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Invariant Manifolds and Synchronization of Coupled Dynamical Systems
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Synchronization between coupled chaotic systems can be described in terms of invariant manifolds.
If such manifolds possess the additional property of norkllperbolicity, it can be deduced that
synchronization will persist under perturbations. This suggests a mathematical framework within which
the different aspects of synchronization can be discussed and analyzed. Using these techniques, it can
be shown that unidirectionally and bidirectionally coupled synchronized systems are locally equivalent.
[S0031-9007(98)05621-X]

PACS numbers: 05.45.+b, 02.40.Sf

In the last decade, the surprising phenomenon oflied away, a knowledge of the state of the first system
synchronization between coupled chaotic systems haallows one to predict the state of the second.
generated much interest. The seminal papers of As stated in the introduction, a unifying approach to
Afraimovich et al. [1], Fujisaka and Yamada [2], and chaotic synchronization can be based on the theory of
Pecora and Carroll [3] have led to the discovery of ainvariant manifolds. In order to capture the ideas in
number of systems exhibiting various types of synchrothe previous paragraph, we require that these manifolds
nization: system-subsystem synchronization (sometimegossess several additional properties. The first of these is
referred to as master-slave synchronization) [3,4]required to make sense of the idea of the attractor for each
synchronization in unidirectionally and bidirectionally of the two subsystems after they are couplefpriori,
coupled systems [5,6], antiphase synchronization [6,7]the phase space of the coupled system will be the product
and generalized synchronization [8,9]. This phenomenowf the phase spaces of the subsystems, and, if the coupled
has been observed in mechanical and electric systensystem has an attractor at all, it may be of much higher
[1,10], laser systems [11], biological systems [12], anddimension than the attractors of the original subsystems.
Josephson junctions [13], and has also been applied iA sufficient condition to ensure that we can still speak
control theory [14] and for the purpose of safe com-of the attractors of the twa-dimensional subsystems is
munications [15]. Despite the active interest, there stillto require that the invariant manifold be the graph of a
remains a need for a satisfactory mathematical frameworHiffeomorphism¢: ) C R* — R". Such am manifold
within which the various aspects of this phenomenon camvith boundary will be referred to asdiagonal-like” If
be discussed and examined. The approach described Ih' and I1? are the projections from the phase space of
this paper provides a description of synchronization inthe coupled system onto the phase spaces of the first and
terms of invariant manifolds. In addition to providing second subsystems, respectively, dadis the attractor
a unified view of the various sorts of synchronizationof the coupled system which lies inside an invariant
mentioned above, it also allows one to easily prove twaliagonal-like manifold M, then the requirement thay
new results, namely, the stability of synchronizationis diagonal-like implies that there exists a smooth map
under small perturbations and the local equivalence obetween the setH'(Q)) andII?(Q)) in the phase space of
unidirectionally and bidirectionally coupled synchronizedthe systemx,(r) andy,(z), respectively. This restriction
systems. Although invariant manifolds have been usedan be relaxed to require that the projectiodé be
in the study of chaotic synchronization [5,8,16], the useonly finite to one as happens in the case of generalized
of k-hyperbolicity is new. To avoid technical difficulties, synchronization [8,9].
the ideas presented in this paper are not the most generalSecond, we need to require that solutions in the
possible. Brief mention of the possible extensions willneighborhood of the invariant manifold also synchronize.
be made. In other words, the manifold under consideration should
Definitions and examples-Roughly speaking, chaotic not be invariant only under the flow, but trajectories in
synchronization means that, given two coupled chaotisome neighborhood should also be attracted to it. Such
dynamical systems (which may or may not be identical) manifolds will be called locally attracting” One way to
there exists a smooth and invertible map which  ensure that an invariant manifold is locally attracting is to
carries trajectories on the attractor of the first systentequire it to be normally hyperbolic [17,18] with trivial
to trajectories on the attractor of the second, with thaunstable normal bundle.
property that if an orbit of the first system approaches a Finally, in order to avoid some pathologies like trajec-
trajectoryx(¢) on the attractor of the first system, then thetories leaving the region under consideration, we require
corresponding orbit of the second system approaches thibe invariant manifolds to be compact and inflowing.
trajectory x,(r) = ¢(x;(r)). Thus, once transients have An “inflowing’ manifold is a compact manifold with
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boundary, such that on the boundary the vector field is Therefore, all solutions of the coupled systems remain
directed into the interior of the manifold. bounded and we may takéd = D N E as a compact,
Now consider a pair of coupled dynamical systems inflowing, invariant 3-manifold. To show tha is, in
fact, attracting, consider the difference variablgs=

X = f(xi,x2), Xy = g(x1,%2), @D x = x, & =y — y2,andé; = z; — 25, so that
where f, g: R* — R are smooth functions. Synchro- &1 =06 = &) — 2011,
nization between the systems andx, is defined in the & =pé& — (1 +20)& — 0263 — 21é1,
following way: ,

