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How Sandcastles Fall
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Capillary forces significantly affect the stability of sandpiles. We analyze the stability of sandpil
with such forces, and find that the critical angle is unchanged in the limit of an infinitely large syste
however, this angle is increased for finite-sized systems. The failure occurs in the bulk of the sand
rather than at the surface. This is related to a standard result in soil mechanics. The increase in
critical angle is determined by the surface roughness of the particles, and exhibits three regimes
function of the added-fluid volume. Our theory is in qualitative agreement with the recent experimen
results of Hornbakeret al., although our interpretation differs. [S0031-9007(98)05798-6]

PACS numbers: 81.05.Rm, 68.45.Gd, 91.50.Jc
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The continuum mechanics of most materials was e
tablished in the 19th century; however, the mechani
of granular materials is still largely mysterious [1]. The
study of granular media is also motivated by the ubiquit
of this form of matter in a variety of industrial contexts
as well as in geophysical ones.

While most recent attention has focused on dry gran
lar media, a recent experimental study by Hornbak
et al. has opened the relatively unexplored subject of “hu
mid” granular media, in which small amounts of adde
fluid generate, through capillarity, adhesive forces betwe
the grains [2]. Somewhat whimsically, these authors a
gue that their work is appropriate for the understanding
sandcastles; we actually take this point seriously, becau
adhesive forces and other liquid effects are extremely im
portant in geophysical applications, of which sandcastl
are an unusual example.

In this Letter, we present a theory of the stability o
humid sandpiles, based upon a continuum analysis of th
statics. While previous work on the statics and dynamic
of dry sandpiles concentrated on the behavior of the pile
surface [3], we find that the addition of small adhesiv
forces between the grains causes the site of failure
move from the surface into the bulk of the sandpile
a well-known fact in soil mechanics. Even though th
failure of the sandpile at the critical angle occurs a
some finite depth, in the limit of infinite-system size the
critical angle is actually unchanged by the adhesion. F
finite systems the angle of repose is increased from t
infinite-system/nonadhesive critical angle. By analyzin
the cohesive effect of small amounts of wetting fluid, w
find that this increase in the critical angle as a functio
of the added-fluid volume exhibits a range over whic
the dependence is linear, in agreement with the princip
result of Hornbakeret al. However, we disagree with the
suggestion of these authors that most of the wetting flu
will be found outside the particle contact zones.

To determine the stability of a sandpile, we mus
have a criterion for local failure of the sandpile. For a
nonadhesive (dry) sandpile, a simple phenomenologic
0031-9007y98y80(14)y3141(4)$15.00
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criterion for failure is that

t . ks , (1)

wheret is the tangential stress across some plane int
to the sandpile,s is the normal compressive stress acr
that plane, andk is the internal friction coefficient. For
given stress state stability requires that there be no p
for which the ratio oft to s exceedsk.

Consider a semi-infinite dry sandpile, whose surfac
oriented at an angleu to the horizontal. We choose a
x 2 z coordinate system, in whichz gives the distanc
from the surface of the pile (z . 0 down) andx gives the
distance parallel to the surface. Then the stress tensosij

satisfies the static equations

≠zszz 1 ≠xsxz  rg cosu , (2)

≠zszx 1 ≠xsxx  rg sinu , (3)

where r is the density of the sandpile. To solve the
equations, we first restrict ourselves to solutions wh
are functions of z alone—in a semi-infinite system
any x dependence of the solutions would be liable
generate arbitrarily large stresses near the surface, w
would cause the system to buckle. The most gen
z-dependent solution, which also satisfies the boun
condition that the surface is stress free, is

szz  rgz cosu , (4)

sxz  rgz sinu , (5)

sxx  Cszd . (6)

The well-known stress indeterminacy in granular me
implies thatCszd is at this stage an unknown functio
There have been a number of proposed closure sch
for the stress equations, including elastic, rigid-plas
and elastoplastic constitutive relations [4]. Beyond
variety of methods of closing the stress equations,
not even clear that our problem is well posed. The st
© 1998 The American Physical Society 3141
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state, and thus the critical angle, may well depend on th
manner of preparation of the medium.

Nevertheless, there is a classical method of obtainin
an upper bound on the critical angle, due to Mohr an
Coulomb, which we also expect to provide, at the ver
least, a good estimate of this angle. This method is to fin
the form ofCszd which maximizesthe critical angle. The
angle thereby obtained will be an upper bound on the tru
critical angle; furthermore, if the true constitutive relation
allow the sandpile to adjust the stressCszd within some
range (by local rearrangement of grains, or hysteret
frictional effects), we expect that this upper bound will be
close to the critical angle. We briefly review the Mohr-
Coulomb method, and then apply it to the humid case.

