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Synchronization between coupled chaotic systems can be described in terms of invariant ma
If such manifolds possess the additional property of normalk-hyperbolicity, it can be deduced tha
synchronization will persist under perturbations. This suggests a mathematical framework within
the different aspects of synchronization can be discussed and analyzed. Using these technique
be shown that unidirectionally and bidirectionally coupled synchronized systems are locally equiv
[S0031-9007(98)05621-X]
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In the last decade, the surprising phenomenon
synchronization between coupled chaotic systems h
generated much interest. The seminal papers
Afraimovich et al. [1], Fujisaka and Yamada [2], and
Pecora and Carroll [3] have led to the discovery of
number of systems exhibiting various types of synchr
nization: system-subsystem synchronization (sometim
referred to as master-slave synchronization) [3,4
synchronization in unidirectionally and bidirectionally
coupled systems [5,6], antiphase synchronization [6,
and generalized synchronization [8,9]. This phenomen
has been observed in mechanical and electric syste
[1,10], laser systems [11], biological systems [12], an
Josephson junctions [13], and has also been applied
control theory [14] and for the purpose of safe com
munications [15]. Despite the active interest, there st
remains a need for a satisfactory mathematical framewo
within which the various aspects of this phenomenon c
be discussed and examined. The approach describe
this paper provides a description of synchronization
terms of invariant manifolds. In addition to providing
a unified view of the various sorts of synchronizatio
mentioned above, it also allows one to easily prove tw
new results, namely, the stability of synchronizatio
under small perturbations and the local equivalence
unidirectionally and bidirectionally coupled synchronize
systems. Although invariant manifolds have been us
in the study of chaotic synchronization [5,8,16], the us
of k-hyperbolicity is new. To avoid technical difficulties
the ideas presented in this paper are not the most gen
possible. Brief mention of the possible extensions w
be made.

Definitions and examples.—Roughly speaking, chaotic
synchronization means that, given two coupled chao
dynamical systems (which may or may not be identica
there exists a smooth and invertible mapf which
carries trajectories on the attractor of the first syste
to trajectories on the attractor of the second, with th
property that if an orbit of the first system approaches
trajectoryx1std on the attractor of the first system, then th
corresponding orbit of the second system approaches
trajectory x2std ­ fsssx1stdddd. Thus, once transients have
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died away, a knowledge of the state of the first syste
allows one to predict the state of the second.

As stated in the introduction, a unifying approach to
chaotic synchronization can be based on the theory
invariant manifolds. In order to capture the ideas i
the previous paragraph, we require that these manifol
possess several additional properties. The first of these
required to make sense of the idea of the attractor for ea
of the two subsystems after they are coupled.A priori,
the phase space of the coupled system will be the produ
of the phase spaces of the subsystems, and, if the coup
system has an attractor at all, it may be of much highe
dimension than the attractors of the original subsystem
A sufficient condition to ensure that we can still spea
of the attractors of the twon-dimensional subsystems is
to require that the invariant manifold be the graph of
diffeomorphismf: V , Rn ! Rn. Such ann manifold
with boundary will be referred to as “diagonal-like.” If
P1 and P2 are the projections from the phase space o
the coupled system onto the phase spaces of the first a
second subsystems, respectively, andV is the attractor
of the coupled system which lies inside an invarian
diagonal-like manifold M, then the requirement thatM
is diagonal-like implies that there exists a smooth ma
between the setsP1sVd andP2sVd in the phase space of
the systemx1std and y2std, respectively. This restriction
can be relaxed to require that the projectionsPi be
only finite to one as happens in the case of generaliz
synchronization [8,9].

Second, we need to require that solutions in th
neighborhood of the invariant manifold also synchronize
In other words, the manifold under consideration shoul
not be invariant only under the flow, but trajectories in
some neighborhood should also be attracted to it. Su
manifolds will be called “locally attracting.” One way to
ensure that an invariant manifold is locally attracting is t
require it to be normally hyperbolic [17,18] with trivial
unstable normal bundle.

