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Polymer Reptation in Disordered Media
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The effect of ambient disorders and sequence heterogeneities on the reptation of a long polymer is
studied with the aid of a disordered tube model. The dynamics of a random heteropolymer is found
to be much slower than that of a homopolymer due to collective pinning effects. The asymptotic
properties belong to the universality class of a directed patfl int 1)-dimensional random media.
[S0031-9007(98)05771-8]
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The stochastic motion of a polymer chain entangled inng the monomer size. (For example, double-stranded
a disordered medium such as a gel is of much scientifi®ONA in agarose gel hag ~ 5000 A, ¢ = 500 A, and
and technological interest. A convenient starting point> = 3.4 A [14]; pore sizes are typically much smaller
for understanding the polymer dynamics is de Gennesh polyacrylamide gels [10].) Since the equilibrium con-
reptation model, which describes the polymer’s wormlikefiguration of the polymer is that of a self-avoiding walk,
motion along a fictitious tube threaded through an arraylescribed by the size exponent= 1/2 even in the pres-
of fixed obstacles [1-3]. In the original reptation model,ence of disorders [4-6], we shall describe the dynam-
the polymer was assumed to be homogeneous, and effedgs of the polymer by the reptation tube model [3]. In
due to randomness in the medium (e.g., spatial variation&is model, the polymer is confined to a tube of diam-
in the pore size of a gel) were neglected. A later argu€ter ~a [1], and modeled as “beads” linearly connected
ment by Harris [4] showed that the static configurationby (entropic) springs of spring constakit = 3 kpT /&2
of a self-avoiding polymer is, in fact, not affected by the Configurational entropy associated with the exponential
randomness, a result supported by numerical simulationsumber of (self-avoiding) tube trajectories results in an
[5,6]. However, extensive numerical [6—8] and experi-effective tensile force acting on the two ends of the bead-
mental [9,10] studies found thdynamicsof polymers in  spring chain as in the disordered-free case [3]. This ef-
random media to be much slower than the classical reptdect is incorporated into the model by letting the springs
tion dynamics [1-3]. These results are understood qualiacquire a finite equilibrium length of the order [3].
tatively within an “entropic trapping” framework [6,11].  Each link of this bead-spring chain therefore represents an

It should be noted that although some of the beselementary “blob” ofMy,, ~ a®/b& monomers whose
known applications of reptation theory are concerned witlphysical size is~0O(a). Confinement of the polymer
the behavior of biopolymers which are inherentigt- to the tube costs a free energy (per blob) of the order
erogeneousthere has been little theoretical work on theV = kzT(£/a)? [2]. Since the diameter of the reptation
reptation of heteropolymers beyond a restricted modefube embedded in the disordered gel matrix is nonuniform
analyzed by de Gennes many years ago [12]. In this Letlong its length, we describe the variable confinement en-
ter, we address the combined effect of the heterogeneitiyopy by a “random potentialV (s), wheres denotes the
of the polymer and the randomness of the media. Polyeurvilinear coordinate along the tube. For a typical self-
mer motion is separated into two components: reptatio@voiding tube trajectoryy may be modeled by a short-
within a tube and diffusive motion of the center of mass.range correlated random variable, characterized by the
For a homopolymer, the disorder does not affect the reptavariancedV(s)dV(s’) = Ayd,(s — s’), wheresV(s) =
tional motion, but the center-of-mass motion is drasticallyV(s) — V, 8.(s) is an exponentially damped function
slowed down due to entropic trapping. For a heteropolyof rangea, and the overline denotes average over the
mer, the reptational motion is also drastically affected:ensemble of tubes. Assuming that the fractional variance
The well-known algebraic reptation time becomes expoin tube diameter variation i© (1), we haveAy ~ V.
nentially long, making the dynamics of the heteropolymer A key advantage of the original tube model [3] is
even much slower. Our results are obtained with the aighat the nonlocal excluded-volume interaction between the
of a disordered tube model, which we find to be analogouseads can be neglected. This results from the entropy-
to the well-known problem of a directed path in randomgenerated stretching forces, which makes the cleain
media [13]. tendedin the tube, i.e., the contour length of the chain

