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Delocalization of 2D Dirac Fermions: The Role of a Broken Supersymmetry
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The mechanism of delocalization of two-dimensional Dirac fermions with random mass is inves-
tigated, using a superfield representation. Although localization effects are very strong, one fermion
component can delocalize due to the spontaneous breaking of a special supersymmetry of the model.
The delocalized fermion has a nonsingular density of states and is described by a diffusion propagator.
Supersymmetry is restored if the mean of the random mass is sufficiently large. This is accompanied
by a critical boson component. [S0031-9007(98)05786-X]
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The transition from localized to delocalized states
noninteracting quantum particles in a random potent
is a phenomenon which is characterized by symmetri
In contrast to classical critical phenomena, where sy
metries are either discrete orcompactcontinuous, it was
observed that the transition from localized to delocaliz
states of a particle, described by a discrete Schrödin
equation (tight-binding model), is related tononcompact
symmetry groups [1]. Nonlinears models with the corre-
sponding symmetries provide an effective large scale
scription, presenting the relevant degrees of freedom
localization or delocalization. They describe an effectiv
diffusion of the quantum particle with diffusion coeffi
cientD $ 0. An important physical property ofD in the
nonlinears model is its flow under renormalization. In
general, there are fixed points, one for delocalized sta
(D . 0) and one for localized states (D ­ 0) [2]. In two-
dimensional systems the renormalization always driv
the diffusion coefficient to zero [2], therefore reflectin
the absence of delocalized states, at least in the absenc
more complicated extensions of the Schrödinger equat
like spin-orbit coupling.

It turned out that for a number of interesting physic
systems the effective quantum theory is not defined
Schrödinger particles but by Dirac fermions. The ma
reason for this is a linear dispersion and a substructu
either given by a sublattice or a spin. For instance, the
teger quantum Hall transition (QHT) in a 2D electron ga
with magnetic field can be formulated with Dirac ferm
ons without a magnetic field [3–10]. Other examples f
Dirac fermions are the degenerate semiconductor [11] a
quasiparticles in a 2Dd-wave superconductor [12,13].

A Dirac fermion is a quantum particle with symmetr
properties different from those of the Schrödinger pa
ticles. In particular, the symmetry of the 2D Dira
Hamiltonian is discrete in contrast to the continuou
symmetries of the Schrödinger Hamiltonian. This fa
has important consequences for the delocalization of
Dirac particle in d ­ 2 [9], and will be discussed in
this Letter.
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The Dirac Hamiltonian in 2D reads

HD ­ i=1s1 1 i=2s2 1 Ms3 . (1)

=j is the lattice difference operator in thej direction,M is
the mass of the particle, andsj is a Pauli matrix. The lo-
calization properties of massless Dirac fermions with ran
dom vector potential was recently studied [5,14]. It turned
out that the low energy states are delocalized. Sinc
the related Hamiltonian matrix has only off-diagonal ele
ments, this result can be compared with similar observa
tions in 1D systems: there are delocalized states at th
band center with a singular density of states (DOS) i
the Hamiltonian represents hopping between sublattice
or different spin states [15]. In contrast to this, it is of
interest to consider models where a diagonal (potentia
term also appears in the Hamiltonian, and which have
nonsingular DOS.

The Dirac HamiltonianHD is an effective two-particle
Hamiltonian because the Dirac theory includes particle
and holes as the two components of the Dirac spino
HD is Hermitian and invariant under the transformation
HD ! 2s3HDs3, provided the Dirac massM is zero.
However, this symmetry is not interesting here because
is always broken by the mass. Moreover, there is a spac
dependent discrete transformation

HD ! 2SH 0
DS (2)

for which the massiveHD is invariant. The2 3 2 matrix
Sr is changing betweens1 ands2 by going from one site
to its nearest neighbor site, andH 0

D is obtained fromHD

by a space rotation ofpy2 and a reflection of they axis.
(This is just an exchange of=1 and=2 in HD .)

