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Frequency Mixing of Magnetic Oscillations: Beyond Falicov-Stachowiak Theory
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The interpretation of de Haas—van Alphen oscillations in the presence of magnetic breakdown is
usually based on the semiclassical theory of Falicov and Stachowiak (FS). There are now glaring
discrepancies between its predictions and experiments, especially in quasi-two-dimensional organic
conductors. We present an extension of the theory, using the appropriate constraints of conserved
electron density, which explains the occurrence of frequencies not predicted by FS, and makes explicit
the amplitudes as a function of Fermi surface parameters. The results involve a tunneling amplitude
between different sheets as in FS, but other parameters as well, such as the areas of different orbits.
[S0031-9007(98)05725-1]

PACS numbers: 71.18.+y, 74.70.Kn

Magnetic breakdown of oscillations in the magnetiza-does not apply. Numerical simulation [10-12] showed
tion or transport is an important tool in exploring Fermi that the discrepancy is a single particle effect. It has been
surfaces. At weak magnetic fields oscillations are visibleargued [12—15] that the reason for observations of frequen-
and correspond to extremal cross sections of semiclassiies corresponding to classically disallowed orbits is that
cally closed orbits perpendicular to the field direction. Ifthe different frequencies are coupled by the constraint that
there are several bands there are frequencies corresporille total number of electrons across all bands is conserved
ing to each closed orbit but not to orbits which traverseas the field varies. This global constraint leads to coupling
the first Brillouin zone and are open. As the magnetichetween different frequencies and frequencies forbidden
field increases in a system with several bands, there map the FS theory. Such a constraint, without the effects of
be magnetic field-induced tunneling from band to bandbreakdown, has been shown numerically [14,15] to change
giving rise to larger orbits with frequencies that are com-the harmonic content of a single frequency. What we lack
binations of the original frequencies or which may includeare explicit calculations of the amplitudes of breakdown
parts of open parts of the Fermi surface, giving new frewhen this effect is taken into account. These should be
quencies. The characteristic fields at which oscillationsubstituted for the FS expressions. In this paper we shall
appear give information on local properties of the bandsshow how FS theory must be amended and we calculate,
separation of the disjoint parts of the Fermi surface and théor a simple case, the correct forms. We also give explicit
local curvature. In the case of bidimensional organic conaccount of the spin splitting used to extract the renormal-
ductors such as the famiBEDT-TTF),X(SCN, where ized Landé factog, at least in the low-field limit.
BEDT-TTF is (bis)-ethyleneditho-tetrathiafulvalene [1,2], We now consider a simple case of breakdown in two
information on the open parts of the Fermi surface is alimensions between open and closed orbits. The Fermi
key to understanding low temperature instabilities. In adsurface, close to that ok-(BEDT-TTF),Cu(SCN), is
dition to extract physical parameters, renormalized masseshown in Fig. 1. The theory describing the tunneling
andg factors in particular, we need a reliable and detailecbrocess at each junction is given in Ref. [16]. We adapt
theory of oscillations. In the past this has been prothe theory of Ref. [16] to describe the tunneling process at
vided by semiclassical theory [3], which culminated in theeach junction in terms of a gag and curvature, /22,
theory of Falicov and Stachowiak (FS) [4]. In 1982, fre- L - \/m ~0
guencies were observed [5] for pure magnesium that are, A y 8 ’
however, forbidden in such a theory. In the organic met- If p andg are the amplitudes of tunneling and reflection
als there are more and more violations in the frequencyr® + ¢*> = 1), andw the phase the wave function takes
spectrum from experiment. The existence of the “forbid-during the reflection process, then the transfer relations
den” B-a frequency (see below) in the magnetoresistancéetween the wave amplitudes before and after the junction
of k-(BEDT-TTF),Cu(SCN), [6] was attributed to a Stark points are given [16],
interference [3,7] but has since been seen clearly in de v\ _ [(gexpio) ip o
Haas—van Alphen (dHvA) [8,9], where Stark interference < 5) - ( ip gexp—iw) > < B >
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Ky ferent amplitudes determines the spectrum [16,17]

v (0,2m) Y, codo; + o03) = 2gcos coso, — g*>codo — o).