Consider first a long, flexible homopolymer entangledbeing linearly proportional to the number of beads. Con-
in a covalently cross-linked gel matrix, characterized bysequently, the large scale dynamics of the polymer is ob-
a typical pore sizea. We shall takea > ¢ > b, ¢  tained simply as the 1D Rouse dynamics of the beads.
being the persistence length of the polymer ande- Let us assume that the nonlocal interaction between
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the beads (confined in the self-avoiding tube) can beion of a polymer along its prescribed tube from the
neglected also for the disordered case. Then the statitaermally activated barrier hopping. This can be accom-
tical mechanics of a long polymer with degree of poly-plished within the disordered tube model (1) by artificially
merizationM > My, iS given by a bead-spring chain imposing aperiodic boundary conditioron the random
of N = M /My, > 1 links, with the “Hamiltonian” potential V, i.e., V(s) = V(s + Na). With this simpli-
Nk fication, the extended state of the chain can be obtained
Hy = Z {7(s”+1 — s, —a)t + V(sn)}, (1)  straightforwardly, by observing a discrete translational
n=0 symmetrys, — s,+1 Which the model (1) possesses even
wheres, denotes the coordinate of th¢h bead along the in the presence of disorder: The polymer can move along
tube. the tube by the propagation of a longitudinal “defect”
The legitimacy of neglecting the nonlocal bead-beadbr “kink” (e.g., a configuration withs, = s,+;) much
interaction certainly deserves scrutiny: As in the disordertike what was proposed in the original reptation model
free case, the approximation is justified provided the chaiffil]. Thus, the random potential is irrelevant in the ex-
is in an extended conformation. On the other hand, aended state [16], and the scaling properties in the sliding
Gaussian chain in a tube can, in principle, collapse [15] taegime are the same as those in the disorder-free case. For
a region wheredV is large and negative, corresponding example, 7z ~ 7o, accompanied by a contour length
to a section of the tube with wider openings. If thefluctuation§Ly(N) = [(kzT /K)N]/2.
chain described by (1) collapses, then the tube model The above analysis clarifies the role of entropic trap-
would not be self-consistent. What opposes the collapsging for a homopolymer: The very slow motion of a
of the Gaussian chain are again the tensile stretchinpng homopolymer in random media is dominated by the
forces generated by the configurational entropy of theexponentially long waiting time~rx oeV“/%7 needed to
self-avoiding tube. This physics is reflected in the modebvercome large spatial variations in tini@anconfinement
(1) as a competition between the “elastic energy” cospotential. It is not a result of local “bottlenecks” which
against chain collapse, of the ordéra2 per spring, impedes the reptational motion along the tube. To study
and the disorder energy gain, of the ord¢A,. The this behavior experimentally or numerically, it is neces-
outcome of this competition has been obtained recently isary to have sufficiently long polymers such that each
the context of “non-Hermitian quantum mechanics” [16]: polymer threads througmanylocal bottlenecks.
A discontinuous phase transition between the collapsed We next consider a heteropolymer which may carry
and the extended state is found at a certain criticatidegroups of vastly different sizes, or may have different
point given by the condition§ a’> ~ \/Ay. Using the degrees of partial charges, hydrophobicities, etc. Follow-
expressions given above f&f and Ay for the polymer ing de Gennes [12], we model the coarse-grained effect
problem at hand, we find théte extended state is always of the sidegroups by assigning a “chargg’ € {+=Q} to
preferred under the presumed conditian = ¢. Thus, each bead:. Then the interaction energy in Eq. (1)
the disordered tube model (1) is justified self-consistentlybecomes explicitly: dependent, with the form
It will be used from here on to generate the large scale
dynamics of self-avoiding polym(?rs in random me?dia. Visnn) = Volsn) + guVilsn). (2)
Classical reptation dynamics is characterized by thevhere Vy(s) = QV(s) is, respectively, the free energy
reptation timerz, ~ N3, which is the time it takes for cost of placing a beam of charge at the coordinate
the polymer to reptate from a given tube to a completelyalong the tube. We will take the random potenti¥is
different tube in the adjacent neighborhood. For timeand V; to be short-range correlated, with variances of
scales much exceedingk, the polymer behaves as a the orderAy. To model a heteropolymer, we choose the
point particle undergoing Brownian motion. This leadscharges{g,} randomly, with probabilityp for ¢ = +Q
to a diffusion coefficientDo(N) ~ N*”/1ro(N). Inthe andl — pforq = —Q, such thafq] = 2p — 1)Q, and
presence of randomness, the reptation tiés modified [6gn8q,] = AySmn, Ay = 4p(1 — p)0?. (Here,[--]
(see below); but more significantly, the large scale motiordenotes average over the ensemble of random sequences.)
becomes one of thermally activated barrier hopping, sincéhe magnitude oD depends on the coarse-graining scale
adjacent tubes may be narrower and hence higher in and variations of the monomer-tube interaction. Let the
energy [11]. The typical barrier heighf,(N) can be latter be characterized by a fractional variaecehen we
taken as the free energy variation of a polymer confined thaveQ? = o Myjop.
cells of size~N”. This variation is bounded to be within ~ As in the homopolymer case, a Gaussian chain de-
the order of=N'/2 and is found numerically [17] to scale scribed by the Hamiltonian (1) with the interaction (2)
asN®, with o = 0.15in 3D andew = 0.28 in 2D. Thus may be in either the collapsed or the extended state de-
the overall diffusion coefficient is reduced drastically topending on the magnitude of the elastic ener%yzz.
D ~ [N? /7g(N)]e ExM)/ksT for largeN . However for a random heteropolymer (RHP), different
To estimate the reptation time; (V) itself for the ran- monomers tend to prefer different sections of the tube.
dom system, it is necessary to separate the sliding mddence the extended state is even more preferred, and
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we are again justified to neglect the nonlocal bead-beathndom variables, must contain long-range correlations.

