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The interpretation of de Haas–van Alphen oscillations in the presence of magnetic breakdown is
usually based on the semiclassical theory of Falicov and Stachowiak (FS). There are now glaring
discrepancies between its predictions and experiments, especially in quasi-two-dimensional organic
conductors. We present an extension of the theory, using the appropriate constraints of conserved
electron density, which explains the occurrence of frequencies not predicted by FS, and makes explicit
the amplitudes as a function of Fermi surface parameters. The results involve a tunneling amplitude
between different sheets as in FS, but other parameters as well, such as the areas of different orbits.
[S0031-9007(98)05725-1]
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Magnetic breakdown of oscillations in the magnetiz
tion or transport is an important tool in exploring Ferm
surfaces. At weak magnetic fields oscillations are visib
and correspond to extremal cross sections of semicla
cally closed orbits perpendicular to the field direction.
there are several bands there are frequencies corresp
ing to each closed orbit but not to orbits which traver
the first Brillouin zone and are open. As the magne
field increases in a system with several bands, there m
be magnetic field-induced tunneling from band to ban
giving rise to larger orbits with frequencies that are com
binations of the original frequencies or which may includ
parts of open parts of the Fermi surface, giving new fr
quencies. The characteristic fields at which oscillatio
appear give information on local properties of the band
separation of the disjoint parts of the Fermi surface and
local curvature. In the case of bidimensional organic co
ductors such as the familysBEDT-TTFd2XsSCNd4 where
BEDT-TTF is (bis)-ethyleneditho-tetrathiafulvalene [1,2
information on the open parts of the Fermi surface is
key to understanding low temperature instabilities. In a
dition to extract physical parameters, renormalized mas
andg factors in particular, we need a reliable and detail
theory of oscillations. In the past this has been pr
vided by semiclassical theory [3], which culminated in th
theory of Falicov and Stachowiak (FS) [4]. In 1982, fre
quencies were observed [5] for pure magnesium that a
however, forbidden in such a theory. In the organic me
als there are more and more violations in the frequen
spectrum from experiment. The existence of the “forbi
den” b-a frequency (see below) in the magnetoresistan
of k-sBEDT-TTFd2CusSCNd2 [6] was attributed to a Stark
interference [3,7] but has since been seen clearly in
Haas–van Alphen (dHvA) [8,9], where Stark interferenc
0031-9007y98y80(14)y3117(4)$15.00
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does not apply. Numerical simulation [10–12] showe
that the discrepancy is a single particle effect. It has be
argued [12–15] that the reason for observations of frequ
cies corresponding to classically disallowed orbits is th
the different frequencies are coupled by the constraint t
the total number of electrons across all bands is conser
as the field varies. This global constraint leads to coupli
between different frequencies and frequencies forbidd
in the FS theory. Such a constraint, without the effects
breakdown, has been shown numerically [14,15] to chan
the harmonic content of a single frequency. What we la
are explicit calculations of the amplitudes of breakdow
when this effect is taken into account. These should
substituted for the FS expressions. In this paper we sh
show how FS theory must be amended and we calcula
for a simple case, the correct forms. We also give expli
account of the spin splitting used to extract the renorm
ized Landé factorg, at least in the low-field limit.

We now consider a simple case of breakdown in tw
dimensions between open and closed orbits. The Fe
surface, close to that ofk-sBEDT-TTFd2CusSCNd2 is
shown in Fig. 1. The theory describing the tunnelin
process at each junction is given in Ref. [16]. We ada
the theory of Ref. [16] to describe the tunneling process
each junction in terms of a gapkg and curvaturekgy2l2,

kx 6
q

l2k2
y 1 k2

gy4 ­ 0 .

If p andq are the amplitudes of tunneling and reflectio
(p2 1 q2 ­ 1), andv the phase the wave function take
during the reflection process, then the transfer relatio
between the wave amplitudes before and after the junct
points are given [16],µ
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FIG. 1. Typical Fermi surface with one closed pocket at th
center of the figure and the two open lines. The magnet
breakdown is represented by the dashed lines.

and similarly for the other junction. The amplitude o
tunneling isp ­ exps2pb2y2sd, with b2 ­ k2

gy4l and
s ­ eByh̄. The phasev is found by matching parabolic
cylinder functions,

v ­ 2
p

4
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The spectrum is computed with semiclassical method
Indeed, the phase variation of the wave function from th
point d to d0 is given by s2 1 py2 ; S2y2s 1 py2,
whereS2 is the area of the small pocket. The factorpy2
comes from the existence of a turning point. Similarly
a ­ a0 expsis1y2d, where s1 ­ S1y2s, S1 being the
area delimited by the two open surfaces. The oth
relations are similar, and we set the conditions on th
edges of the Brillouin zone

g0 ­ a0 expsiud, g0
0 ­ a0

0 exps2iud

with u between0 and2p. In the following we neglect the
phasev for simplicity since it is small in the semiclassi-
cal limit. In fact, it can be absorbed in the new definition
s1 1 v ! s1 ands2 2 v ! s2. Eliminating the dif-
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ferent amplitudes determines the spectrum [16,17]

cosss1 1 s2d ­ 2q cosu coss2 2 q2 cosss1 2 s2d .

