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No Cloning of Orthogonal States in Composite Systems
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The no-cloning principle tells us that nonorthogonal quantum states cannot be cloned, but it does
not tell us that orthogonal states can always be cloned. We suggest a situation where the cloning
transformations are restricted, leading to a novel type of no-cloning principle. In the case of a
composite system made of two subsystems: if the subsystems are only available one after the other
then there are various cases wherthogonal statescannot be cloned. Surprising examples are
given, which give a radically better insight regarding the basic concepts of quantum cryptography.
[S0031-9007(98)05708-1]

PACS numbers: 03.67.Dd, 03.65.Bz, 89.70.+c, 89.80.+h

The no-cloning theorem describes one of the moswithout measuring anything. In the more effective
fundamental nonclassical properties of quantum systemsersion of the no cloning theorem [3] the states change
It states that an unknown quantum state cannot be clonetcording to
[1,2]. Assuming that such a quantum pure statean Ep. — E )
be cloned leads to a violation of unitarity of quantum Pr PP
mechanics. Even if there is some information about thdn this case unitarity promises us tMat(EE) Tr(pop1) =
state (e.g., it is eithep, or p;) it cannot be cloned in Tr(pop1)Tr(EoE:), leading toTr(EoE;) = 1 for (non-
the general case. This means that we cannot createi@entical) nonorthogonal states. ThéigandE; are iden-
copying device which gets the unknown statg ) as an tical and can provide no information om,. We shall
input and produces two copies of it at the output. Anotherefer to this process a-imprint principleto distinguish
version of the no-cloning theorem [3] states that anyit from the no-cloning principleof Eq. (1). If Ey andE,
attempt at learning something regarding the input stat@re not identical (hence, provide information) in an im-
of the copying device (even an attempt at making a veryrint process, then the output states cannot be identical to
faint imprint) will necessarily induce some disturbance inthe input stateg,. See [4] for detailed analysis of infor-
the output state; This principle presents a very interestingnation vs disturbance in case of nonzero disturbance in
variation of the so called “uncertainty principle” since it an imprint process.
applies to an individual system; see [4] for more details. ~ These conclusions apply also whep are mixed states,

Let po = o) (ol and p; = |¢1) (| be two non- telling us that only identical or orthogonal statgs
identical pure states provided by the producer (Alice), an¢an be cloned using the first process [5] or imprinted
suppose that these states are known to the person (Evé§ing the second process. However, the situation is more
who attempts to clone them. Let Eve receive one of thenglelicate since such processes do not provide a complete
(p,)—without knowing which one—as an input of her description of Eve’'s possible strategies whep are
cloning (copying) device, and assume the initial normal-nixed states. The no cloning of quantum mixed states
ized pure state of the cloning deviceAs Then, success- Wwas recently analyzed, and it was shown that, while
ful cloning, that is, creating a product statgp,, from the ~ commuting nonorthogonal quantum mixed states cannot
unknown input statg,, is described by be cloned [using Eq. (1)], they can still lreoadcastS]:

Eve can create a stajg, such that

Ep, — E;;Pppn , 1)
Xp F Pp ® pp, 3)
where the dimensionality of the primed systefY
is smaller than the dimensionality of. This  but which satisfies
process violates unitarity if the states are nonorthog-
onal: unitarity promises that Tr(EE)Tr( pop1) = Trelxp] = Tralx,l = pp - (4)