Clearly the functionCszd that will maximize the critical
angle will have the formCszd  C0z. We first determine
the principal stresses, which are the eigenvalues of t
stress tensor. From Eqs. (4)–(6) we find that thes
eigenvalues are

s1,2  zrg cosu

√
1 1 c

2
6

s
s1 1 cd2

4
1 tan2 u 2 c

!
,

(7)

where c  C0yrg cosu. Both of these eigenvalues de-
pend linearly onz, the depth below the surface (in the
direction normal to the surface). The maximum value o
tys as a function ofc and the plane across which this
ratio is computed is

t

s

É
max



s
s1 1 cd2

4sc 2 tan2 ud
2 1 . (8)

Now this quantity must be,k, so to find the maximum
critical angle, we minimize the right-hand side of Eq. (8
with respect toc. We then find that at this minimum
value ofc,

t

s

É
max

 tanu , (9)

so that the critical angle isuc  tan21 k, which is the
classical Mohr-Coulomb result [5].

Now consider a sandpile in which a normal adhesiv
stresssA is exerted across every plane, in addition to
whatever other stresses may exist due to the body forc
This stress introduces a normal force between pairs
contiguous particles which allows the sandpile to suppo
a finite shear stress, even in the limit of zero applie
compressive stress. The maximum supported shear stre
in this case, isksA, and we therefore replace the dry sand
failure criterion, Eq. (1), by

t . kss 1 sAd . (10)

Performing a calculation similar to the one above, w
find that the failure criterion, which is now an explicit
3142
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function of depth, is

k  tanu

√
1 1

sA

rgz cosu

!21

. (11)

Note that our Mohr-Coulomb analysis, now local, applie
only at the incipient failure depth and does not determin
the global stress state of the sand pile.

The criterion thus derived, Eq. (11), is most stringent a
z ! `, in which case the dry sandpile resultuc  tan21 k
is recovered. On the other hand, for a sandpile of fixe
depthD, the failure must occur at most at depthD. Thus
the critical angle will be the solution of the equation

k  tanucsDd

√
1 1

sA

rgD cosucsDd

!
21

, (12)

giving a critical angleucsDd that decreases monotonically
with D. Thus finite humid sandpiles have a depth
dependent critical angle, unlike dry sandpiles, which is
well-known result in soil mechanics [5]. In addition, we
see that humid (i.e., cohesive) sandpiles fail at depth.
the case of small adhesion stresssAyrgD ø 1, we can
write

tanuc ø k 1
ksA

rgD
secftan21skdg . (13)

If, as we are assuming, the adhesion arises fro
capillary forces, we must still connect the adhesive stre
to the amount of fluid present. We suppose that the sa
is composed of macroscopically spherical grains (radi
R) whose surface roughness may be characterized
follows: the spatial correlation of fluctuations in loca
surface height saturates at heightlR at a lateral distance
d that is much smaller than the particle radius,d ø
R. Since the particles are macroscopically spherical, w
require thatlR ø R (see Fig. 1).

We can characterize the surface roughness of two p
ticles in contact by considering the functiondsxd which
gives the average distance between the two particles a
eral distancex from an asperity at which the two particles
are in contact. We writedsxd in the form [6]

dsxd  lRfsxydd , (14)

wherefswd is a scaling function with the limits

fswd ,
Ω

wx w ! 0 ,
1 w ! ` .

(15)

The roughness exponent,x , of the surface satisfies
0 , x # 1.

Note that this form can only be valid forx ,
p

lRR.
For larger values ofx, the macroscopic curvature of the
particles will determine the local distance between the
(see Fig. 1).

For such particles, there are three regimes for th
capillary force exerted by a wetting fluid as a function
of V , the total amount of fluid present per particle contac
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Asperity regime.—For the smallest values ofV , the
capillary force is dominated by the accumulation of flui
around a single or a small number of asperities at whi
two neighboring particles are in contact. This will hold
until the lateral extent of the fluid-filled region exceed
d, determining a maximum contact fluid volume for thi
regime,V1 , lRd2.

We can write the adhesion forcefA as

fA 
GA
r

, (16)

where G is the surface tension of the fluid,r is the
radius of curvature of the meniscus of the fluid laye
connecting the two grains near the asperity, andA , Vyd

is the area of the contact patch.2Gyr is the pressure
reduction due to the capillary meniscus. Becauser will
be approximately the distance between the particles at
meniscus, we find

P , 2
G

lR

√
V
V1

!2xys21xd

, (17)

and the adhesion force is

fA ,
G V1

l2
R

√
V
V1

!s22xdys21xd

, for V , V1 , (18)

whereV1  lRd2.
For a rough surface wherex  1, Eq. (18) shows that

the force depends on the cube root of the fluid volum
This is identical to the dependence of the cohesive for
between a cone and plate on the volume of the liqu
bridge connecting them [2]. It is to be expected that th
cone-and-plate model will reproduce the cohesive for
near a single asperity.

