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The no-cloning principle tells us that nonorthogonal quantum states cannot be cloned, but it d
not tell us that orthogonal states can always be cloned. We suggest a situation where the clo
transformations are restricted, leading to a novel type of no-cloning principle. In the case of
composite system made of two subsystems: if the subsystems are only available one after the o
then there are various cases whenorthogonal statescannot be cloned. Surprising examples are
given, which give a radically better insight regarding the basic concepts of quantum cryptograp
[S0031-9007(98)05708-1]
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The no-cloning theorem describes one of the mo
fundamental nonclassical properties of quantum syste
It states that an unknown quantum state cannot be clo
[1,2]. Assuming that such a quantum pure stater can
be cloned leads to a violation of unitarity of quantum
mechanics. Even if there is some information about t
state (e.g., it is eitherr0 or r1) it cannot be cloned in
the general case. This means that we cannot crea
copying device which gets the unknown state (rp) as an
input and produces two copies of it at the output. Anoth
version of the no-cloning theorem [3] states that a
attempt at learning something regarding the input st
of the copying device (even an attempt at making a ve
faint imprint) will necessarily induce some disturbance
the output state; This principle presents a very interest
variation of the so called “uncertainty principle” since
applies to an individual system; see [4] for more details

Let r0 ; jf0l kf0j and r1 ; jf1l kf1j be two non-
identical pure states provided by the producer (Alice), a
suppose that these states are known to the person (E
who attempts to clone them. Let Eve receive one of the
(rp)—without knowing which one—as an input of he
cloning (copying) device, and assume the initial norma
ized pure state of the cloning device isE. Then, success-
ful cloning, that is, creating a product staterprp from the
unknown input staterp, is described by

Erp °! E0
prprp , (1)

where the dimensionality of the primed systemE0

is smaller than the dimensionality ofE. This
process violates unitarity if the states are nonortho
onal: unitarity promises that TrsEEdTrs r0r1d ­
TrsE0

0E0
1dTrs r0r1dTrs r0r1d; using the normalization

conditions we getTrsEEd ­ 1 and TrsE0
0E0

1d # 1, so
for nonidentical states withTrsr0r1d , 1, cloning is
impossible unlessTrsr0r1d ­ 0. Hence, nonidentical
states can be cloned only if they are orthogonal. In t
cloning process above, Eve knows the set of statesrp ,
and therefore, in case they are identical she can clo
them; the cloning device creates the stater ­ r0 ­ r1
0031-9007y98y80(14)y3137(4)$15.00
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without measuring anything. In the more effectiv
version of the no cloning theorem [3] the states chan
according to

Erp °! Eprp . (2)

In this case unitarity promises us thatTrsEEdTrsr0r1d ­
Trsr0r1dTrsE0E1d, leading to TrsE0E1d ­ 1 for (non-
identical) nonorthogonal states. ThusE0 andE1 are iden-
tical and can provide no information onrp . We shall
refer to this process asno-imprint principleto distinguish
it from the no-cloning principleof Eq. (1). If E0 andE1

are not identical (hence, provide information) in an im
print process, then the output states cannot be identica
the input statesrp. See [4] for detailed analysis of infor-
mation vs disturbance in case of nonzero disturbance
an imprint process.

These conclusions apply also whenrp are mixed states,
telling us that only identical or orthogonal statesrp

can be cloned using the first process [5] or imprinte
using the second process. However, the situation is m
delicate since such processes do not provide a comp
description of Eve’s possible strategies whenrp are
mixed states. The no cloning of quantum mixed stat
was recently analyzed, and it was shown that, wh
commuting nonorthogonal quantum mixed states cann
be cloned [using Eq. (1)], they can still bebroadcast[5]:
Eve can create a statexp such that

xp fi rp ≠ rp , (3)

but which satisfies

TrEfxpg ­ TrAfxpg ­ rp . (4)

A similar extension of Eq. (2) to achieve a “broadcas
imprint” process is straightforward. Surprisingly, it is
not restricted to commuting density matrices [6], and
complete analysis is still missing. Because of Eq. (
(or its counterpart when performing a broadcast-impri
process of mixed states), the state of the cloning device
entangled with the state of the system.
© 1998 The American Physical Society 3137
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These no-cloning theorems prove that nonorthogon
states cannot be cloned, and that cloning of orthogon
states is possible if the cloning apparatus is allowed
perform arbitrary unitary transformations. In this work we
suggestrestricting the allowed unitary transformations.
We show that, as result of this restriction, there ar
orthogonal states whichcannot be cloned. We suggest a
particular restriction, wherer0 andr1 are two orthogonal
states of a composite system and the subsystems fr
which the system is composed are only available (to th
cloning device) one after the other. Other restrictions a
also possible, and lead to very fascinating and surprisi
conclusions [7].

