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A Baryon Model in Covariant Constraint Dynamics

H. W. Fricke and C. C. Noack

Institut fUr Theoretische Physik, Universitat Bremen, D-28334 Bremen, Germany
(Received 18 November 1997

An important ingredient of parton or string cascade models for ultrarelativistic heavy-ion reactions
is a parton description of the baryon. We have developed a new model using Dirac’s approach of
Poincaré-covariant many-body dynamics with constraints. The baryon is described as a dynamical set
of three valence quarks and a fourth particle, the “junction,” which carries the momentum fraction of
the sea quarks as well as all of the glue. The model’'s parameters are the quark current masses, and one
interaction strength, determined by the proton radius. We obtain a remarkably good fit to the valence
quark structure functions of the baryon. [S0031-9007(98)05696-8]

PACS numbers: 12.39.Ki, 14.20.-c, 24.10.Lx, 25.75.—q

Among the methods employed in describing ultrarela-An evolution parametes—without any direct physical
tivistic heavy ion reactions theoretically, various cascadeneaning—is introduced for the parametrization of the
models [1,2], (cf. also [3]), play an important role. Thesephase space trajectories. A set(@WN — 1) Poincaré-
models follow the space-time development of the reaceovariant constraintd®,|r = 1...(2N — 1)} and one
tion dynamics in phase space; they are therefore essentialtpnnection®,y between the evolution parameterand
classical models. They simulate the nuclear reaction by the phase space variables are introduced, which reduce
series of elementary propagations, fusions, and decays tiie degrees of freedom of the system to a physical
partons or strings. When successful, cascade models néV-dimensional hypersurfacE€’. We use the standard
only reproduce the experimental data as asymptotic statemtation of writingA = B to denote that an equation holds
of the reaction but give some information on the dynami-only onT”’; we also employ a summation convention over
cal, nonequilibrium development of the intermediate statesgqual indices wherever applicable.
including a phase transition to a quark-gluon plasma—if The equations of motion are generated by a Poincaré-

such a phase transition should indeed occur. invariant “Hamiltonian” H := A/®; via the Poisson
The basic objects in [1] are strings; (confined) baryondrackets,

or mesons are described by such strings swedping 1)- dqq) ;

dimensional periodic hypersurfaces in space-time (“yo-yo s~ o1 = g0, PN, (1a)

motions”). A baryon is thus modeled as a system of a J

:qnu?hrilé Zr:}tiaatzd.lquark. Parton distributions are not included % ~ {pay H} = {p@. @}, (1b)

In this Letter we will present a new Poincaré-covariantThe Lagrange parameters are determined by the re-

dynamical model for a baryon, leading to yo-yo-like MO- quirement thatd preserve the constraintél% ~ r‘*% +

tion of its constituents. Three valence quarks and a “juncsg,, ®;}A/ = 0. Denoting the matrix of the Poisson
tion” (repr_esentlng sea qqarks gnd all gluonlp degree_s rackets{®;, ®;} by P, the A are given by A/ ~
freedom) interact as classical point particles via a quasipo- ,,,_ |\ r 0. . .
. . o ; —(P~1)* =k since of all the constraints onl,y de-
tential. This model, which is free of adjustable parame- s, .
i ends explicitly ors, we obtain

ters, approximately reproduces the valence quark structuf®
functions. TheQ? dependency of the structure functions M o= —(P~HiN aq)ﬂ )
will be discussed at the end of this Letter. ds

Constraint Dynamics—In constructing a Poincaré- (It is straightforward to see thaa?M =~ 0; thus H is
covariant system oN interacting point particles, one has independent of.) Using Egs. (1) and (2), one obtains the
to face the consequences of the no-interaction theorem [4g¢quations of motion for physically interpretable variables
This theorem asserts that the only canonical Hamiltonian the hypersurfacg’.
theory that is fully covariant under Poincaré transfor- With constraint dynamics it is possible to construct
mations is that of a system of noninteracting particlesa dynamical system, consisting of two massive particles
Dirac’s method of introducing dynamical constraints [5] m(; 5), which reproduces the essential features of the yo-
circumvents this problem. yo solution of the Lund model (cf. also [8]). Specifically,

In this paper we use a set ¢IN) second-class con- the effective masses of the two particles increase due to a
straints, written in the scheme of [6] (cf. also [7]). The quadratic quasipotential between them:
phase space is expandedig dimensions: (maaerr)® = (pao)? = (ma2)? — V

T :={q(.pili =1...N,u=0...3}. = (map)* — «*(qa) — q0)*
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[Note that, in this Poincaré-covariant formulation, the 1.0
quasipotential has a dimension @ghas$?, and thus the %
energy (in the rest frame of each particle) increases / . \\
linearly with distance, as is the case in the Lund model.] //// coordinate \\\
The dynamical system is defined by the constraints //// space N
) / Jl/ \\ \
= 2 _ 2 2 — 2 Q ~ i | —— Lund model !
@15 1= (pap) (ma2)” + k(g — q@)", (33) £ o5 \ " | -_— constraint cynamics| | ™
@3 = (q) — 9) (pay + P©), (3b) - - \ //
\\\ J/
@, = LU PO ~re qa) — 8- (3¢) Ny y
lpay + pol N Y
AN
The physical meaning of these constraints is the fol- 0.0 \/
lowing: ®,, guarantee that the particles are on mass 205 0.0 0.5
shell wherever the quasipotential vanishes. Their effec- z [fm]
tive masses increase with increasing distandg.ensures
that in the center-of-momentum system (CMS) the particle 107 ~ ‘ /
distance is spacelike, arl; connects the evolution pa- N\ \ momentum J
rameters with the particle times in the CMS. RN space //
The solutions of the equations of motion for this system S \\ / e
are trigonometric functions (Fig. 1). In the CMS and with NN L
vanishing particle masses, the period of this yo-yo motion SN //
is T := 7wM/(2k), whereM? := (pu) + pw)?. Setting g Ny
. . , £ 05
k = 7 /4KkLund, ONE Obtains the same period as in the = - \\\
Lund model. As a consequence, the maximum time for ///"/ \\\
one fragmentation [1] would be the same in both models. o N
This fully Poincaré-covariant model can thus be thought o yd ™ S
of as a naive simulation of a meson of total mags - —— Lund model AR
composed of two quarks with current masses,). As 7 —-—- constraint dynamics N
in the Lund model, the quarks in the meson are confined, e , ‘
and this increases their effective masses. In contrast, the "20.5 0.0 0.5
yo-yo solution of the Lund model is only boost invariant P’ [GeVic]