Tr(EGEN)Tr( pop1)Tr(pop1); using the normalization

conditions we getTr(EE) = 1 and Tr(E(E}) =1, so A similar extension of Eq. (2) to achieve a “broadcast-
for nonidentical states withlr(pgp;) < 1, cloning is imprint” process is straightforward. Surprisingly, it is
impossible unlessTr(pop;) = 0. Hence, nonidentical not restricted to commuting density matrices [6], and a
states can be cloned only if they are orthogonal. In th&eomplete analysis is still missing. Because of Eq. (3)
cloning process above, Eve knows the set of statgs (or its counterpart when performing a broadcast-imprint
and therefore, in case they are identical she can clongrocess of mixed states), the state of the cloning device is
them; the cloning device creates the state= pg = p;  entangled with the state of the system.
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These no-cloning theorems prove that nonorthogonahatrices of the subsystem which is available first (4ay
states cannot be cloned, and that cloning of orthogonal
states is possible if the cloning apparatus is allowed to pp(A)) = Tra[ pp(A1A7)] (5)
perform arbitrary unitary transformations. In this work we
suggestrestricting the allowed unitary transformations. are nonorthogonal and nonidentical, and if the re-
We show that, as result of this restriction, there arq—juced dens|ty matrices of the second Subsystem are
orthogonal states whicbannot be cloned We suggest a nponorthogonal.
particular restriction, wherpo andp; are two orthogonal  The first case we study is the case where the two
states of a composite system and the subsystems frogypsystems are entangled, such that the first subsystem
which the system is composed are only available (to thg,, is'in one of two commuting mixed states. Lét and
cloning device) one after the other. Other restrictions arey, pe two qubits with|0,) and |1,,) the basis vectors of

also possible, and lead to very fascinating and surprisingne pth qubit. Let the initial states be the two orthogonal
conclusions [7]. states [8]

The restriction of the type we use here is typical in

quantum key distribution. We show that “no cloning _ L g

of orthogonal states” is the basic principle used in Yo = cosal0r @ 1) + sinally @ 0), (©)

many quantum key distribution schemes, rather than the 1 = sinal0; @ 1) — cosall, ® 0,) )
1 = 1 2/ 1 2/

standard no-cloning arguments, as was previously argued
and believed. Hence, we shed new light on the possible
basic concepts which are at the roots of secure quantu
key distribution.

Let the systemA in Alice’s hands be composed of
two subsystemsl; and A,, such that the possible states

gtrﬁglrdei?] tt?: eAu(fl(E)’e?;p (s?)ﬁze) Oafrihgrtzgr%%rgitéo Sigf:mpossible reduced states of the first subsystem are identical.
If the two subsystems were provided to Eve terthegghEZ’r E\\//vi Cg&;ﬁ;:givﬁhd:&mérqgﬁg (((;j::;f&%y
she could clone the states. However, the subsystenl ’ '

Y = (1/¥D)I0s ® 1) + (1/¥2)|15 ® 0y),

. ay in a state)
are provided to Eve only one after the other so shedY !
cannot access the second one while she holds the fir .h”e keeping subsystem;. The reduced state of the

Let p,(A)) = Tra,(®,) be the reduced density matrices ummy particle is equal to the state of the first subsystem.
2

of the first subsystem, and assume that the two (o‘rater on, after rec;eiving subsystes and learning the
more) possible states are nonidentical and nonorthogonaﬁtgzg 8; éheE (;O[;nb;nsei?nSrjifﬁéﬁérri\;%gsg:hzﬁf@the
Consider Eve's possible strategies when she holds th 324) DY P P

first subsysterat,. Clearly, if she changes, (A;) before alone. In terms of cloning o.f the first system, 'the two
letting it go her cloning attempt fails since she wil possible states are the same; the completely mixed state,

have no access to that subsystem in the future. Thu ence can be cloned. For all othey there is no strategy
she cannot use the cloning process or imprint proces (_‘)r Eve to Iear.n the data, or even to get some !nforma.tlon
However, she can still use a broadcast-cloning proces nless disturbing the state. The reduced density matrix of

or a broadcast-imprint process. We only need to verif)} e first particle (particle) is either

that these processes shall not allow her to clone in our ]

scenario: Indeed, if the states of the first subsystem po = cos a|0){0] + sin® a|1)(1] (8

are nonorthogonal, Eve might be able to achieve a

broadcast, but the state of the first subsystem necessar®y

becomes entangled with Eve's state, hence cannot be

fully entangled (or fully correlated) with the second p1 = sSirt a|0){0] + cos a|1)(1]. 9)

subsystem anymore. Therefore, although the giatd )

does not change in the broadcast process, the dtgte The two density matrices commute, but they are neither

necessarily changes, and noise is induced. The last thirggrthogonal nor identical. Therefore they can be broadcast,

we should worry about is that Eve will not be able to but they cannot be cloned, meaning that the resultant state

clone by obtaining the entire information from the secondof A; and E can bey,(A;C) such thatTrg[ x,(AE)] =

subsystem, meaning thai,(A;) = Tru,(P,) must be p, andTra [ x,(A1E)] = p, but x,(A;C) is not a tensor

nonorthogonal as well. product of these two matrices. Therefore, Eve’'s system
Thus, based on the previous discussion, we reach a novisl entangled withA;, and some noise is necessarily

no cloning principle for orthogonal statesThe two (or introduced since the resulting (three-particle) state is

more) orthogonal statgs, (A;A,) of the system composed not a tensor product of Alice’s (two-particle) state and

of (A;) and(4;) cannot be cloned if the reduced density Eve’s state.