1)
The grand thermodynamical potential is determined
from the spectrum (1) following the methods of [18,19].
We choose an increasing function of the enesgy

/\ 27n+(€,0) = o1 + 03
s\ s \
(~m,m) LRV 51/ Y Kx + [2g cosf coso, — ¢g>codo; — o»)].

o/ \\{/[3/ Vo it _
g Integer values ofn define the spectrum. For smaljl

we recover the Landau quantization of the giant orbit
B. In this limit, the argument of the arccosine function
vanishes and the variation afwith the energy follows the
variation of oy + o5, assumed positive near the Fermi
energy and for small;. The only restriction is when
the arccosine function is no longer defined for all energy
° andé, i.e., forg = V2 — 1. In fact, we will check that
(0,0) the final result no longer depends on this restriction. The
oscillating part of the potential is

FIG. 1. Typical Fermi surface with one closed pocket at the

center of the figure and the two open lines. The magnetic T4
breakdown is represented by the dashed lines. Qoe = —D . — 2 Z Z
k=lo==*
+o 01 .
and similarly for the other junction. The amplitude of X j; defp(e) ﬁSlﬂ(%Tkna),

tunneling isp = exp(—mb?/20), with b*> = k; /4 and _ o
o = eB/h. The phase is found by matching parabolic Wherefz(e) is the Fermi distributiori /[1 + expB(e —

5 5 5 ) Landau level £, is the spin degeneracy). The usual
0= 4 b_m(b_) _b argF(i _> method at low temperatures is to expand the integrand
4 20 \20 20 near the chemical potential (where the Fermi function de-

The spectrum is computed with semiclassical methods:reases rapidly), since, is considered large in the semi-
Indeed, the phase variation of the wave function from theclassical regime. The oscillatory part of the magnetization
point & to &' is given by o, + 7/2 = S,/20 + w/2, IS th_enMosc = —3Q/dB. Before performing these op-
wheres; is the area of the small pocket. The factef2 erations, we sum over,
comes from the existence of a turning point. Similarly,

a = apexpio/2), where oy = §1/20, S, being the Z Sin2wkn,) = 2sink(o + 02)
area delimited by the two open surfaces. The other 7=+
relations are similar, and we set the conditions on the X Ti[2q cosé coso,

edges of the Brillouin zone / / — $2coda, — o),

Yo = @ €Xpif), o = aoexp(—if) where the T, are the Chebyshev polynomials. The
with # betweer) and27. In the following we neglect the integration overd gives the different frequencies which
phasew for simplicity since it is small in the semiclassi- appear in the Fourier transform of the magnetization.
cal limit. In fact, it can be absorbed in the new definitionsUnfortunately, it is necessary to integrate term by term.
o1 + w — oy ando, — w — o,. Eliminating the dif-  For the first termsi = 1,2,3,...) we find

|
+00
T do
2y [T

1 . . .
;S|n(27rkn(,) = ¢*sin2o, + 7) + (ip)*sino| + 20, + )

o==*

+ 2(ip)*q® sin2oy + 4oy + 2m) + ... 2

The amplitudes appearing with each oscillation are understood as follows: Around ther ddsitexample (term
20, = 27wF,/B), a wave packet is reflected twice at the junctions, and so a faétis present. For the orbig
(202 + 201 = 2wFg/B), there are four tunneling junctions, and we put a fa¢tpy*, etc. We then add a symmetry
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factor for each combination of principal orbits: For € = 2xfiw W, = 6_5;
a + B, there are two possibilities to draw such an orbit. ’ my’
At the end, we put ar/2 factor in the sine functions n n
for each turning point (twice forr or B8 orbits). These wp = O o =~ D1

rules are in fact those formulated by FS. We concludePerIOdICIt v — x + n then allows us to work in the
then that working at fixed chemical potential there are ng ectorskny< x = kn + n, where Eq. (1) hag(m + n)

forbidden frequencies present in the Fourier transform o olutions with the symmetry — (2 + Dn — x.