The restriction of the type we use here is typical i
quantum key distribution. We show that “no cloning
of orthogonal states” is the basic principle used i
many quantum key distribution schemes, rather than t
standard no-cloning arguments, as was previously argu
and believed. Hence, we shed new light on the possib
basic concepts which are at the roots of secure quant
key distribution.

Let the systemA in Alice’s hands be composed of
two subsystemsA1 and A2, such that the possible states
provided by Alice, FpsA1A2d, are orthogonal to each
other, in the Hilbert space of the composite system
If the two subsystems were provided to Eve togeth
she could clone the states. However, the subsyste
are provided to Eve only one after the other so sh
cannot access the second one while she holds the fi
Let rpsA1d ­ TrA2 sFpd be the reduced density matrices
of the first subsystem, and assume that the two (
more) possible states are nonidentical and nonorthogon
Consider Eve’s possible strategies when she holds t
first subsystemA1. Clearly, if she changesrpsA1d before
letting it go her cloning attempt fails since she wil
have no access to that subsystem in the future. Th
she cannot use the cloning process or imprint proce
However, she can still use a broadcast-cloning proce
or a broadcast-imprint process. We only need to veri
that these processes shall not allow her to clone in o
scenario: Indeed, if the states of the first subsyste
are nonorthogonal, Eve might be able to achieve
broadcast, but the state of the first subsystem necessa
becomes entangled with Eve’s state, hence cannot
fully entangled (or fully correlated) with the second
subsystem anymore. Therefore, although the staterpsA1d
does not change in the broadcast process, the stateFp

necessarily changes, and noise is induced. The last th
we should worry about is that Eve will not be able to
clone by obtaining the entire information from the secon
subsystem, meaning thatrpsA2d ­ TrA1sFpd must be
nonorthogonal as well.

Thus, based on the previous discussion, we reach a no
no cloning principle for orthogonal states.The two (or
more) orthogonal statesrpsA1A2d of the system composed
of sA1d and sA2d cannot be cloned if the reduced densit
3138
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matrices of the subsystem which is available first (sayA1)

rpsA1d ­ TrA2 f rpsA1A2dg (5)

are nonorthogonal and nonidentical, and if the re
duced density matrices of the second subsystem a
nonorthogonal.

The first case we study is the case where the tw
subsystems are entangled, such that the first subsyste
A1 is in one of two commuting mixed states. LetA1 and
A2 be two qubits withj0bl and j1bl the basis vectors of
the bth qubit. Let the initial states be the two orthogonal
states [8]

c0 ­ cosaj01 ≠ 12l 1 sinaj11 ≠ 02l , (6)

c1 ­ sinaj01 ≠ 12l 2 cosaj11 ≠ 02l , (7)

anda is known to the cloner. In casea ­ 0 or a ­ py2
all data are already contained in the first particle. In term
of cloning of the first subsystem, the two possible reduce
states are orthogonal, hence can be cloned. In ca
of a ­ py4 (so that cosa ­ sina ­ 1y

p
2) the two

possible reduced states of the first subsystem are identic
Thus, Eve can release a dummy qubit (denoted byE3)
of her own, entangled with another one (denoted byE4),
say in a statec0 ­ s1y

p
2dj03 ≠ 14l 1 s1y

p
2dj13 ≠ 04l,

while keeping subsystemA1. The reduced state of the
dummy particle is equal to the state of the first subsystem
Later on, after receiving subsystemA2 and learning the
state of the combined systemA1A2, Eve can change the
state of (E3E4) by a simple transformation on particleE4

alone. In terms of cloning of the first system, the two
possible states are the same; the completely mixed sta
hence can be cloned. For all othera, there is no strategy
for Eve to learn the data, or even to get some informatio
unless disturbing the state. The reduced density matrix o
the first particle (particle1) is either

r0 ­ cos2 aj0l k0j 1 sin2 aj1l k1j (8)

or

r1 ­ sin2 aj0l k0j 1 cos2 aj1l k1j . (9)