nda is known to the cloner. Incase = Oora = 7/2

all data are already contained in the first particle. Interms
of cloning of the first subsystem, the two possible reduced
states are orthogonal, hence can be cloned. In case
of @ = 7/4 (so that cosx = sina = 1/+/2) the two
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This example (in a somewhat different form which usespletely equivalent to the standard description. We claim
Fock states) was suggested recently by Koashi and Imotihat the standard belief that quantum key distribution is
[8] for quantum key distribution. It was suggested as aased upon the no-cloning theorem of Eq. (2) is inappro-
generalization and modification of a previous scheme opriate: In quantum key distribution Alice’s states are sent
Goldenberg and Vaidman [9]. Goldenberg and Vaidmarto another person (Bob) who must be able to learn them
(GV) were the first to realize that one can use orthogonafat least sometimes). The states are sent through Eve. It
states for quantum key distribution. Their work [9] is not enough to prevent Eve from learning the encoded
emphasizes that nonorthogonal states are not crucial ioits, but we also need to make sure that Bob can learn
quantum cryptography, but it does not discuss it in termshem. Thus, a standard no-cloning argument does not
of no cloning of the reduced density matrices of the firstsuffice as the basis of quantum key distribution. Indeed,
subsystem as we do here. GV’'s scheme is using randomsing a complete quantum description, we show that our
timing, since it uses the case ef= /4 which, without  no-cloning argument for orthogonal states is actually used
random timing, is insecure. Hence, it actually uses (as it the standard BB84 scheme of [11].
explained in [8]) three orthogonal states, where the third Let 0 and 1 form a basis of two dimensional
one is Hilbert space and leD* = (1/+/2)[0 + 1] and 1* =

(1//2)[0 — 1]. Let Alice prepare one of the fol-
U =101)]02), (10)  lowing four states |¢g) = [0,02), Io,) = [0712),
|#1.) = 1110,), and|¢;,) = |171,), which are all ortho-
gonal to each other. The first qubit (qubijtis in one of
four pure statego); [1); (1/v/2)10 + 1); (1/4/2)[0 — 1),
p2 = 10)(0] . (11) which are the states used in the conventional form of
[11], and the second qubit carries classical information
This statey, is used only for error verification. [To telling whether the first qubit was prepared in one basis
observe that indeed [9] used three states, one must the other.

(which is the vacuum state in their description) with a
reduced density matrix

describe their work using Fock stat@§"), etc., in arms: Consider the two mixed states

andb]. Note that in this case, the three possible reduced 1

density matrices of the first particle are still commuting, xo = —[ldo.){bo.| + ldo.){bo.l]

but they arenot identical,hence can be broadcast but not % " " ' '

cloned. - - x x1.17-
In a comment to [9], Peres [10] emphasizes that, 2[|0102><OIO2| * 10112 021

as far as Alice is concerned, previous schemes for 1

X1 = E[|¢IZ><¢IZ| + |1 {(d1l]

—_

guantum cryptography such as the original (four-state)
key distribution scheme of Bennett and Brassard [11] 1 . .
(known as the BB84 scheme) also use orthogonal states, - E[|1102><1102| + 1) (7111, (12)
since, in the BB84 scheme Alice chooses one of two
orthogonal states in a basis of her choice. Peres alsghich are used to encodeand 1, respectively, and are
emphasizes the need of a second stage, where classi€gnt to Bob through Eve. [Note that combining each
information is provided to Eve (regarding the basis inPair of states into one mixture is a result of the fact that
the BB84 scheme or the random timing in GV scheme}he secret bit (the data that should be cloned) in [11] is
when Eve has no longer access to the quantum data. Seefined by these mixed states]. The two mixed states
also Goldenberg-Vaidman reply [12]. Note that we do notx, are orthogonal, since each of the pure states which
consider the case of spatial separation, but only the cagecompose one of the matrices is orthogonal to the states
of “time separation.” which decompose the other. The reduced density matrices