Roughness regime.—For larger values ofV , the fluid
will occupy a statistically rough region, which is still smal
enough that the macroscopic curvature of the particl
plays no role—however, the fluid occupies more than th
volume around a single asperity. This regime occurs f
V1 , V , V2, whereV2  l2

RR. The pressure is

P , 2
G

lR
, (19)

and the force will be

fA ,
G V

l2
R

, for V1 , V , V2 . (20)

In this roughness regime, the cohesive force is line
in the volume of the added fluid, reproducing the linea
dependence found by Hornbakeret al.

Spherical regime.—When the lateral extent of the
fluid contact exceedsd, then the wetting region will be
determined by the macroscopic curvature of the particle
and the surface roughness will no longer play a significa
d
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FIG. 1. The contact zone between two rough particles o
radius R. The scale of height deviations from the mean is
lR , and the height fluctuations are correlated over a distanced.
The lateral size of the contact zone in which the macroscop
curvature of the particles is not apparent is,

p
lRR.

role. In this case the pressure is given by [7]

P  2
Gp

Vy2pR
, (21)

and the force by

fA  2pGR, for V . V2 , (22)

which is independentof the volume of the liquid bridge
joining the two grains. Thus the linear increase of th
cohesive force with fluid volume saturates for volume
V . V2  l2

RR (see Fig. 2).
If the fluid wets the surface of the particles, then, in

addition to the fluid in the contact region, there will

FIG. 2. The behavior of the adhesive force between tw
rough, “spherical” particles. The three regimes of the force v
volume of the wetting layer are I, asperity regime; II, roughnes
regime; and III, spherical regime. The insets show the exte
of the wetting region typical of each regime.
3143
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also be a layer of fluid of thicknesst on the surface
of the particles. Typically, this film will be no thicker
than a few monolayers; hence, there are a complicat
set of forces between this film and the surface. T
simplify, we consider only the van der Waals forces
which for a thicknesst generate a “disjoining pressure”Pd

given by [8]

Pd 
2H
t3

, (23)

whereH is the Hamaker constant (H , 0 for a wetting
fluid). To determine the thickness of the wetting region
we must set this disjoining pressure equal to the pressu
inside the contact regions. If the radius of curvature of th
contact meniscus isr , then

t 

√
2

2Hr
G

!1y3

. (24)

In the asperity regime,t will increase with the meniscus
radius of curvature. In the roughness regime, however,r
saturates at a value,lR, and t will be constant. In this
regime any added fluid enters the contact region. Finall
in the spherical regime,t will again increase.

Now consider a system with a volumeVl of liquid per
particle. If we suppose that the spheres are close pack
then each sphere has 12 neighbors, so there is an aver
of 6 contacts per sphere, each with a fluid volume o
V  Vly6. The average number of contacts per unit are
will be s3fVypR2d, wherefV is the volume fraction of
the particles. Thus for a close-packed lattice, for whic
fV 

p
2 py6, the adhesive stress will be approximately

sA ø
fAp
2 R2

, (25)

and we can now substitute into Eq. (13) to obtain th
dependence of the critical angle upon fluid volume. For
sandpile of fixed depthD, this is linear inV ,

tanuc ø k 1
kGV

p
2 l2

RR2rgD
secftan21skdg , (26)

up to a saturation result determined by (see Fig. 2)

tanuc ø k 1

p
2 pkG

RrgD
secftan21skdg . (27)

Now let us consider the experiment of Hornbakeret al.
They measured the critical angle for a medium compose
of radius 4 3 1022 cm polystyrene spheres with small
amounts of added oil using the draining crater metho
[2]. They found a linear increase in the critical angle
measured as a function of the volume of added oil. The
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claimed that the failure of their systems was at the surfa
and concluded that they could account for their resu
by assuming that 99.9% of the fluid was outside of th
contact zones between the particles. Their particles ha
surface roughness on the order of1 mm .

We find that the increase in the critical angle is linea
with the fluid volume in the roughness regime, up t
the saturation result Eq. (27). We expect the Hamak
constant for a wetting fluid to be negative, and of th
order of magnitude ofH , 10220 erg , so no more than
a few monolayers of fluid should be present on th
particle surfaces. Furthermore, in the linear regime,
fluid added to the system will enter the particle contac
Thus we disagree with the claim that the overwhelmin
majority of the fluid in this case will be outside the contac
zones. Finally, we disagree with the interpretation
their experiment, according to which surface failure is th
most relevant failure mode—the failure plane in cohesi
materials should be at depth.

We are grateful to P. Schiffer for providing us with
copies of Ref. [2] before publication and to D. Erta¸s for
many useful discussions. After completion of this work
we learned of independent work by L. Bocquetet al. [9].
They performed the Mohr-Coulomb analysis leading
Eq. (13), and also concluded that the strength of t
capillary bridges was predominantly controlled by surfac
roughness.
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