The two density matrices commute, but they are neithe
orthogonal nor identical. Therefore they can be broadcas
but they cannot be cloned, meaning that the resultant sta
of A1 andE can bexpsA1Cd such thatTrEf xpsA1Edg ­
rp andTrA1 f xpsA1Edg ­ rp but xpsA1Cd is not a tensor
product of these two matrices. Therefore, Eve’s system
is entangled withA1, and some noise is necessarily
introduced since the resulting (three-particle) state i
not a tensor product of Alice’s (two-particle) state and
Eve’s state.
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This example (in a somewhat different form which use
Fock states) was suggested recently by Koashi and Im
[8] for quantum key distribution. It was suggested as
generalization and modification of a previous scheme
Goldenberg and Vaidman [9]. Goldenberg and Vaidma
(GV) were the first to realize that one can use orthogon
states for quantum key distribution. Their work [9
emphasizes that nonorthogonal states are not crucial
quantum cryptography, but it does not discuss it in term
of no cloning of the reduced density matrices of the fir
subsystem as we do here. GV’s scheme is using rand
timing, since it uses the case ofa ­ py4 which, without
random timing, is insecure. Hence, it actually uses (as
explained in [8]) three orthogonal states, where the thi
one is

c2 ­ j01l j02l , (10)

(which is the vacuum state in their description) with
reduced density matrix

r2 ­ j0l k0j . (11)

This statec2 is used only for error verification. [To
observe that indeed [9] used three states, one m
describe their work using Fock statesj0sadl, etc., in armsa
andb]. Note that in this case, the three possible reduc
density matrices of the first particle are still commuting
but they arenot identical,hence can be broadcast but no
cloned.

In a comment to [9], Peres [10] emphasizes tha
as far as Alice is concerned, previous schemes f
quantum cryptography such as the original (four-stat
key distribution scheme of Bennett and Brassard [1
(known as the BB84 scheme) also use orthogonal stat
since, in the BB84 scheme Alice chooses one of tw
orthogonal states in a basis of her choice. Peres a
emphasizes the need of a second stage, where class
information is provided to Eve (regarding the basis i
the BB84 scheme or the random timing in GV schem
when Eve has no longer access to the quantum data.
also Goldenberg-Vaidman reply [12]. Note that we do n
consider the case of spatial separation, but only the ca
of “time separation.”

Using our new form of the no cloning argument we
provide a stronger statement: in both the GV scheme a
the BB84 scheme the states which aretransmitted through
Eveare orthogonal. This is a very surprising result, sinc
(a) it tells us that entanglement is not vital for preventin
cloning of orthogonal states, and since (b) it was alwa
believed that the BB84 scheme uses four nonorthogon
states (see explanation in [12] for instance).

In the following we show striking similarities between
the GV scheme and the BB84 scheme, which are f
beyond the similarity shown by Peres. To achieve th
understanding we present a nonstandard, fully quantu
description of the BB84 scheme, which, however, is com
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pletely equivalent to the standard description. We cla
that the standard belief that quantum key distribution
based upon the no-cloning theorem of Eq. (2) is inapp
priate: In quantum key distribution Alice’s states are se
to another person (Bob) who must be able to learn th
(at least sometimes). The states are sent through Eve
is not enough to prevent Eve from learning the encod
bits, but we also need to make sure that Bob can le
them. Thus, a standard no-cloning argument does
suffice as the basis of quantum key distribution. Inde
using a complete quantum description, we show that
no-cloning argument for orthogonal states is actually us
in the standard BB84 scheme of [11].

Let 0 and 1 form a basis of two dimensiona
Hilbert space and let0x ­ s1y

p
2 df0 1 1g and 1x ­

s1y
p

2 d f0 2 1g. Let Alice prepare one of the fol-
lowing four states jf0z l ­ j0102l, jf0xl ­ j0x

112l,
jf1z

l ­ j1102l, and jf1x
l ­ j1x

112l, which are all ortho-
gonal to each other. The first qubit (qubit1) is in one of
four pure statesj0l; j1l; s1y

p
2 dj0 1 1l; s1y

p
2 dj0 2 1l,

which are the states used in the conventional form
[11], and the second qubit carries classical informat
telling whether the first qubit was prepared in one ba
or the other.

