1)
becomes explicitlyn dependent, with the form

V ssn, nd ­ V0ssnd 1 qnV1ssnd , (2)

where V0ssd 6 QV1ssd is, respectively, the free energy
cost of placing a beam of6 charge at the coordinates
along the tube. We will take the random potentialsV0

and V1 to be short-range correlated, with variances o
the orderDV . To model a heteropolymer, we choose the
chargeshqnj randomly, with probabilityp for q ­ 1Q
and1 2 p for q ­ 2Q, such thatfqg ­ s2p 2 1dQ, and
fdqmdqng ­ Dqdm,n, Dq ­ 4ps1 2 pdQ2. (Here, f· · ·g
denotes average over the ensemble of random sequenc
The magnitude ofQ depends on the coarse-graining scal
a and variations of the monomer-tube interaction. Let th
latter be characterized by a fractional variances, then we
haveQ2 ­ sMblob .

As in the homopolymer case, a Gaussian chain d
scribed by the Hamiltonian (1) with the interaction (2)
may be in either the collapsed or the extended state d
pending on the magnitude of the elastic energyK

2 a2.
However for a random heteropolymer (RHP), differen
monomers tend to prefer different sections of the tube
Hence the extended state is even more preferred, a
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we are again justified to neglect the nonlocal bead-be
interaction.

Let us consider now the reptational motion of a
extended RHP, again by imposing periodic boundary co
dition on theV ’s. Heterogeneity in sequence compos
tion has profound effects on the dynamics, as the rando
qn’s remove the translational symmetrysn ! sn11 de-
scribed above for the homopolymer. Thus, larger bea
prefer to occupy segments of the tube with wider cav
ties, etc. de Gennes demonstrated the existence of suc
heteropolymeric effect by considering a singular limit o
the RHP model [12], where the longitudinal elasticity o
the polymer is suppressed by takingK ! `. Below, we
will show that a significant heteropolymer effect can exis
generically for an elastic RHP.

To proceed, we introduce a longitudinal displaceme
field, un ­ sn 2 na, and write the Hamiltonian as

H ­
NX

n­1

Ω
K
2

sun11 2 und2 1 W sun, nd
æ

, (3)

where W sun, nd ­ dqn ? dV1sun 1 na, nd. [There
are actually two additional terms inH :

P
n qnV1 andP

nhV0ssnd 1 fqgV1ssndj. The first term is simply an
overall energy shift and does not affect the motion of th
polymer along the tube. The second term is just like th
random potential of the homopolymer problem (1); it i
irrelevant as discussed above.] The Hamiltonian (3) th
describes a fictitious “directed path” with “transverse
coordinateshunj, embedded in as1 1 1d-dimensional ran-
dom mediumWsu, nd [18]. The randomness results from
a combination of sequence heterogeneity and mediu
disorder. To elucidate the properties of this system, w
first perform a naive pertubative analysis for small ran
domnessD ; DqDV . We find the randomness to have
a negligible effect on the classical reptation results fo
chains below a crossover scaleN3 ø skBTd5ysKD2a2d.
The perturbative analysis fails for long chains with
N . N3, indicating that theasymptotic reptation prop-
erties are qualitatively affected by arbitrarily weak
sequence heterogeneities. Note the dependence of the
polymer’s crossover lengthM3 ; N3Mblob on the tube
size a: Using expressions forK and D given above for
the simple RHP model, we findM3 , a4bys2j5, which
increases quickly with increasingayj as suggested in
Ref. [12], but is nevertheless accessible for sufficient
heterogeneous polymers in typical gels.

To obtain the asymptotic behavior of the polyme
with M ¿ M3 regime, let us examine more closely th
effective random potentialW su, nd: The statistics ofW is
easily obtained in terms of the statistics ofqn andV1ssd,
with fW g ­ 0 and

fW su, ndW su0, n0dg ­ Ddasu 2 u0ddn,n0 . (4)

The correlator (4) indicates that an effectivetwo-
dimensionalrandom “point” potential isgenerated,even
thoughW itself, being a product of twoone-dimensional
ad
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random variables, must contain long-range correlation
The latter is manifested in the higher moments ofW . For
instance,W2su, nd contains a termfsdqd2gdV2

1 sun 1 nad
which is correlated along the directionun ­ 2na. But
such terms are just like the random potentialV ssd of the
homopolymer case and are irrelevant. Thus, we conje
ture thatthe system (3) belongs to the universality cla
of a directed path in (1 + 1)-dimensional uncorrelated
Gaussian random potential.