Finally, in order to avoid some pathologies like trajec
tories leaving the region under consideration, we requi
the invariant manifolds to be compact and inflowing
An “ inflowing” manifold is a compact manifold with
© 1998 The American Physical Society 3053



VOLUME 80, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 6 APRIL 1998

n

f

o
t

ed

s

s

g

-
e

v

boundary, such that on the boundary the vector field
directed into the interior of the manifold.

Now consider a pair of coupled dynamical systems

x0
1 ­ fsx1, x2d, x0

2 ­ gsx1, x2d , (1)

wheref, g: R2n ! R2n are smooth functions. Synchro-
nization between the systemsx1 andx2 is defined in the
following way:

Definition 1.—The systemsx1 and x2 synchronizeif
there exists a compact, diagonal-like, smooth n manifo
M with boundary which is invariant under the flow
inflowing, and locally attracting. M will be referred to
as the synchronization manifold.

In particular, the synchronization manifoldM can be
viewed as the graph of the functionf defined above, and
so the existence of the manifoldM implies the existence
of the function f. As will be shown, this definition
encompasses a variety of different physical situatio
in which chaotic synchronization has been shown
occur. In addition, in order for such synchronizatio
to be of physical interest, it should persist under sma
perturbations of either the coupling or the two subsystem
The above definition leads to a natural description
sufficient conditions that ensure such stability.

The dynamics on the synchronization manifold ca
(and, in general, will) be quite complicated. In particula
it may have both positive and negative Lyapunov exp
nents. In order to ensure that synchronization persi
under perturbation of the system, we require that the ra
at which trajectories are attracted toward the manifold
greater than the rates of contraction or expansion with
the manifold. If the rate of attraction isk times greater
than the expansion or contraction rates within the man
fold, the synchronization manifold is callednormally
k-hyperbolic. For a precise formulation of normal
k-hyperbolicity, see [17,18]. For the present discussio
the crucial fact is that normallyk-hyperbolic invariant
manifolds persist as smooth manifolds under small pe
turbations of the underlying dynamical system (see [1
for a proof) and this leads to the following:

Definition 2.—The synchronization of x and y is called
stable if the synchronization manifold M is normally
k-hyperbolic for somek $ 1.

Example 1.—Consider the case of two coupled Loren
systems:

x0
i ­ sis yi 2 xid 1 cisx2 2 x1d ,

y0
i ­ rixi 2 yi 2 xizi 1 cis y2 2 y1d ,

z0
i ­ 2bizi 1 xiyi 1 cisz2 2 z1d ,

wherei ­ 1, 2 andc1 ­ 2c2. When the coefficientssi ,
ri , andbi of the two systems agree, then it is immediat
that the diagonalD [ R6 (i.e., the set defined byx1 ­ x2,
y1 ­ y2, and z1 ­ z2) is an invariant set. Using an
extension of the argument given in [19], it is possibl
to show that there is an invariant inflowing ellipsoidE
around the origin inR6.
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Therefore, all solutions of the coupled systems remai
bounded and we may takeM ­ D > E as a compact,
inflowing, invariant 3-manifold. To show thatM is, in
fact, attracting, consider the difference variablesj1 ­
x1 2 x2, j2 ­ y1 2 y2, andj3 ­ z1 2 z2, so that

j0
1 ­ ssj2 2 j1d 2 2c1j1 ,

j0
2 ­ rj1 2 s1 1 2c1dj2 2 x2j3 2 z1j1 ,

j0
3 ­ 2sb 1 2c1dj3 1 y1j1 1 x2j2 .

The synchronization manifoldM corresponds to
sj1, j2, j3d ­ s0, 0, 0d and these coordinates are taken in
a direction orthogonal toM. Therefore, showing that
the synchronization manifold is stable is equivalent to
showing that the origin inj space is attracting for all
values ofsx1, y1, z1d. For a sufficiently strong couplingc,
it can be shown that

V ­ 2
g
2 sj2

1 1 j2
2 1 j2

3d
is a Lyapunov functional for thej variables. The stronger
the coupling, the larger the constantg that can be chosen
in the expression forV . Since the Lyapunov functional
is quadratic, this implies that trajectories nearM are
attracted exponentially, and an appropriate choice o
coupling constant will makeM normally k-hyperbolic.
For strong coupling, the synchronization between the tw
systems is stable. In particular, it is not necessary tha
si , ri, andbi be equal—slight mismatches between the
parameters will not destroy synchronization.