In order to compare the Dirac Hamiltonian with the cor-
responding HamiltonianH ­ =2 1 V of a Schrödinger
particle in a random potentialV , we extend the lat-
ter to HS ­ s=2 1 V ds3. This Hamiltonian describes
particlesand the corresponding holes, and can be use
to express the two-particle Green’s function for Ander
son localization without a magnetic field.HS is sym-
metric and invariant under a noncompact continuou
© 1998 The American Physical Society 3113
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symmetry underHS ! scs0 1 s1s1 1 s2s2dHSscs0 1

s1s1 1 s2s2d with the conditionc2 2 s2
1 2 s2

2 ­ 1. The
role of the chemical potential in the case of Dirac particle
is played by the Dirac mass, as it was earlier discussed
Ludwig et al. [5].

Transport properties can be evaluated from the tw
particle Green’s function [9]

Ksr , r0; ed ; 2kTr2fGsr, r 0; ieds1GT sr 0, r ; ieds1gl ,

(3)

where Gsr , r 0; ied ; sH 1 ied21
rr 0 is the one-particle

Green’s function ofHD or HS , and k· · ·l the average
over random contributions in the Hamiltonian. Fo
localized states the two-particle Green’s function deca
exponentially on the localization length.

HS is invariant under the transpositionT of the matrix
elements, whereas the Dirac HamiltonianHD is not. It is
convenient to write the two-particle Green’s function as
functional integral

Gjj0 sr ,r 0; iedGT
k0ksr 0, r ; ied

­
Z

xr 0j0x̄rjCrkC̄r 0k0 exps2S0d D C D x . (4)

S0 is a quadratic form of the four-component superfiel
sxr , Crd

2i sgnsed
X
r ,r 0

µ
xr

Cr

∂
?

µ
H 1 ie 0

0 HT 1 ie

∂
r ,r 0

µ
x̄r 0

C̄r 0

∂
,

(5)

with a complex componentxr and a Grassmann compo-
nentCr . The reason for introducing the superfield is tha
an extra normalization factor for the integral in Eq. (4
is avoided because of

R
exps2S0d D C D x ­ detsHT

D 1

iedy detsHD 1 ied ­ 1. It is crucial thatS0 is not of the
usual supersymmetric form [16], where both diagonal el
ments areH 1 ie, if HT fi H [17]. This reflects a fun-
damental difference between the symmetric Schröding
Hamiltonian HS and the asymmetric Dirac Hamiltonian
HD for the construction of collective fields. In the fol-
lowing, we will concentrate on the Dirac Hamiltonian an
refer to the literature for the case of the Schröding
Hamiltonian [1,16,18].

In addition to the discrete symmetry ofHD, there
is an invariance of the actionS0 for e ­ 0 under
supersymmetry transformation

HD ;
µ

HD 0
0 HT

D

∂
! U

µ
HD 0
0 HT

D

∂
U ­ HD

for U ­

√
s1 1

1
2 cc̄ds0 cs1

c̄s1 s1 2
1
2 cc̄ds0

!
, (6)

with Grassmann variablesc and c̄ . It is important to
notice that the Dirac mass does not break this symme
but only the term proportional toe in (5), sinceU2 is
not the unit matrix. Therefore, the field conjugate t
the symmetry breaking field, which is quadratic in th
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superfield, must be studied in order to take the relevan
symmetry properties into account. This leads to th
collective field representation [9,16]µ

xrx̄r xrC̄r

Cr x̄r CrC̄r

∂
$ Qr ­

µ
Qr Q̄r

Qr 2iPr

∂
. (7)

The matrix elementsQr , . . . , Pr are 2 3 2 matrices,
corresponding to the two components ofCr andxr .