interaction. The latter is manifested in the higher momentdtaf For
Let us consider now the reptational motion of aninstance W2(u,n) contains a terni(8¢)*]8 Vi (u, + na)
extended RHP, again by imposing periodic boundary conwhich is correlated along the directian, = —na. But

dition on theV’s. Heterogeneity in sequence composi-such terms are just like the random potentidk) of the

tion has profound effects on the dynamics, as the randohomopolymer case and are irrelevant. Thus, we conjec-
gn's remove the translational symmetsy — s,+; de- ture thatthe system (3) belongs to the universality class
scribed above for the homopolymer. Thus, larger beadef a directed path in (1 + 1)-dimensional uncorrelated
prefer to occupy segments of the tube with wider cavi-Gaussian random potential.

ties, etc. de Gennes demonstrated the existence of such aThis universality class is well known [13]. In the
heteropolymeric effect by considering a singular limit of asymptotic regime, the polymer exhibits glassy dynam-
the RHP model [12], where the longitudinal elasticity of ics which is characterized by two exact scaling laws:
the polymer is suppressed by takikg— «. Below, we The sample-to-sample free energy variation scales as
will show that a significant heteropolymer effect can existé6 F(N) = kzT - (N/Nx)'/?, and the contour length fluc-

generically for an elastic RHP. tuation scales a®L(N) = sx(N/Nx)¥?, where sy =
To proceed, we introduce a longitudinal displacemenLy(Nx) = (kzT)?/KAa. The conjectured equivalence
field, u, = s, — na, and write the Hamiltonian as between RHP reptation and the directed path problem was

N ok tested, by numerically computin®#(N) and§L(N) from
H = Z {— (U1 — up)® + W(un,n)}, (3) the model (1) and the interaction (2), treatikig A as ar-
=i L2 bitrary parameters. We used the transfer matrix method
where  W(u,,n) = 8q, - 6Vi(u, + na,n).  [There [13], and examined particularly the “zero-temperature”
are actually two additional terms ifH{: 3, ¢,V: and  [imit of the model, whose small crossover lengih en-
2atVo(sn) + [q]Vi(s,)}.  The first term is simply an ables us to access the asymptotic scaling regime. The
overall energy shift and does not affect the motion of thezero-temperature problem is an optimization problem. It
polymer along the tube. The second term is just like thgs necessary to place the bead-spring chain on a discrete

random potential of the homopolymer problem (1); it is|attice. To simplify the numerics, we restrict the displace-
irrelevant as discussed above.] The Hamiltonian (3) thement of beads such thaj.; — s, can take on only the

describes a fictitious “directed path” with “transverse”values{a,a + 1} at each stem of the transfer matrix.