Using our new form of the no C|0ning argument we of partiC|61 (When partiCla is traced out from the states
provide a stronger statement: in both the GV scheme andi») again have the form
the BB84 scheme the states which axesmitted through
Eveare orthogonal. This is a very surprising result, since po = cos a|0") (0| + sin® a|1/)(1'] (13)
(a) it tells us that entanglement is not vital for preventing
cloning of orthogonal states, and since (b) it was alway&nd
believed that the BB84 scheme uses four nonorthogonal
states (see explanation in [12] for instance). p1 = sirt a0 (0’| + cos a1’y (1’| (14)

In the following we show striking similarities between
the GV scheme and the BB84 scheme, which are fafin a basis, denoted by the prime, which is exactly
beyond the similarity shown by Peres. To achieve thidetween the standard)(basis and the basis used above,
understanding we present a nonstandard, fully quanturand is also known as the Breidbart basis], with’aes=
description of the BB84 scheme, which, however, is com{1 + 1/4/2)/2. These density matrices are commuting
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but not orthogonal. Therefore the two density matricesor alternatively, an equal mixture of this state dnfi'1,),
can be broadcast but not cloned, and any attempt of

cloning them will create noise. _ 1l w (x) (x) (x)

Note that we ignored the irrelevant step in which Bob ~ *> ~ 2 [101712) O Lol + )KL ], (A7)
tells Alice his choice of basis. This step is required in
the original protocol due to technological limitations, andProvide the protection from cloning. Such schemes
can be eliminated once Bob keeps the first particle (i{especially the second) are as simple as [11] as far as
a quantum state) till receiving the second. However, iforactical implementation is concerned, but might be much
is crucial that Bob receives the first partidleforeAlice ~ Simpler to analyze, since Eve can only obtain information
sends the second and communication from Bob to Alicdn one basis.
is required to verify this. In this work we discussed the impossibility of cloning

Thus far we have seen the impossibility of cloning threeorthogonal states of combined systems in various cases,
orthogonal states when two are entangled [9], the impod?ased on the impossibility of cloning nonorthogonal
sibility of cloning two orthogonal entangled states [8] andmixed states. We presented a unified formalism for
the impossibility of cloning four nonentangled (product) Several schemes in quantum key distribution based on
states [10] or two nonentangled (sum of product) densit@ur new no-cloning argument for orthogonal states. We
matrices (our description of [11]). Let us search for sim-corrected an unjustified claim regarding the role of
pler cases, with nonentangled orthogonal states. SuchEfl- (2) in quantum key distribution, and solved a dispute
case will make the best use of the new no-cloning theregarding the use of orthogonal states in quantum key
orem stated in this work. Furthermore, such orthogona#listribution. Finally we suggested the simplest schemes
states which cannot be cloned are useful for quantum keyhich are based on this principle.
distribution, and m|ght be Simp|er to imp|ement’ or to ana- | would like to thank Charles Bennett, Gilles Brassard,
lyze, relative to the other schemes. Christopher Fuchs, Lior Goldenberg, Asher Peres, and

It is impossib|e to use 0n|y two product pure States:JOhn Smolin for very hE|pr| discussions. This work
Let |¢o) = 0705) (which is general since the basis is Was supported in part by Canada’s NSERC and Québec'’s
arbitrary), and|¢,) a state which is orthogonal to it; FCAR. Part of this work was completed during the
Clearly, [¢1) = |1\ x2) or |¢1) = |x115) (with arbitrary 1997 EIsag-BaiIey—I'.S.I. Foundation research meeting
state y, and with 1 orthogonal to0 in each primed or 0N guantum computation.
double-primed basis) are the only two possibilities to
choose a two-particle state orthogonal¢g). For any of
these choices the entire information can be cloned by Eve
by cloning the appropriate particle (e.g., the first particle
in the first choice of ¢,)); similar argument is true when
using higher dimensions or a larger number of particles. .
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