Since the Dirac HamiltonianHD is usually obtained
from a large scale (or low energy) approximation of a
nonrelativistic problem, there are several ways to intro
duce disorder which are motivated by the original con
densed matter systems. One starting point is, for instanc
the network model of Chalker and Coddington [19] for the
QHT. This phenomenological description implies a ran
dom Dirac mass, a random energy term, and a rando
vector potential [10]. Thus, this model represents a com
plex situation which also includes fluctuations of the mag
netic field. Here we are interested only in the simples
possible case for the QHT of a system in a homogeneou
magnetic field. (Strong fluctuations of the random vecto
potential may drive the system into another universalit
class. At this point it is not clear if randomness in the
vector potential is relevant in the experiments on a 2D
electron gas.) The QHT can also be described by a tigh
binding model with a homogeneous magnetic field [5] in
a random chemical potential. The latter would lead to
random Dirac mass. However, there was the argume
that the random Dirac mass alone does not present t
generic situation for the QHT because the DOS is zero
low energy [5]; i.e., there are no bulk states even in th
presence of disorder. It turned out though that these stat
exist if one goes beyond perturbation theory. This effec
was also found in numerical calculations [20,21]. A con
sistent treatment of this nonperturbative contribution ca
be based on an effective field theory derived from the co
lective fieldQ [9]. This representation will be used in the
following to discuss the breaking of the supersymmetry
defined in (6) and its consequences for the existence
delocalized states.

Averaging over a Gaussian random Dirac massM
(where kMrl ­ m and kMrMr 0l ­ gdrr 0) and transform-
ing the functional integral to the collective field creates
the new action [9,16]

S0 ­
1
g

X
r

Trg4sQ2
r d 1 ln detgsH0 1 ie 2 2tQtd ,

(8)

with H0 ­ kHDl and the 4 3 4 diagonal matrixt ­
fss3d1y2, ss3d1y2g. Trg4 anddetg are the “supertrace” and
the “superdeterminant,” respectively [16]. In particular,
the two-particle Green’s function atr fi r 0 then reads

Ksr , r 0; ed ­ g22ksQr ,12 1 Qr ,21d sQ̄r 0,12 1 Q̄r 0,21dlQ .

(9)
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The functional integralk· · ·lQ ­
R

· · · exps2S0d D Q can
be approximated by a saddle point integration. A spec
saddle point isQ0 ­ smy4dg0 2 ishy2dg3, wheregj is
the diagonal block matrixssj , sjd andh ­ pgr is pro-
portional to the average DOSr [9]. The symmetry trans-
formations are now applied to the saddle point solutio
tQ0t. The discrete transformation (2) changes the sign
h; i.e., the discrete symmetry of the massive Dirac Ham
tonian is spontaneously broken if lime!0 h fi 0. This is
the case for2mc , m , mc with mc ­ 2 exps2pygd
[9]. The supersymmetry transformation (6), on the oth
hand, givesh ! hU2. Thus, lime!0 h fi 0 also indi-
cates a spontaneously broken supersymmetry. This
havior is analogous to a Heisenberg ferromagnet, whe
h corresponds to the magnetization ande plays the role
of the external magnetic field. However, the situation
more complex for the Dirac fermions because the brea
ing of two symmetries is involved, a supersymmetric an
a discrete one. As a consequence of the supersymme
of S0 at e ­ 0 there is not just an isolated saddle point bu
a whole saddle point manifold, created by the symmet
transformationU. Therefore, the field

Q0
r ­ ŨrQ0Ũ21

r ­
m
4

g0 2 i
h

2
tpU2

r tp

­ Q0 2 ih

µ
cr c̄rs3 2icrs1
2ic̄rs1 2cr c̄rs3

∂
(10)

controls the fluctuations around the saddle point manifo
with Ũr ­ tpUrt and Ũ21

r ­ tUrtp. Ur is here the
matrix U of Eq. (6) in which the Grassmann variablec

is replaced by the Grassmann fieldcr . That means for
the large scale properties the integration with respect
Qr can be restricted to an integration with respect to th
field Q0

r . Thus the critical (long-range) part of the random
mass Dirac theory is controlled by the one-compone
fermion (Grassmann) fieldcr . The bosonic (complex)
field has only short-range correlations and, therefore,
localized by the disorder. The reason is that the boson
field corresponds to thediscretesymmetry transformation
(2) which has a long-range mode only at the critica
point where the order parameterh vanishes. The latter
is indeed the case because the localization length
Q11 2 Q22 andP11 2 P22 increases likesmc 2 jmjd21y2

as the critical value6mc is approached fromjmj , mc

[9]. This indicates a growing influence of these boson
fields on the large scale properties.