coordinategu, }, embedded in & + 1)-dimensional ran- A random potentialV;(s) of zero mean and unit vari-
dom mediumW (u, n) [18]. The randomness results from ance is assigned to each lattice point, and a chajge

a combination of sequence heterogeneity and mediumgssigned independently to each bead. The numerical re-
disorder. To elucidate the properties of this system, weuits for the disorder-averaged contour length fluctuation

i i i i - —51/2 . . L .
first perform a naive pertubative analysis for small ran 5L = ()] / of the optimal configuration”; (with the

domnessA = A,Ay. e find the randomness to have | *_ o q'fixed at the origin) and the sample-to-sample

a negligible effect on the classical reptation results for _ . . N i i
chains below a crossover scalg. ~ (kyT)’/(KA2a?). variation E*(N) of the total energy of the optimal con

The perturbative analysis fails for long chains with figuration E” (N) [19] are shown in Fig. 1(a). It is seen
N > Ny, indicating that theasymptotic reptation prop- that fluctuations rapidly approach those expected of the

i — N2/3 * __ aA7l/3 i
erties are qualitatively affected by arbitrarily weak Sr:;etcttﬁg gatS’?sLin q é\; d ina?r?eéi me ]ljnivérss:%?eiﬁg]sgs as
sequence heterogeneitiedNote the dependence of the . ) . versality clas
polymer's crossover lengthfy = Ny My, ON the tube the(1 + 1)-dimensional directed path. Similar behaviors
- 0 . .
sizea: Using expressions fok and A given above for ana/glr]ecently been found in a number of related studies
the simple RHP model, we fintx ~ a*b/o?&%, which el . . .
; ; o : : Another useful quantity to examine is variation in the
INcreases qwc_kly with increasing/ ¢ as suggeste_d. n olymer’s “ener qIandsga e,” which we obtain by fixin
Ref. [12], but is nevertheless accessible for sufﬂmentlyfh y ~ 0 end ?‘yth | P€, ' bit yd' tg
heterogeneous polymers in typical gels. €n =1 end of the polymer 1o an aroitrary coordinate

To obtain the asymptotic behavior of the polymer?®: and then computing the ener_g‘;/(s,N) of the opti-
with M > My regime, let us examine more closely the mal configuration (of the constrained polymer) for each

effective random potentiaV (1, n): The statistics oV is ~ *- The landscape is characterized by the correlation func-
easily obtained in terms of the statisticsggf and V,(s), 0N Ce(s — s',N) = {[E(s,N) — E(s’,N)}*}, which is

with [W] = 0 and expected [13] to have the scaling formg(s,N) =
N?3g(|s|/N?/3), with the scaling functiorg(x < 1) ~ x
(W (u, )W (i, n")] = Abo(u — u)8y . (4)  andg(x = 1) ~ const. This scaling form is verified by
The correlator (4) indicates that an effectiv&o-  our numerics as shown in Fig. 1(b).
dimensionalrandom “point” potential iggeneratedeven The zero-temperature behavior described here corre-

thoughW itself, being a product of twane-dimensional sponds to the asymptotic regime of the RHP, beyond
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Heteropolymers confined in a tube: (a) Scaling of
the contour length fluctuatio®L, and the sample-to-sample

minimal energy variatiors E*, for bead-spring chains of =

4000, a =4, K =1, and [¢] = 0.1, averaged over 1500

samples. (b) Autocorrelation of the energy landscape N);

the straight line has slope 1.

the crossover scaléVy.

For the finite temperature
problem at hand, the RHP dynamics along the tube is[4]
governed by variations in thdree-energy landscape

F(s,N), whose form is obtained easily froi(s, N). It
is described by the correlation functi@fy(s — s/, N) =
(kgT)*|s — s'l/sx, for sx <|s — s'| < SL(N), satu-
rating to Cp ~ (8F)? = (kgT)>(N/Nx)*? for larger

displacementgs — s'|.

coarse grained away. Thus we expect a long RHP to ex-
hibit much slower dynamics than a periodic copolymer of
the same length and monomer content.
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