(1)
The grand thermodynamical potential is determine

from the spectrum (1) following the methods of [18,19]
We choose an increasing function of the energye,

2pn6se, ud ­ s1 1 s2

6 f2q cosu coss2 2 q2 cosss1 2 s2dg .

Integer values ofn define the spectrum. For smallq
we recover the Landau quantization of the giant orb
b. In this limit, the argument of the arccosine function
vanishes and the variation ofn with the energy follows the
variation of s1 1 s2, assumed positive near the Ferm
energy and for smallq. The only restriction is when
the arccosine function is no longer defined for all energ
andu, i.e., for q $

p
2 2 1. In fact, we will check that

the final result no longer depends on this restriction. Th
oscillating part of the potential is

Vosc ­ 2 D
Z p

0

du

p
2

1X̀
k­1

X
s­6

3
Z 1`

0
defbsed

1
2pk

sins2pknsd ,

wherefbsed is the Fermi distribution1yf1 1 expbse 2

mdg, and D ­ g0LxLyBeyh is the degeneracy of each
Landau level (g0 is the spin degeneracy). The usua
method at low temperatures is to expand the integra
near the chemical potential (where the Fermi function d
creases rapidly), sincens is considered large in the semi-
classical regime. The oscillatory part of the magnetizatio
is thenMosc ­ 2≠Voscy≠B. Before performing these op-
erations, we sum overs,X

s­6

sins2pknsd ­ 2 sinkss1 1 s2d

3 Tkf2q cosu coss2

2 q2 cosss1 2 s2dg ,

where the Tk are the Chebyshev polynomials. The
integration overu gives the different frequencies which
appear in the Fourier transform of the magnetizatio
Unfortunately, it is necessary to integrate term by term
For the first terms (k ­ 1, 2, 3, . . .) we find
2
1X̀
k­1

Z p

0

du

p

X
s­6

1
k

sins2pknsd ­ q2 sins2s2 1 pd 1 sipd4 sins2s1 1 2s2 1 pd

1 2sipd4q2 sins2s1 1 4s2 1 2pd 1 . . . . (2)

The amplitudes appearing with each oscillation are understood as follows: Around the orbita for example (term
2s2 ­ 2pFayB), a wave packet is reflected twice at the junctions, and so a factorq2 is present. For the orbitb
(2s2 1 2s1 ­ 2pFbyB), there are four tunneling junctions, and we put a factorsipd4, etc. We then add a symmetry



VOLUME 80, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 6 APRIL 1998

n

art

is
of

no
ect
on
ti-
factor for each combination of principal orbits: Fo
a 1 b, there are two possibilities to draw such an orb
At the end, we put apy2 factor in the sine functions
for each turning point (twice fora or b orbits). These
rules are in fact those formulated by FS. We conclu
then that working at fixed chemical potential there are
forbidden frequencies present in the Fourier transform
the magnetization: The first terms area, b, anda 1 b.
There are no difference frequencies.

We now consider, at zero temperature, the case of
fixed total number of electrons. To simplify, we take
linear relation between the area and the energy,

Si ­
2pmp

i

h̄2 e, i ­ 1, 2 .

Then we introduce the dimensionless variablex such that
s1 ­ 2px. Finally, the ratios1ys2 is fixed to be a
rational r ­ nym $ 1 with m and n relatively prime.
The relation betweenx and the energy takes the form
r
it.

de
o
of

the
a

e ­ 2xh̄v1, v1 ­
eB
mp

1
,

vb ­
n

m 1 n
v1, va ­

n
m

v1 .

Periodicity x ! x 1 n then allows us to work in the
sectorskn # x # kn 1 n, where Eq. (1) has2sm 1 nd
solutions with the symmetryx ! s2k 1 1dn 2 x.