This universality class is well known [13]. In the
asymptotic regime, the polymer exhibits glassy dynam
ics which is characterized by two exact scaling law
The sample-to-sample free energy variation scales
dFsNd ø kBT ? sNyN3d1y3, and the contour length fluc-
tuation scales asdLsNd ø s3sNyN3d2y3, where s3 ­
dL0sN3d ­ skBT d3yKDa. The conjectured equivalence
between RHP reptation and the directed path problem w
tested, by numerically computingdFsNd anddLsNd from
the model (1) and the interaction (2), treatingK, D as ar-
bitrary parameters. We used the transfer matrix meth
[13], and examined particularly the “zero-temperature
limit of the model, whose small crossover lengthN3 en-
ables us to access the asymptotic scaling regime. T
zero-temperature problem is an optimization problem.
is necessary to place the bead-spring chain on a disc
lattice. To simplify the numerics, we restrict the displace
ment of beads such thatsn11 2 sn can take on only the
values ha, a 6 1j at each stepn of the transfer matrix.
A random potentialV1ssd of zero mean and unit vari-
ance is assigned to each lattice point, and a chargeqn is
assigned independently to each bead. The numerical
sults for the disorder-averaged contour length fluctuati

dL ­ fsup
N d2g

1y2
of the optimal configurationup

n (with the
n ­ 0 end fixed at the origin) and the sample-to-samp
variation dEpsNd of the total energy of the optimal con-
figuration EpsNd [19] are shown in Fig. 1(a). It is seen
that fluctuations rapidly approach those expected of t
directed path,dL , N2y3 and dEp , N1y3, suggesting
that the RHP is indeed in the same universality class
the s1 1 1d-dimensional directed path. Similar behavior
have recently been found in a number of related stud
[20,21].

Another useful quantity to examine is variation in th
polymer’s “energy landscape,” which we obtain by fixin
the n ­ 0 end of the polymer to an arbitrary coordinat
s, and then computing the energyEss, Nd of the opti-
mal configuration (of the constrained polymer) for eac
s. The landscape is characterized by the correlation fun
tion CEss 2 s0, Nd ; hfEss, Nd 2 Ess0, Ndg2j, which is
expected [13] to have the scaling formCEss, Nd ­
N2y3gsjsjyN2y3d, with the scaling functiongsx & 1d , x
and gsx * 1d , const. This scaling form is verified by
our numerics as shown in Fig. 1(b).

The zero-temperature behavior described here cor
sponds to the asymptotic regime of the RHP, beyo
3147
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FIG. 1. Heteropolymers confined in a tube: (a) Scaling
the contour length fluctuationdL, and the sample-to-sample
minimal energy variationdEp, for bead-spring chains ofN ­
4000, a ­ 4, K ­ 1, and fqg ­ 0.1, averaged over 1500
samples. (b) Autocorrelation of the energy landscapeEss, Nd;
the straight line has slope 1.

the crossover scaleN3. For the finite temperature
problem at hand, the RHP dynamics along the tube
governed by variations in thefree-energy landscape
Fss, Nd, whose form is obtained easily fromEss, Nd. It
is described by the correlation functionCFss 2 s0, Nd ­
skBTd2js 2 s0jys3, for s3 , js 2 s0j , dLsNd, satu-
rating to CF , sdFd2 ø skBT d2sNyN3d2y3 for larger
displacementsjs 2 s0j.

Dynamics of the chain in such a rough free energ
landscape cannot proceed by the propagation of a f
isolated kinks. It requires insteadcollective movement
of large pieces of the chain such that the chain a
ways remains in local optimal configurations [22]. Th
resulting “collective creep” dynamics can be modele
by the motion of one of the chain ends in the 1D
Brownian random potentialFss, Nd [23]. The latter is
a well-studied classical problem [24]. The time it take
for the particle to move by a distances . s3 along
the tube istR,0sN3d expfCFssdyskBT d2g , esys3 . Since
CFssdyskBT d2 saturates atsNyN3d2y3 for dL , s , L,
the reptation time is

tRsNd ø tR,0sN3d expfsNyN3d2y3g , (5)

which greatly exceeds the classical reptation timetR,0sNd
if the polymer is sufficiently long. Note thattR also ex-
ceeds the waiting time,eNvykBT needed for the activated
barrier hopping by the homopolymer. Hence we co
clude thatthe dynamics of a long random heteropolyme
is much slower than that of a homopolymer.

The extraordinary slow dynamics of the RHP is acol-
lective phenomenonresulting from a global “resonance”
of the randomness in the polymer composition with th
randomness in the tube structure; it is not a local effe
say, an increase of the microscopic friction. This can
tested by comparing an RHP with aABAB copolymer
consisted of the same monomers. Upon coarse grain
by a finite scale, the copolymer becomes equivalent to
homopolymer, while heterogeneities of an RHP cannot
3148
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coarse grained away. Thus we expect a long RHP to e
hibit much slower dynamics than a periodic copolymer o
the same length and monomer content.
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