Example 2.—System-subsystem synchronization (also
known as master-slave synchronization) has generat
much attention since it was first introduced in [3].
In this case, a system of differential equationsx0 ­
fsxd, with x ­ sx1, . . . , xnd, is split into two parts;u ­
sx1, . . . , xsn2mdd and y ­ sxsn2m11d, . . . , xnd, leading to
the following pair of coupled systems:

u0 ­ fsu, yd ,

y0 ­ g1su, yd, ŷ0 ­ g2su, ŷd .

To extend the definitions of the previous section to thi
case, a dummy variablêu ­ u can be introduced. The
new variable evolves asu and is introduced to increase
the dimension of the phase space to2n. The definitions
of synchronization now apply to the coupled system
su, yd and sû, ŷd which evolve inL ­ h y [ R2n j yi ­
yi1n, for i ­ 1, . . . , mj , R2n.

The original question whether the system-subsystem
exhibits synchronization forg1 ­ g2 now becomes a
question of the stability of the diagonalD , L. The gen-
eralized Lyapunov numbers of a manifold are the analo
of Lyapunov exponents of trajectories in this setting. The
generalized Lyapunov numbera [17] measures the rate
of contraction or expansion under the flow in the direc
tion transversal to the manifold, and can, therefore, b
used to replace the somewhat vague notion ofconditional
Lyapunov exponents[3]. A sufficient condition for syn-
chronization to occur is that this generalized Lyapuno
number ofD be negative.
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Consider the Lorenz system with a system-subsys
coupling given by

x0 ­ ss y 2 xd ,

y0 ­ rx 2 y 2 xz, ŷ0 ­ rx 2 ŷ 2 xẑ ,

z0 ­ 2bz 1 xy, ẑ0 ­ 2bẑ 1 xŷ .

The fact that synchronization occurs and that the manif
D is normally hyperbolic can be shown again by findin
an appropriate quadratic Lyapunov functional [20]. Th
implies directly that the generalized Lyapunov numbera

of D is negative. The synchronization manifoldM , D
can be taken as the inflowing ellipsoid of the Lore
system [19]. k-normal hyperbolicity is somewhat harde
to establish since we do not have control over the coupl
as in the last example. However, Fig. 1 illustrates th
synchronization as measured by the correlation betw
the time series ofz and ẑ does persist under som
perturbations.

Local equivalence of unidirectional and bidirectiona
couplings.—Normal k-hyperbolicity of the synchroniza-
tion manifoldM implies other useful properties of the dy
namics in the vicinity ofM. It can be shown that eac
orbit g on M is “shadowed” by orbits off ofM. In par-
ticular, if we choosep [ M, there is ann-dimensional
manifold (or fiber)Wsspd, such that ifx [ Wsspd, then

FIG. 1. The correlation between the driving system variablz
and the subsystem variableẑ in example 2 as a function ofb2

with b ­ 8
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dfftsxd, ftspdg # Ce2at ast ! `, wherea is the gen-
eralized Lyapunov number measuring the contraction
the direction normal toM and f represents the flow
induced by the vector field. The manifoldsWsspd are
smooth, unique, and, under certain nonresonance con
tions, depend smoothly onp [ M.

Given a pair of coupled differential equations, we sa
that the coupling isunidirectional if one of the equations
is independent of the other [i.e., Eqs. (1) can be writte
as x0 ­ fsxd and y0 ­ gsx, yd]. The coupling can be
unidirectional in only part of the phase space. Physicall
this would mean that, in part of the phase space, th
behavior of one system has no influence on the behav
of the other. An example is provided by two electrica
circuits coupled through a diode. The following definition
makes this notion precise:

Definition 3.—Two dynamical systems are said to be
unidirectionally coupled onV , Rn 3 Rn if gsx, yd is
independent ofx for each y [ P2sVd or if fsx, yd is
independent ofy for eachx [ P1sVd.

In this situation, manifoldsWsspd which are pieces of
affine spaces will be of particular importance.

