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Robust Chaos
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Practical applications of chaos require the chaotic orbit to be robust, defined by the absence
of periodic windows and coexisting attractors in some neighborhood of the parameter space. We
show that robust chaos can occur in piecewise smooth systems and obtain the conditions of its
occurrence. We illustrate this phenomenon with a practical example from electrical engineering.
[S0031-9007(98)05741-X]

PACS numbers: 05.45.+b

It has been proposed to make practical use of chaoagpart. When the switch is closed, the inductor current
in communication [1], in enhancing mixing in chemical increases till it reaches the specified reference valye
processes [2], and in spreading the spectrum of switchFhe switch opens wheh= Is. Any clock pulse arriv-
mode power supplies to avoid electromagnetic interfering during theon period is ignored. Once the switch has
ence [3,4]. In such applications it will be necessary toopened, the next clock pulse causes it to close.
obtain reliable operation in the chaotic mode. We obtain a discrete-time model by observing the state

It is known that, for most smooth chaotic systemsvariables at every clock instant. There are two ways in
(the logistic map [5], for example), there is a dense setvhich a state can evolve from one clock instant to the
of periodic windows for any range of parameter valuesnext. If the on-timeT,, = L(I.ef — i)/ Vi is less than
Therefore in practical systems working in chaotic mode,T’, the evolution between observation instants includes
a slight inadvertent fluctuation of a parameter may takeneon period and oneff period. Since the clock period
the system out of chaos. The question is, How does ongypically is much smaller than the characteristic time of
guarantee that there is no periodic window for a giverthe LCR circuit, we assume the waveforms to be linear
range of parameter values and the maximal Lyapunobetween clock instants. By neglecting the higher order
exponent remains positive throughout the range? In thiSaylor terms, the two-dimensional map @y, < T is
Letter, we address this problem. derived as

We say a chaotic attractor isbustif, for its parameter
values, there exists a neighborhood in the parameter space ; ., = 1..; + 1 (Vi — v, + vn_TOﬂ) (T — T,p),
with no periodic attractor and the chaotic attractor is unique L c

in that neighborhood. It is known that robust chaos cannot VUnTon Lot Uy VUnTon
occur in smooth systems. In this Letter we show that such Vn+1 = Un = “op C CR = C2R?
situations can occur in piecewise smooth maps, and we

obtain the conditions of existence of robust chaos. X (T = Ton).

We first give a practical example from electrical engi-
neering to demonstrate robust chaos. The circuit showr
in Fig. 1 is known as the boost converter. It consists o
a controlled switchS, an uncontrolled switctD, an in-
ductor L, a capacitorC, and a load resistoR. When
the controlled switch is turned on, the current in the in- > L
ductor increases and energy is stored in it. When the t
controlled switch is turned off, the stored energy in the
inductor drops and the polarity of the inductor voltage
changes so that it adds to the input voltage. The voltage
across the inductor and the input voltage together “boost” I
the output yoltage toa value hlgher than the input voltage. @@ =
Such circuits are widely used in regulated dc switch-mode i >

On the other hand, if the clock pulse arrives while
< I, the switch remain®n between the observation

power supplies. —
Regulation of the output current is achieved by con- Tres I—S

trolling the switching by current feedback—known as Clock

“current-mode control.” In this control logic, the switch

is turned on by clock pulses that are spadedeconds FIG. 1. The current mode controlled boost converter.

0031-900798/80(14)/3049(4)$15.00 © 1998 The American Physical Society 3049



VOLUME 80, NUMBER 14 PHYSICAL REVIEW LETTERS 6 ARRIL 1998

instants. IfT,, = T, then the map takes the form, be one of the “standard” types, namely, period doubling,
' ) Vi saddle-node, or Hopf bifurcation. But if the bifurcation
In+1 = Ip T TT’ occurs when the fixed point isn the border, there is
a discontinuous change in the elements of the Jacobian
Upil = Uy Un T matrix asp is varied. A rich variety of bifurcations have

