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Delocalization of 2D Dirac Fermions: The Role of a Broken Supersymmetry
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The mechanism of delocalization of two-dimensional Dirac fermions with random mass is inves-
tigated, using a superfield representation. Although localization effects are very strong, one fermion
component can delocalize due to the spontaneous breaking of a special supersymmetry of the model.
The delocalized fermion has a nonsingular density of states and is described by a diffusion propagator.
Supersymmetry is restored if the mean of the random mass is sufficiently large. This is accompanied
by a critical boson component. [S0031-9007(98)05786-X]
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The transition from localized to delocalized states of The Dirac Hamiltonian in 2D reads
noninteracting quantum particles in a random potential . .
is a phenomtgen?)n which ?s characterized by synﬁmetries. Hp = iVioy + iVa02 + Mos. (1
In contrast to classical critical phenomena, where symV; is the lattice difference operator in thelirection,M is
metries are either discrete oompactcontinuous, it was the mass of the particle, and is a Pauli matrix. The lo-
observed that the transition from localized to delocalizectalization properties of massless Dirac fermions with ran-
states of a particle, described by a discrete Schrodingetom vector potential was recently studied [5,14]. It turned
equation (tight-binding model), is related tmncompact out that the low energy states are delocalized. Since
symmetry groups [1]. Nonlinear models with the corre- the related Hamiltonian matrix has only off-diagonal ele-
sponding symmetries provide an effective large scale dements, this result can be compared with similar observa-
scription, presenting the relevant degrees of freedom fations in 1D systems: there are delocalized states at the
localization or delocalization. They describe an effectiveband center with a singular density of states (DOS) if
diffusion of the quantum particle with diffusion coeffi- the Hamiltonian represents hopping between sublattices
cientD = 0. Animportant physical property d in the  or different spin states [15]. In contrast to this, it is of
nonlinearo model is its flow under renormalization. In interest to consider models where a diagonal (potential)
general, there are fixed points, one for delocalized stategrm also appears in the Hamiltonian, and which have a
(D > 0) and one for localized stateB (= 0) [2]. Intwo-  nonsingular DOS.
dimensional systems the renormalization always drives The Dirac HamiltonianH is an effective two-particle
the diffusion coefficient to zero [2], therefore reflecting Hamiltonian because the Dirac theory includes particles
the absence of delocalized states, at least in the absenceansfd holes as the two components of the Dirac spinor.
more complicated extensions of the Schrédinger equatioH, is Hermitian and invariant under the transformation
like spin-orbit coupling. Hp — —o3Hpos, provided the Dirac mass/ is zero.

It turned out that for a number of interesting physicalHowever, this symmetry is not interesting here because it
systems the effective quantum theory is not defined bys always broken by the mass. Moreover, there is a space-
Schrddinger particles but by Dirac fermions. The maindependent discrete transformation
reason for this is a linear dispersion and a substructure, Hr — —SH'S 2
either given by a sublattice or a spin. For instance, the in- b D
teger quantum Hall transition (QHT) in a 2D electron gasfor which the massivéi is invariant. The2 X 2 matrix
with magnetic field can be formulated with Dirac fermi- S, is changing betweenr; ando, by going from one site
ons without a magnetic field [3—10]. Other examples forto its nearest neighbor site, ait}f, is obtained fromH
Dirac fermions are the degenerate semiconductor [11] anldy a space rotation o# /2 and a reflection of the axis.
guasiparticles in a 2[d-wave superconductor [12,13]. (This is just an exchange &f; andV, in Hp.)

A Dirac fermion is a quantum particle with symmetry In order to compare the Dirac Hamiltonian with the cor-
properties different from those of the Schrodinger par+esponding HamiltonialH = V2 + V of a Schrodinger
ticles. In particular, the symmetry of the 2D Dirac particle in a random potential/, we extend the lat-
Hamiltonian is discrete in contrast to the continuouster to Hs = (V> + V)o3. This Hamiltonian describes
symmetries of the Schrddinger Hamiltonian. This factparticlesand the corresponding holes, and can be used
has important consequences for the delocalization of theo express the two-particle Green’s function for Ander-
Dirac particle ind = 2 [9], and will be discussed in son localization without a magnetic fieldHg is sym-
this Letter. metric and invariant under a noncompact continuous
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symmetry undeHs — (cog + sjo + sy00)Hs(cog + superfield, must be studied in order to take the relevant

sioq + sy0) with the conditionc®> — s;7 — s5 = 1. The  symmetry properties into account. This leads to the

role of the chemical potential in the case of Dirac particlescollective field representation [9,16]

is played by the Dirac mass, as it was earlier discussed by _ -

Ludwig et al. [5]. <X”\:’ xrV, ) -Q, = <Q’ 0, > @
Transport properties can be evaluated from the two- Wrxr Wy O, —iP,

particle Green’s function [9]