Definition 4.— If there exists an open setV , R2n

such thatWsspd ­ hpj 3 Rn > V, then the fiberWsspd
is calledstraight onV.

An example of a straight fiber is given in Fig. 2.
Straight fibers are directly related to unidirectional syn
chronization as the statement of the following lemm
shows. Notice that, in the following discussion, the sys
tems are required to bestably synchronizedwhich implies
normal k-hyperbolicity of the synchronization mani-
fold M.

Lemma 1.—The coupling between two stably synchro
nized dynamical systems is unidirectional in a neighbo
hood V of the synchronization manifoldM if the fibers
Wsspd are straight in V. Proof: Let us illustrate the
proof of this lemma in two dimensions since the highe
dimensional case is a direct extension of this argumen
Assume that the coupling is not unidirectional inV. This
means that there exists a pointp ­ sx0, y0d [ M and
points sx0, y1d, sx0, y2d such that the speeds in thex di-
rection of sx0, y1d and sx0, y2d are different. If these two
points below toWsspd, then ftfsx0, yidg [ Wsfftspdg
for i ­ 1, 2. However, since the speed in thex direction
is different for these two points after some small time, th
flow will take them to points with differentx coordinates.
Therefore, for some smalle, the fiberWsffespdg cannot
be straight.

Figure 2 gives a schematic representation of th
situation. h

This lemma is the essential step in the proof of th
following theorem:

Theorem 1.— If, for a pair of bidirectionally coupled,
stably synchronizeddynamical systems, the fibersWsspd
depend smoothly onp [ M and hpj 3 Rn is not tangent
to M for any p [ M, then there exists a smooth change
of coordinates in some neighborhoodV of M which
3055
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FIG. 2. A schematic representation of Lemma 1. If th
velocity of the points in the fiberWs are different, it will
“bend” under the flow.

take the original bidirectionally coupled system into
unidirectionally coupled system.

Since the fibersWsspd are smooth and by the hypothe
sis of the theorem depend smoothly onp [ M, they give
a coordinate system in the neighborhood ofM in a natural
way. The problematic case in whichhpj 3 Rn is tangent
to M resulting in a singularity is ruled out. The fiber
Wsspd are straight in this coordinate system by definitio
and so by the previous lemma the coupling is unidire
tional. A rigorous proof of this assertion in a more gen
eral setting and conditions for the smooth dependence
Wsspd on p can be found in [17].

Example 3.—Consider a unidirectional coupled system
x0

1 ­ fsx1d and x0
2 ­ gsx1, x2d. Under the coordinate

transformation,
s y1, y2d ­ f 1

4 s3x1 1 x2d, 2 1
4 sx1 1 3x2dg

­ j21 ± h ± jsx1, x2d ,
wherejsx1, x2d ­ sx1 2 x2, x1 1 x2d rotates the space so
that the diagonalD goes toj1 ­ 0. In one dimension, the
straight fibers go to lines that are at a45± angle with the
j1 axis. The transformationhsj1, j2d ­ sj1, 2j2d tilts
the fibers so that they are not straight any longer af
we go back byj21. The inverse of this linear change
of coordinates will then take a bidirectionally couple
system to a unidirectionally coupled system.

In general, it is not possible to obtain an explicit de
scription of the manifoldsWsspd of a bidirectionally cou-
pled system; however, this theorem shows that, und
certain conditions, it is sufficient to study unidirectionall
coupled systems to obtain information about bidirectio
ally coupled systems.

In conclusion, this paper gave an outline of a simp
setting in which synchronization can be studied and ma
generalizations are possible: (i) Stable synchronizati
3056
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of n coupled oscillators can be defined in terms of
k-hyperbolic invariant manifold in the phase space
the entire system. (ii) By relaxing the requirement th
the synchronization manifold be diagonal-like, we ca
use this approach to study generalized synchronizati
(iii) Other changes in definition 1 could be made t
include synchronization between systems with differe
degrees of freedom.

The well developed theory of invariant manifolds ca
then be used to understand these phenomena and to p
properties of the system which are not obvious outside
this framework.

I thank Eugene Wayne and Idel Bronshteyn for the
help in the preparation of this paper.
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