The expansion of (8) up to second order in the gradien
yields in general an action of the type [1,16,18,22]

ie
Z

d2r Trg4sg3Q0
rd 1 a

Z
d2r Trg4s=Q0

r ? =Q0
rd

2 b
Z

d2r
X
m,n

emn Trg4sQ0
r=mQ0

r =nQ0
rd , (11)

whereemn is the antisymmetric unit tensor, and the pa
rametersa andb are determined by the model. In par
ticular, for the quantum Hall effect there isa ­ sxx , the
ial

n
of
il-

er

be-
re

is
k-
d
try
t
ry

ld

to
e

nt

is
ic

l

of

ic

ts

-
-

(unrenormalized) longitudinal conductivity, andb ­ sxy ,
the (unrenormalized) Hall conductivity [22]. The topolog-
ical term

R
d2r

P
m,n emn Trg4sQ0

r=mQ0
r=nQ0

r d takes care
of the Hall plateaux because the latter are a consequen
of the (topological) edge states in the presence oflocalized
bulk states. At the QHT, however, transport is dominate
by delocalizedbulk states. Therefore, the topological term
should not play a crucial role in this case. In fact, for the
Dirac HamiltonianHD with m ­ 0, i.e., for the choiceQ0

of Eq. (10), the topological term vanishes. The only term
which remain in the action are the linear off-diagonal ele
ments ofQ0

S00 ­ s1yprd
Z

d2r c̄r se 1 D=2dcr , (12)

where the average DOSr and the diffusion coefficientD
can be evaluated from the saddle point equation. This su
prisingly simple result, which satisfies the Ward identity
Ksq ­ 0, ed ­ prye, reflects the fact that only a one-
component Grassmann field contributes to the massle
fluctuations, created by the broken supersymmetry. Th
means there is a simple physical structure for the wel
delocalized Dirac fermions in the vicinity ofm ­ 0. The
divergent localization length of two real boson component
will eventually turn into a restoration of the supersym-
metry, where lime!0 h ­ 0. Since the supersymmetric
theory in 2D does not have delocalized states [16], th
restoration of the supersymmetry must be accompanied
a transition into a localized regime. This is the regime
characterized by the Hall plateaux. The critical behavio
of the two real fields (which can be considered as the tw
components of one complex boson field) atm ­ 6mc due
to the spontaneously broken discrete symmetry (2) inval
datesS00 near these points. It must be replaced by a mor
complicated field theory which includes both the critica
boson field and the critical Grassmann field of (12). Thi
would require an additional matrix fieldµ

qrs3 0
0 2iprs3

∂
, (13)

added to Q0
r in (10). The real field componentsqr

and pr are related toQ11,r 2 Q22,r and P11,r 2 P22,r ,
respectively.

As a direct consequence of these results the value
the conductivity atm ­ 0 (the “conduction peak”) can be
evaluated from the Einstein relationsxx ­ se2yh̄dDr [23]

sxx ­
e2

ph
1

1 1 gy2p
. (14)

This is in agreement with experimental results [24,25
and other theoretical work [26,27]. For weak disorde
the second factor can be neglected. In this case the pe
value is just the universal constantsxx ­ e2yph. The
latter was obtained for Dirac fermions in a random vecto
potential [5] and for the lowest Landau level with random
spin scattering [28], regardless of the strengthg. Thus,
3115
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the extra factor in Eq. (14) indicates that the rando
Dirac mass, representing a random scalar potential, ha
stronger effect on the Dirac particle than the random vect
potential or a random spin scattering.

In conclusion, the large scale behavior of the two
particle Green’s function of 2D Dirac fermions with ran
dom mass is characterized by a single massless Grassm
field on the intervalf2mc, mcg of the average Diracm. It
describes delocalized states with nonsingular DOS due
a broken supersymmetry by a diffusion propagator. The
is a two-component real bosonic field which has a dive
gent localization length as the critical points6mc are ap-
proached. It corresponds to a broken discrete symmetry
the Dirac Hamiltonian. This mechanism of delocalizatio
is different from the one which is responsible for deloca
ized states in the random vector potential or for rando
spin scattering.
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