Definition 1—The systems; and x, synchronizeif £ = —(B +2c1)& + 3161 + 0é.

there exists a compact, diagonal-like, smooth n manifold The synchronization manifoldM corresponds to

M with boundary which is invariant under the flow, (&1, &;, £3) = (0,0,0) and these coordinates are taken in

inflowing, and locally attracting. M will be referred to a direction orthogonal taf. Therefore, showing that

as the synchronization manifold. the synchronization manifold is stable is equivalent to
In particular, the synchronization manifold can be showing that the origin iné space is attracting for all

viewed as the graph of the functiaf defined above, and values of(x, y;,z1). For a sufficiently strong coupling,

so the existence of the manifold implies the existence it can be shown that

of the function ¢. As will be shown, this definition V=-8@+&+¢)

encompasses a variety of different physical SItuatlon?saLyapunov functional for thé variables. The stronger

in which chaotic synchronization has been shown t X
o . . _..__the coupling, the larger the constanthat can be chosen
occur. In addition, in order for such synchronization. : ) )
C ) ; n the expression fol. Since the Lyapunov functional
to be of physical interest, it should persist under smal

perturbations of either the coupling or the two subsystemsIS quadratic, this implies that trajectories nefr are

The above definition leads to a natural description 012 g{jatl:itﬁd c?)):%?gr?tn Uvﬁ“y}n:l?e(ljv{ inor?n%qlroztﬁteef&ﬁ:ge of
sufficient conditions that ensure such stability. Ping y -nyp '

The dynamics on the synchronization manifold canFor strong coupling, the synchronization between the two

(and, in general, will) be quite complicated. In particular,systemS '3 stat)ble. Inlpartl[c%lar, tis n?]t n%cessary tr?at

it may have both positive and negative Lyapunov expo~’ Pi» 80 'Bi.lle qua —sl9 tnr1]|sm'atc_ es between the

nents. In order to ensure that synchronization persistgalrzametelrs ;V' gott estro;k/)syntc ronlzat;]on._ " |

under perturbation of the system, we require that the ratEnO\)/(vimgse m;sté?selg\]/-esus Sgshfgi;‘gggngoﬂzsa Iogngear;toe d

at which trajectories are attracted toward the manifold ismuch attention since it \)//vas first introduced gin 3]

greater than the rates of contraction or expansion Withir|1n this case, a system of differential equations— '

the manifold. If the rate of attraction i times greater (x), with . ( ), is split into two partsi —

than the expansion or contraction rates within the manif s x xl""’f” ' P parts.i

fold, the synchronization manifold is calledormally (1, X—m) and v = (x("‘m“)""_’x”)’ leading to
X . . the following pair of coupled systems:

k-hyperbolic For a precise formulation of normal )

k-hyperbolicity, see [17,18]. For the present discussion, u' = fu,v),

the crucial fact is that normally-hyperbolic invariant v = g1(u,v), b = go(u, ).

manifolds persist as smooth manifolds under small PeTro extend the definitions of the previous section to this

twrbations of the L_mderlylng dynamlca! S)./stem (see [18]case, a dummy variabl2 = u can be introduced. The
for a proof) and this leads to the following: : J i
L A . new variable evolves ag and is introduced to increase
Definition 2—The synchronization of x and y is called . . L
: o . . the dimension of the phase space2in The definitions
stable if the synchronization manifold M is normally .
. of synchronization now apply to the coupled systems
k-hyperbolic for somé = 1. A A . — o N
. (u,v) and (1, ?) which evolve inL ={y € R* |y, =
Example 1—Consider the case of two coupled Lorenzy fori — 1 m} C R
N i+ns - IR .
systems: , The original question whether the system-subsystem
xp = oi(yi = x) + ciley = x1), exhibits synchronization forg; = g, now becomes a
vl = pixi — yi — xizi + ¢ci(y2 — y1), question of the stability of the dlagonBI_C L. The gen-
, eralized Lyapunov numbers of a manifold are the analog
zi = —Bizi + xiyi + cilze = 21, of Lyapunov exponents of trajectories in this setting. The
wherei = 1,2 andc; = —c;. When the coefficients;,  generalized Lyapunov number [17] measures the rate
pi, andB; of the two systems agree, then it is immediateof contraction or expansion under the flow in the direc-
that the diagonab € RS (i.e., the set defined by; = x», tion transversal to the manifold, and can, therefore, be
y1 = y2, and z; = z) is an invariant set. Using an used to replace the somewhat vague notionarfditional
extension of the argument given in [19], it is possibleLyapunov exponenf8]. A sufficient condition for syn-
to show that there is an invariant inflowing ellipsaltl  chronization to occur is that this generalized Lyapunov
around the origin irR®. number ofD be negative.
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Consider the Lorenz system with a system-subsysteni[¢’(x), ¢'(p)] = Ce™*' ast — o, wherea is the gen-
coupling given by eralized Lyapunov number measuring the contraction in
the direction normal toM and ¢ represents the flow

!
X =0 - X), . . .
(& ) induced by the vector field. The manifoldg*(p) are
y = px —y — xz, ' =px — 9 — xz, smooth, unique, and, under certain nonresonance condi-
7 = —Bz + xy, 5 = —B2 + xf. tions, depend smoothly opm € M.