The matrix elementsQ,,...,P, are 2 X 2 matrices,
K(r,r'se) = ~(Tr[G(r,r’;ie)a G (r', riie)o]), corresponding to the two componentsbf and y,.
3) Since the Dirac Hamiltoniarfp is usually obtained
from a large scale (or low energy) approximation of a
, a nonrelativistic problem, there are several ways to intro-
Green’s function offip or Hs, and(--) the average qyce disorder which are motivated by the original con-
over random contributions in the Hamiltonian. For gensed matter systems. One starting point is, for instance,
localized states the two-partl'cle Green’s function decay$ne network model of Chalker and Coddington [19] for the
exponentially on the localization length. _ QHT. This phenomenological description implies a ran-
Hjy is invariant under the transpositidhof the matrix  4om Dirac mass, a random energy term, and a random
elements, whereas the Dirac Hamiltonidp IS not. Itis  yector potential [10]. Thus, this model represents a com-
convenient to write the two-particle Green'’s function as ayex sjtuation which also includes fluctuations of the mag-
functional integral netic field. Here we are interested only in the simplest
Gjji(r.r';i€)Gl(r',rsie€) possible case for the QHT of a system in a homogeneous
magnetic field. (Strong fluctuations of the random vector
= f Xrj Xri VW exp(—=S)) DY Dy . (4) potential may drive the system into another universality
class. At this point it is not clear if randomness in the

where G(r,r';ie) = (H + i€),,} is the one-particle

So is a quadratic form of the four-component S‘L’perf'e"]lvector potential is relevant in the experiments on a 2D

Ot W) electron gas.) The QHT can also be described by a tight-
_; sgn(e)Z( Xr) ) <H + i€ 0 ) </i/r> binding model with a homogeneous magnetic field [5] in
v, 0 HT + ie ANy a random chemical potential. The latter would lead to a

(5) random Dirac mass. However, there was the argument

that the random Dirac mass alone does not present the
generic situation for the QHT because the DOS is zero at
low energy [5]; i.e., there are no bulk states even in the

presence of disorder. It turned out though that these states
exist if one goes beyond perturbation theory. This effect
was also found in numerical calculations [20,21]. A con-
sistent treatment of this nonperturbative contribution can
be based on an effective field theory derived from the col-

8ctive fieldQ [9]. This representation will be used in the

following to discuss the breaking of the supersymmetry

HD'for the construction of coIIect|v<_e fields. _In the fol- defined in (6) and its consequences for the existence of
lowing, we will concentrate on the Dirac Hamiltonian and delocalized states

refer to the literature for the case of the Schrodinger Averaging over a Gaussian random Dirac mags

Hamiltonian [1,16,18]. (where(M,) = m and{M,M,) = g§,) and transform-

. In a‘?'d'“o.” to thef ?Ascreti_ L:%/mrfnetry 378 thgre ing the functional integral to the collective field creates
is an invariance of the actior§, for € =0 under o o oction [9,16]

supersymmetry transformation

r,r’

with a complex componeng, and a Grassmann compo-
nent¥,. The reason for introducing the superfield is that
an extra normalization factor for the integral in Eq. (4)
is avoided because dfexp(—So) DY D y = de(H}, +
ie)/de{Hp + ie) = 1. ltis crucial thatSy is not of the
usual supersymmetric form [16], where both diagonal ele
ments areH + ie, if HT # H [17]. This reflects a fun-
damental difference between the symmetric Schréding
Hamiltonian Hg and the asymmetric Dirac Hamiltonian

1 .
Hp = <HD 0T> N U<HD 0T>U ~ H, S = gZTrg4(Qf) + Indetg(Hy + ie — 27Q7),
0 Hp 0 Hp 3 ®)
1+ %9’/%—0)0'0 Yo ) . . .
for U = E - , (6) with Hy = (Hp) and the4 X 4 diagonal matrixs =
( bor (- Sidog 0 = Hp) g T

[(03)"/2,(03)"/%]. Trg, anddetg are the “supertrace” and

with Grassmann variable¢ and . It is important to  the “superdeterminant,” respectively [16]. In particular,
notice that the Dirac mass does not break this symmetrih€e two-particle Green’s function at+ r’ then reads

but only the term proportional te in (5), sinceU? is LN -2 = =

not the unit matrix. Therefore, the field conjugate to K(r.r€) = g X012 + 0,20 (0r12 + Or21)io.