Consider the two mixed states

x0 ­
1
2

fjf0z l kf0z j 1 jf0x l kf0xjg

­
1
2

fj0102l k0102j 1 j0x
112l k0x

112jg ;

x1 ­
1
2

fjf1z l kf1z j 1 jf1x l kf1xjg

­
1
2

fj1102l k1102j 1 j1x
112l k1x

112jg , (12)

which are used to encode0 and 1, respectively, and are
sent to Bob through Eve. [Note that combining ea
pair of states into one mixture is a result of the fact th
the secret bit (the data that should be cloned) in [11]
defined by these mixed states]. The two mixed sta
xp are orthogonal, since each of the pure states wh
decompose one of the matrices is orthogonal to the st
which decompose the other. The reduced density matr
of particle1 (when particle2 is traced out from the state
xp) again have the form

r0 ­ cos2 aj00l k00j 1 sin2 aj10l k10j (13)

and

r1 ­ sin2 aj00l k00j 1 cos2 aj10l k10j (14)

[in a basis, denoted by the prime, which is exac
between the standard (z) basis and thex basis used above
and is also known as the Breidbart basis], with cos2 a ­
s1 1 1y

p
2 dy2. These density matrices are commutin
3139
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but not orthogonal. Therefore the two density matrice
can be broadcast but not cloned, and any attempt
cloning them will create noise.

Note that we ignored the irrelevant step in which Bo
tells Alice his choice of basis. This step is required i
the original protocol due to technological limitations, an
can be eliminated once Bob keeps the first particle (
a quantum state) till receiving the second. However,
is crucial that Bob receives the first particlebeforeAlice
sends the second and communication from Bob to Alic
is required to verify this.

Thus far we have seen the impossibility of cloning thre
orthogonal states when two are entangled [9], the impo
sibility of cloning two orthogonal entangled states [8] an
the impossibility of cloning four nonentangled (product
states [10] or two nonentangled (sum of product) densi
matrices (our description of [11]). Let us search for sim
pler cases, with nonentangled orthogonal states. Suc
case will make the best use of the new no-cloning th
orem stated in this work. Furthermore, such orthogon
states which cannot be cloned are useful for quantum k
distribution, and might be simpler to implement, or to ana
lyze, relative to the other schemes.

It is impossible to use only two product pure states
Let jf0l ­ j00

1000
2 l (which is general since the basis is

arbitrary), andjf1l a state which is orthogonal to it;
Clearly, jf1l ­ j10

1x2l or jf1l ­ jx1100
2 l (with arbitrary

statex, and with 1 orthogonal to0 in each primed or
double-primed basis) are the only two possibilities t
choose a two-particle state orthogonal tojf0l. For any of
these choices the entire information can be cloned by E
by cloning the appropriate particle (e.g., the first particl
in the first choice ofjf1l); similar argument is true when
using higher dimensions or a larger number of particles.

Note that we did not describe the scheme of [13] i
terms of cloning, since a more complicated involvemen
of the third party (Bob) is needed for its description. Two
way communication between Alice and Bob plays a vita
role in this scheme, and it is not clear yet if our new
no-cloning principle suffices to explain why this schem
works.

The natural simplest (achievable) possibilities are to u
only three orthogonal pure states or two pure orthogon
states and one mixed state which is orthogonal to bo
as far as quantum key distribution is concerned, let tw
pure nonentangled states carry the secret key, and the th
nonentangled state (pure or mixed) provide the protecti
from cloning (this is called a “rejected data protocol”)
The states

jf0l ­ j0102l; jf1l ­ j1102l (15)
will be two states which carry the key (in the first qubit)
and in addition the state

jf2l ­ j0
sxd
1 12l , (16)
3140
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or alternatively, an equal mixture of this state andj1
sxd
1 12l,

x2 ­
1
2

fj0sxd
1 12l k0sxd

1 12j 1 j1
sxd
1 12l k1sxd

1 12jg , (17)

provide the protection from cloning. Such scheme
(especially the second) are as simple as [11] as far
practical implementation is concerned, but might be mu
simpler to analyze, since Eve can only obtain informatio
in one basis.

In this work we discussed the impossibility of cloning
orthogonal states of combined systems in various cas
based on the impossibility of cloning nonorthogona
mixed states. We presented a unified formalism f
several schemes in quantum key distribution based
our new no-cloning argument for orthogonal states. W
corrected an unjustified claim regarding the role o
Eq. (2) in quantum key distribution, and solved a dispu
regarding the use of orthogonal states in quantum k
distribution. Finally we suggested the simplest schem
which are based on this principle.
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