Given a pair of coupled differential equations, we say
The fact that synchronization occurs and that the manifolghat the coupling isinidirectionalif one of the equations
D is normally hyperbolic can be shown again by findingis independent of the other [i.e., Egs. (1) can be written
an appropriate quadratic Lyapunov functional [20]. Thisas x/ = f(x) and y’ = g(x,y)]. The coupling can be
implies directly that the generalized Lyapunov number ynjdirectional in only part of the phase space. Physically,
of D is negative. The synchronization manifol C D this would mean that, in part of the phase space, the
can be taken as the inflowing ellipsoid of the Lorenzpehavior of one system has no influence on the behavior
system [19]. k-normal hyperbolicity is somewhat harder of the other. An example is provided by two electrical

to establish since we do not have control over the couplingircuits coupled through a diode. The following definition
as in the last example. However, Fig. 1 illustrates thainakes this notion precise:

synchronization as measured by the correlation between pefinition 3—Two dynamical systems are said to be
the time series ofz and Z does persist under some ynjdirectionally coupled o) C R" X R" if g(x,y) is

perturbations. o S independent ofc for eachy € II2(Q) or if f(x,y) is
Local equivalence of unidirectional and bidirectional jndependent of for eachx € I1'(Q).
couplings—Normal k-hyperbolicity of the synchroniza-  |n this situation, manifold$v*( p) which are pieces of

tion manifold implies other useful properties of the dy- affine spaces will be of particular importance.
namics in the vicinity of. It can be shown that each  pefinition 4—If there exists an open sed C R

orbit y on M is “shadowed” by orbits off of/. In par- gych thatW*(p) = {p} X R" N Q, then the fibeW*(p)
ticular, if we choosep € M, there is amm-dimensional g calledstraight onQ).

manifold (or fiber)W*(p), such that ifx € W*(p), then An example of a straight fiber is given in Fig. 2.
Straight fibers are directly related to unidirectional syn-
chronization as the statement of the following lemma
shows. Notice that, in the following discussion, the sys-
tems are required to s&ably synchronizedhich implies
normal k-hyperbolicity of the synchronization mani-
fold M.

Lemma 1-—The coupling between two stably synchro-
nized dynamical systems is unidirectional in a neighbor-
hood ) of the synchronization manifolg if the fibers
WS (p) are straight in{). Proof: Let us illustrate the
proof of this lemma in two dimensions since the higher
dimensional case is a direct extension of this argument.
Assume that the coupling is not unidirectionaln This
means that there exists a poipt= (xo,y0) € M and
points (xo, y1), (x0,y2) such that the speeds in thedi-
rection of (xo, y1) and(xg, y2) are different. If these two
points below toW*(p), then ¢'[(xo,y:)] € W*[o'(p)]
fori = 1,2. However, since the speed in thedirection
is different for these two points after some small time, the
flow will take them to points with different coordinates.
Therefore, for some smadl, the fiberW*[¢€(p)] cannot
be straight.

Figure 2 gives a schematic representation of this
situation. [

This lemma is the essential step in the proof of the
following theorem:

Theorem 1—If, for a pair of bidirectionally coupled,

value of b2 stably synchronizedynamical systems, the fibeig*( p)
FIG. 1. The correlation between the driving system variable depend smoothly op € M and{p} X R" is not tangent
and the subsystem variatiein example 2 as a function g8,  t0o M for any p € M, then there exists a smooth change
with g8 = £. of coordinates in some neighborhodd of M which
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FIG. 2. A schematic representation of Lemma 1. |If the
velocity of the points in the fibew* are different, it will
“bend” under the flow.

take the original bidirectionally coupled system into a
unidirectionally coupled system.

Since the fiberdv*(p) are smooth and by the hypothe-
sis of the theorem depend smoothly pre M, they give
a coordinate system in the neighborhoodbin a natural
way. The problematic case in whi¢lp} X R” is tangent
to M resulting in a singularity is ruled out. The fibers
W*(p) are straight in this coordinate system by definition,

and so by the previous lemma the coupling is unidirec-

tional. A rigorous proof of this assertion in a more gen-

of n coupled oscillators can be defined in terms of a
k-hyperbolic invariant manifold in the phase space of

the entire system. (ii) By relaxing the requirement that

the synchronization manifold be diagonal-like, we can

use this approach to study generalized synchronization.
(i) Other changes in definition 1 could be made to

include synchronization between systems with different
degrees of freedom.

The well developed theory of invariant manifolds can
then be used to understand these phenomena and to prove
properties of the system which are not obvious outside of
this framework.
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