. CR . been reported [6-8] in this situation, which have been
_The borderline between the two cases is given _by tRalled border collision bifurcation. We show that, under
situation where the current reacligs exactly atthe arrival - cqrain conditions, border collision bifurcation results in
of the next clock pulse, i.€lporder = Ief — VinT/L. The robust chaos.
resultmg_ map,_thergfore, is piecewise smooth. It has been shown [6] that, by a change of coordinates,
The bifurcation diagram and the Lyapunov spectrum of, ny piecewise smooth map can be reduced to the normal
the boost converter is presented in Fig. 2. It may be noteg] ., (2) in some small neighborhood of the fixed point
that there is no periodic window or coexisting attraCtorundergoing border collision bifurcation:
in the parameter rang® = 241-500 (). The chaotic
attractor therefore satisfies the conditions of robustness. 1
We now obtain the general conditions of occurrence of ( _Tg O) <)V‘> + ,u,<(1)> forx =0,
robust chaos. Lef(%,¥; p) be a two-dimensional piece- G, = L ' )
wise smooth map which depends on a single parameter TR 1 <x> . <1> for x > 0
LetT',, given byt = A(3, p), denote a smooth curve that —6r 0\ o) ’
divides the phase plane into two regiaRgandR,. The
map is given by where x and y are the new coordinates for which the
o _ | fi1G9ip) for 2,5 €R,, border is along the line = 0, dividing the phase space
f(&,9;p) ) e (1)  into two halvesL and R. u is the new parameter,
fZ(x9y’p) forxvy ERb K . . .
which is obtained by scaling. 7, and§; are the trace
It is assumed that the function§ and f> are both con-  and determinant of the Jacobian matrix in sitle ¢
tinuous and have continuous derivatives. The nfals  and 5 are the corresponding values in sifte Since
continuous but its derivative is discontinuous at the ||nethe trace and determinant are invariant under the Change
Fp, called the “border.” Itis further assumed that the One'of Coordinates’ these quantities are the same as in map
sided partial derivatives at the border are finite. We study: calculated in the neighborhood of the point where
the bifurcations of this system as the paramgtesvaried.  horder collision occurs. As the parameteris varied
If a bifurcation occurs when the fixed point of the through zero, local bifurcations depend only on the values
map is in one of the smooth regiols, or R,, it will of 7.,8.,7r, and 8z appearing in (2), and therefore
it suffices to study the bifurcations in the normal form
(2) in exploring the border collision bifurcations in the
piecewise smooth map (1).
The fixed points of the system in the two sides are given

by
L*=< M —OLpm )
I—TL+6L’1—TL+5L’

I_TR"‘SR’I_TR‘F(SR ’

Imi‘ b

current (A)

Sampled inductor

and their stability is determined by the eigenvalugs =
2(r = 72 = 49).

It may be noted that, if
o>+ 68;) and 7 < (1 + g), 3)

then there is no fixed point for < 0 and there are two
fixed points, one each ih andR, for x > 0. The two
fixed points are born on the border at= 0. We call
this a border collision pair bifurcation. An analogous
200 se0 situation occurs ifr;, < (1 + §;) andrz > (1 + ) as
Load resistance Q) w is reduced through zero. Because of the symmetry of

FIG. 2. The bifurcation diagram and the Lyapunov spectrumi'€ tWO cases, we consider only the parameter region (3).
of the boost converter. The parameter valuescare 220 uF, I (1 + 6g) > 7g > —(1 + &) then, foru > 0, the
Ief = 05A, V,, =30V, T =400 us,L = 0.1 H. fixed point inL is a regular saddle and the oneRnis an

Exponent

Maximal Lyapunov

3050



VOLUME 80, NUMBER 14 PHYSICAL REVIEW LETTERS 6 ARRIL 1998

attractor. This is like a saddle-node bifurcation occurring
on the border. Since this region in the parameter space
always has a periodic attractor far > 0, we exclude
this region from our analysis when looking for chaotic
behavior. The conditionry = —(1 + &%) results in a
nongeneric situation where all points on the line join-
ing the points(u/(1 + 6g),0) and (0, —dgu/(1 + 8%))

are fixed points of the second iterate. We therefore
concentrate on the parameter space region

o>+ 68;,) and 7p < —(1 + 6g)

(4)

and investigate the property of the attractor for> 0.
We first consider the cade> §; = 0 and1 > 6z = 0.

For (4),L" is a regular saddle an®* is a flip saddle.
Let ‘U; andS; be the unstable and stable manifoldiof
and Uy and S; be the unstable and stable manifold of
R*, respectively. For (2), all intersections of the unstable
manifolds withx = 0 map to the liney = 0. Since one
linear map changes to another linear map across the0
line, U, and Uy experience folds along the axis, and
all images of fold points will be fold points. By a similar
argument, we conclude th&};, and Sk fold along they
axis, and all preimages of fold points are fold points.

Let A1z, Ayr be the eigenvalues in sideand Aig, Ar
be the eigenvalues at side For condition (4),Ay, > ) ) )
Xoz >0 and 0 > Az > Ag. The stable eigenvector there are points ofU; in every _nelgh_borhood _ofuR, .
at R* has a slopem; = (—8g/A1z) and the unstable We conclude that the attractor is unique. This ch_aot|c
e|genvect0r has a Slopez = (_5R/A2R)- Since po|nts attractor Canno.t be destroyed by Sma” ChangeS in the
on an eigenvector map to points on the same eigenvect®@rameters. Since small changes in the parameters can
and since points on the axis map to thex axis, we ©Only cause small changes in the Lyapunov exponents,
conclude that points ofiy to the left of they axis map Whe_re the chaotic attractor is stable, itis also robust.
to points above the axis. From this we find thaflz Itis clear from the above geometrlt_:al structure that no
has an anglens = 8; Ar/(8r — 71 Ar) after the first pomt of the attractor can be to the rlght of_pQIDt If
fold. Under condition (4) we haves; > m, > 0 and D lies towards the left ofC, the chaotic orbit is stable.