We now analyze the expressions of the oscillatory p
of the magnetization for bothq ­ 1 and q small at
fixed electron number. Forq ­ 1 (no magnetic break-
down), the Landau levels of thea orbit are embed-
ded in a continuous band. The chemical potential
located either in one Landau band or between two
them. There is no jump in the chemical potential and
jump in the magnetization at zero temperature. The eff
of the splitting of the Landau levels due to the electr
spin is to reduce the Fourier coefficients of the magne
zation. SettingD ­ gmp

ay2me, the oscillatory part of the
magnetization per electron is
mosc ­
h̄e
mp

a

"
2

X
k$1

s21dks11fDgd s1 1 rd2

p2k2r
2 sin

"
pk

2s1 1 rd

#
cos

Ω
pk

1 1 r

∑
sD 2 fDgdr 1

1
2

∏æ
sins2pkFayBd

#
, (3)
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wherefDg means the integer part ofD.
It is clear that the amplitudes of the different harmonic

depend on the ratior and are not universal. This is
not the case when the chemical potential is fixed, a
the different bands can be treated independently. Th
is why the amplitudes in this case do not then depend
geometrical factors. Finally, we recover the formula for
single band in the limitr ­ 0 with a pure frequencyFa.

We now consider the development for smallq (fields
much greater than that needed for tunneling). Here w
neglect spin. We compute the Fourier transform of th
magnetization using an expansion of the energy spectr
at first order inq. In particular, we obtain the weight
of the different frequencies appearing in the Fourie
spectrum, at least in first order inq. In general, for
q fi 1, the amplitudes and phases in the thermodynamic
quantities do not follow the simple rules of FS. Fo
small q, the broadening of theb-orbit Landau level is
proportional toq. To first order,

es,s ­ es0d
s,s 2 s

2q
p

h̄vb cossud cosspes0d
s,syh̄vad ,

es0d
s,s ­ dh̄vb

µ
2s 1

1
2

s

∂
,

(4)

with s ­ 61 labeling, respectively, the even and od
levels. Whens ­ 21 the first level begins fors ­ 1,
otherwises ­ 0. After integrating overu, we find the
following energy density:

rsed ­
D
p

X
s,s

use 2 emin
s,s dusemax

s,s 2 edq
s2qh̄vb cosss2dypd2 2 se 2 e

s0d
s,sd2

,
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whereusxd is 0 or 1, respectively, whenx is negative or
positive. The width of the levels depends clearly on t
value ofs ands, but is linear inq. Finally, we found the
oscillatory part of the magnetization,

mosc ­
h̄e

pmp
b

" X
P$1

1
P

sin
°
2pPFbyB

¢
1 q

X
P$1

AP sin

µ
2p

P
m 1 n

FbyB

∂#
,

(6)

with the amplitudes of the correction,

AP ­
16P cosfpPysm 1 ndg
pfsm 1 nd2 2 4P2g

3

m1n21X
k­0

É
cos

"
pm

2sm 1 nd
s2k 1 1d

# É

3 cos

∑
pP

m 1 n
s2k 1 1d

∏
. (7)

The frequencies appearing in the correction term are
fact harmonics ofF1 ­ Fbysm 1 nd. It is useful to ex-
press the frequencies appearing in terms of a linear com
nation ofb anda. For an explicit example, we can tak
m ­ 2, n ­ 7. The first eleven frequencies correspond
b 2 4a, a, b 2 3a, 2a, b 2 2a, 3a, b 2 a, 4a, b,
5a, andb 1 a. Between the classical orbits such asb,
a, and their harmonics, we recognize other forbidden f
quencies which appear simply as harmonics ofF1. The
important point is to determine the weight of each amp
tudeAP since this determines which will be seen expe
mentally. We draw in Fig. 2 the histogram of the functio
3119
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FIG. 2. Histogram of the amplitudesAP versusP for the case
m ­ 2, n ­ 7.

AP versusP for the casem ­ 2, n ­ 7, and in Fig. 3 we
plot the semiclassical amplitudes by solving for spectru
(1) numerically.

In conclusion, to include the physical constraint o
constant electron density, the FS expressions in Eq.
must be replaced by expressions of the form (6) and (
valid for smallq, by (3) for q ­ 1 or more generally by
a numerical calculation as in Fig. 3. Unlike the simpl
FS expressions, the amplitudes depend on the ratio
areas as well as the tunneling probabilities. Extractio

FIG. 3. Amplitudes of different orbits versusq for the case
m ­ 2, n ­ 7 The dashed line is the asymptotic form of the
amplitudeb calculated for smallq
3120
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of g factors in the limit of low field requires the use of a
correct formula as in Eq. (3). The forbidden frequencie
occur quite naturally, and their amplitudes can be used
verify the consistency of the Fermi surface parameters.
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