the magnetization: The first terms ate 8, ande + B. We now analyze the expressions of the oscillatory part

There are no difference frequencies.
We now consider, at zero temperature, the case of thmc the magnetization for botly =1 and ¢ small at

, oo fixed electron number. Fog = 1 (no magnetic break-
f]xed total .number of electrons. To simplify, we take a down), the Landau levels of the: orbit are embed-
linear relation between the area and the energy,

ded in a continuous band. The chemical potential is
2mm; . located either in one Landau band or between two of

Si=—pm € i=12. them. There is no jump in the chemical potential and no

Then we introduce the dimensionless variablguch that JUMP in the magnetization at zero temperature. The effect
o1 = 27x. Finally, the ratioo, /o is fixed to be a of .th(.e splitting of the Landau Ieve'ls. due to the electror_l
rational » = n/m = 1 with m and n relatively prime. SPiNis to reduce the Fourier coefficients of the magneti-

The relation between and the energy takes the form zation. SettingA = gm, /2m,, the oscillatory part of the
| magnetization per electron is

_ wiapy (1 +7)? wk 7k _ 1]
Mose = { D (—pkHA) . Zsm{iz(1 — r)]cos{—l — [(A [ADr + > }} S|n(27rkFa/B)] (3)

k=1

where[A] means the integer part df. ! where#(x) is 0 or 1, respectively, when is negative or

It is clear that the amplitudes of the different harmonicspositive. The width of the levels depends clearly on the
depend on the ratio and are not universal. This is value ofs ando, butis linear ing. Finally, we found the
not the case when the chemical potential is fixed, andscillatory part of the magnetization,

the different bands can be treated independently. That fie 1
is why the amplitudes in this case do not then depend onm,,. = - [ Z —sin2wPFs/B)
geometrical factors. Finally, we recover the formula for a mmg | p=i P
single band in the limir = 0 with a pure frequency,,. P
We now consider the development for smallfields + qgl Apsin2m ——— Fp/B | |.
much greater than that needed for tunneling). Here we (6)

neglect spin. We compute the Fourier transform of the _ _
magnetization using an expansion of the energy spectrumvith the amplitudes of the correction,

at first order ing. In particular, we obtain the weight 16P co§mP/(m + n)]

of the different frequencies appearing in the Fourier Ap = ) — ap2

spectrum, at least in first order ip. In general, for alim + n) ]

g # 1, the amplitudes and phases in the thermodynamical m ! Tm

guantities do not follow the simple rules of FS. For X Z co 2(m + n) 2k + 1)

small ¢, the broadening of the3-orbit Landau level is

proportional tog. To first order, X co{ 7P (2k + 1)] (7)

m-+n
€0 = €0 — - ﬁw/s cog0) cogmel) /liw,), The frequencies appearing in the correction term are in
| (4) fact harmonics oiF! = FB/(’"_ + (1). It is usefl_JI toex-
€® — dﬁw,;<2s + _0>, press the frequencies appearing in terms of a linear combi-
’ nation of 3 anda. For an explicit example, we can take

with o = =1 labeling, respectively, the even and oddm = 2,n = 7. The first eleven frequencies correspond to
levels. Wheno = —1 the first level begins fos =1, B —4a,a, B — 3a,2a, B8 — 2«,3a, B — «, 4a, B,
otherwises = 0. After integrating overd, we find the 5a, andB + «. Between the classical orbits such@s

following energy density: «a, and their harmonics, we recognize other forbidden fre-
(e — Emln)e(é — € quencies which appear simply as harmonicgof The

ple) = Z important point is to determine the weight of each ampli-

\/(2qﬁw,; codo)/m)? — (e — ev )2 tudeAp since this determines which will be seen experi-

(5) mentally. We draw in Fig. 2 the histogram of the function
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of g factors in the limit of low field requires the use of a
B-20. correct formula as in Eq. (3). The forbidden frequencies
oI [ 1 occur quite naturally, and their amplitudes can be used to
U H T U U U verify the consistency of the Fermi surface parameters.
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