intersection |nR Th|s |mp||es an |nf|n|ty Of homoc”nic ChaotIC Ol’bl'[ or ChaOth Saddle From thIS, the COI’]dI'[IOﬂ
intersections and the existence of a chaotic orbit. of stability of the chaotic attractor is obtained as

We now investigate the stability of this orbit. The basin
boundary is formed bys;. S; folds at they axis and
intersects ther axis at pointC. The portion of U, to (5)
the left of L* goes to infinity and the portion to the right
of L* leads to the chaotic orbit.’U; meets thex axis If 6, = 6 = 6, this condition reduces targpA; —
at pointD, and then undergoes repeated foldings leading\; Ay, + 7 — 7 — 6 > 0.
to an intricately folded compact structure as shown The robust chaotic orbit continues to exist ag
in Fig. 3. is reduced below(l + §.). With 7, slightly below

FIG. 3. The stable and unstable manifoldg.éffor 7, = 1.7,
8L = 05, TR 17, 5R = 05

OLTRAIL — ORAiL A + OpAyp — 67 + 716

—8} — X1, > 0.

The unstable eigenvector &t has a negative slope
given by (=8./A1). Therefore it must have a hetero-
clinic intersection withSk. Since bothU; and Uy have
transverse intersections withg, by the lambda lemma
[9] we conclude that, for each poirt on Ui and for
each e neighborhoodN.(q), there exist points ofU,
in Nc.(g). Since U; comes arbitrarily close tdlyg,
the attractor must spafil; in one side of the hetero-
clinic point.

Since all initial conditions inL. converge onU; and
all initial conditions in R converge onUg, and since

(1 + &), there is no fixed point in. for x > 0, but
the invariant manifolds suffer only slight change. The
invariant manifold ofL associated with; still forms the
attractor. The invariant manifolds ih, however, cease
to exist for 7, < 2./8, since the eigenvalues become
complex. Asr; is reduced below./§; there is a sudden
reduction in the size of the attractor as it spans dbly.
As long asU;, exists, multiple attractors cannot exist and
therefore if the main attractor is chaotic, it is also robust.
Therefore we see that, fdr> 6, > 0, 1 > 6 > 0,
the normal form (2) exhibits robust chaos in a portion
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5 ‘:4 Ag — 1 < Or(rt, — 61 — Aap)
00 o = L TR — 1= 6r (70 — 1 — 8.)(8rAaL — 8L7R)
‘ ~ (7)
—(1+3g)] Foré; < 0andér < 0, L* is below thex axis and the

same logic as above applies. Butgif < 0 andéz > 0,
the stable manifold ofR* has a negative eigenvalue
and henceU; does not approacliiz from one side.
Therefore, if (6) is not satisfied, there is no analytic
Eqn(5) condition for boundary crisis—it has to be determined
numerically. Foré, < 0, the invariant manifoldsU
and S; always exist as the eigenvalues are real forrall
T V Therefore multiple attractors cannot exist &y < 0.
o ~ Since (2) is a normal form of the piecewise smooth map
FIG. 4. Schematic diagram of the parameter space regiofn) it is expected that robust chaos would be observable
of the normal form (2), where robust chaos is observed forin many piecewise smooth maps in the neighborhood of
1>68,>0,1>6zg>0andu > 0. o . . .
border collision bifurcations, provided that there are no
more than one period-1 fixed point R, and R, there
exist homoclinic as well as heteroclinic intersections of
of parameter space bounded by the conditiois=  the invariant manifolds associated with these fixed points,
—(1 + 8g), 72 > 2+/8,, and (5), as shown in Fig. 4. and the trace and determinant at the two sides of the
There is a symmetric region of the parameter space witBorderline satisfy the above conditions. The example of
the roles of R and L interchanged, where the same the boost converter is a case in point.
phenomena are observed for< 0. A major conclusion of this Letter is that one should

At very low values of the determinant, i.e., when theyse piecewise smooth systems in applications that require
system is very close to being one dimensional, the maiReliable operation under chaos.

attractor may not remain chaotic even for > 2./5;,

as periodic orbits become stable. The conditions for

emergence of periodic windows for the one-dimensional

case have been derived in [8,10]. Therefore, for one- *Electronic address: soumitro@ee.iitkgp.ernet.in
dimensional systems, the parameter range for robust chaos 'Electronic address: yorke@ipst.umd.edu

is bounded byrg =1, 7x > —7./(7; — 1), and the fAlso with the Institute for Plasma Research and
lower limit of 7, is given by the conditions of existence Department of Mathematics, University of Maryland,
of various periodic windows. Here the's are to be College Park, MD.
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