the symmetry breaking field, which is quadratic in the (9)
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The functional integral---)o = [---exp(—S’) DQ can (unrenormalized) longitudinal conductivity, agd= o,

be approximated by a saddle point integration. A specialhe (unrenormalized) Hall conductivity [22]. The topolog-
saddle point iQy = (m/4)yo — i(n/2)ys, wherey; is ical term [d?r 3, , €,, Trg,(Q,V,Q.V,Q)) takes care

the diagonal block matrixo;, o;) andn = wgp is pro-  of the Hall plateaux because the latter are a consequence
portional to the average DO&[9]. The symmetry trans- of the (topological) edge states in the presendeddlized
formations are now applied to the saddle point solutiorbulk states. Atthe QHT, however, transport is dominated
7Qo7. The discrete transformation (2) changes the sign oby delocalizedbulk states. Therefore, the topological term
n; i.e., the discrete symmetry of the massive Dirac Hamil-should not play a crucial role in this case. In fact, for the
tonian is spontaneously broken if limg % # 0. Thisis  Dirac HamiltonianHp with m = 0, i.e., for the choic&)’

the case for-m, < m < m, with m, = 2exp—7/g)  of Eq. (10), the topological term vanishes. The only terms
[9]. The supersymmetry transformation (6), on the othemwhich remain in the action are the linear off-diagonal ele-
hand, givesp — nU?. Thus, lim—y»n # 0 also indi- ments ofQ’

cates a spontaneously broken supersymmetry. This be-

havior is analogous to a Heisenberg ferromagnet, where S = (1/7Tp)f d*r (e + DV2)¢f,, (12)

n corresponds to the magnetization anglays the role

of the external magnetic field. However, the situation iswhere the average DO& and the diffusion coefficienb
more complex for the Dirac fermions because the breakcan be evaluated from the saddle point equation. This sur-
ing of two symmetries is involved, a supersymmetric andPrisingly simple result, which satisfies the Ward identity
a discrete one. As a consequence of the supersymmetf{q = 0,€) = mp/e, reflects the fact that only a one-

of Sy ate = 0 there is not just an isolated saddle point butcomponent Grassmann field contributes to the massless

a whole saddle point manifold, created by the symmetrfluctuations, created by the broken supersymmetry. That

transformationl/. Therefore, the field means there is a simple physical structure for the well-
~ . m N wa delocalized Dirac fermions in the vicinity @ = 0. The
Q. =0,Q0U, "' = e i 5 T U divergent localization length of two real boson components

_ will eventually turn into a restoration of the supersym-
- Q — in( !ﬂr_d_/ras —iyo > (10) metry, yvhere lim_on = 0. Since th_e supersymmetric

—iyror —Yriros theory in 2D does not have delocalized states [16], the
controls the fluctuations around the saddle point manifoldestoration of the supersymmetry must be accompanied by
with U, = 7*U,r and U7' = 7U,r*. U, is here the @ transition into a localized regime. This is the regime
matrix U of Eq. (6) in which the Grassmann variahle characterized by the Hall plateaux. The critical behavior
is replaced by the Grassmann figld. That means for 0f the two real fields (which can be considered as the two
the large scale properties the integration with respect t6omponents of one complex boson fieldyat= +m. due
Q. can be restricted to an integration with respect to thd0 the spontaneously broken discrete symmetry (2) invali-
field Q.. Thus the critical (long-range) part of the randomdatesS” near these points. It must be replaced by a more
mass Dirac theory is controlled by the one_componenﬁomp"Cated field theory which includes both the critical
fermion (Grassmann) fieldy,. The bosonic (complex) boson field and the critical Grassmann field of (12). This
field has only short-range correlations and, therefore, igould require an additional matrix field
localized by the disorder. The reason is that the bosonic 4,03 0
field corresponds to theiscretesymmetry transformation < >
(2) which has a long-range mode only at the critical
point where the order parameter vanishes. The latter added toQ) in (10). The real field components,
is indeed the case because the localization length afnd p, are related toQ;, — Qx», and Py, — P2,
Q11 — 02 andPy; — Py, increases likém, — |m|)~'/2  respectively.

0 —ip,o3 (13)

as the critical valuetm, is approached fronim| < m, As a direct consequence of these results the value of
[9]. This indicates a growing influence of these bosonicthe conductivity ain = 0 (the “conduction peak”) can be
fields on the large scale properties. evaluated from the Einstein relation, = (e?/#)Dp [23]

The expansion of (8) up to second order in the gradients o2 1

i i i o = —— . 14
yields in general an action of the type [1,16,18,22] o ah 1+ g/2m (14)

. 2 2

le[d r Trg,(v3Q;) + “[d r Trg,(VQ; - VQ)) This is in agreement with experimental results [24,25]

and other theoretical work [26,27]. For weak disorder
_ ,3[ d2r Z €., Trg,(QLV,QLV,QL), (11) the second factor can be neglected. In this case the peak
wy value is just the universal constaat, = ¢?/7wh. The
where €, is the antisymmetric unit tensor, and the pa-latter was obtained for Dirac fermions in a random vector
rametersae and B8 are determined by the model. In par- potential [5] and for the lowest Landau level with random
ticular, for the quantum Hall effect there is = o, the  spin scattering [28], regardless of the strength Thus,
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