in one direction. Current quark masses are not included igjg 1. solution of the equations of motion in the CMS of
the Lund model. the constraint dynamics model [Eqgs. (3)] compared to the Lund
This simple model does not, of course, purport to givesolution, incoordinateand inmomentunspace(m » = 0).
a fully adequate description of a meson—no account is
given, e.g., for gluonic degrees of freedom. It is pre-
sented here merely as an example of the principal methogimplicity, we will assume the valence quarks to always
employed. remain on mass shell.
Model of the baryon—In the spirit of the above, anaive ~ The above physical requirements are embodied in the
model for a baryon would be a system of three valencéollowing constraints:

guarks, each carrying one-third of the baryon momentum. ®1as = (pu2s)? — (ma2s) (4a)
This, however, is too gross a simplification, since from - ” X -

deep inelastic scattering we know that about one-half of the )

momentum is carried by sea quarks and gluonic degrees ©; = (pu)’ + Zl (g0 = 90", (4b)
of freedom. In the model to be described now, we will -

introduce a fourth (classical) particle, the junction [9,10], Dse7 = (qu.23) — 9u)P, (4c)
which binds the valence quarks, and thus models these P

degrees of freedom (cf. Fig. 2). Oy 1= TR (4d)

In keeping with the discussion in the previous section,
we will again use a quadratic quasipotential depending owhereP := p(;) + Z?ZI p() is the total four-momentum
the distances between the junction and the valence quark$ the system.

(again, constraints will ensure that these distances are The equations of motion for this system have no simple
spacelike in the CMS). This quasipotential should affectsolution in closed form; but they are, of course, easily
the effective masép;))* of the junction, because pushing solved numerically. For the simulation of a proton,
away a valence quark will increase the number of seave use M, = |P| = 0.938 GeV (proton mass),k =
guarks and gluons, which are modeled by the junction. Fod.5 GeV/fm (leading to a proton radius &£0.8 fm), and
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estimated values for the current masses of the quarks [11
may = mp) = my) =5 MeV, mgz) = m) = 10 MeV. o _
Qz-independent structure functions.For fixed values FI!G- 3. Sampled distributions of the valence quark longitu-

. 2 : dinal momentum fractiontu, (x) (up quark) anded, (x) (down
of th_e varlablgx := Q°/2Mv, the substructure of nucle- uark). The solid and dashed lines are the results obtained with
ons is rather independent of the four-momentum transfehe parametrization [12].
(0?%). (M denotes the nucleon mass anthe transferred
energy.) Inthe parton model this scaling behavior is ex-
plained in terms of the presence of pointlike charged con- q d ; . E .
stituents, called “partons.” Using the parton hypothesis, EQR,;\ epinh_er;: fstructure unctions. fxpeumenths ath
can be interpreted as the fractional momentum of a partoh| with high four-momentum transfer show that the
in the infinite momentum frame. The distribution func- ©°t&l momentum carried by the valence quarks decreases

ral, m.
tions of this variable can be obtained from the data of deef}/itl an_reasmgQ ' i‘zd tt|1at the nuTber of g(;ucl)ns;lgnd selz
inelastice-p collision experiments. For comparison with duarks increases [14]. In terms of our model, this wou

. 2 . .
our results, we shall use the parametrization of the valencd@€an that the %‘ffeCt!V? matp,))” of the junction should
increase withQ<, as it is the junction which models these

flegrees of freedom. However, since by construction the
momentum transfe@? does not enter the dynamics of our
model baryon at all, the only way to include this effect

X

described by Egs. (4), we first need the variablén

the context of our model. We define the longitudina by introduci ddit h logicamm
momentum fraction of particlein terms of the ratio of the IS Dy Introducing an a |t|o_naﬂ) enomenologicamass
Pl potRh term in the equations of motion for the junction. We thus

light-cone variablest) := 77 := Zoyp. Note thatthis  replace the constrairb, in Eqgs. (4) by
definition is flavor dependent because we are using flavor-

dependent quark masses (cf. end of the previous section). L ) ) ’ s 2
We have then sampled distributions of these momen- ©/ *= (po)” = Ima (@I + « ;(q“) —qw)”
tum fractions by randomly choosing different initial con- l (5)
ditions for the dynamical system of Eqgs. (4); during the
evolution of the system with one set of initial conditions, with a phenomenologicaD?-dependent termn;(Q?).
values ofx(;) are sampled and averaged over. The result$stead of simply fittingn(,)(Q2) to the data, we proceed
of these calculations are given in Fig. 3 and compareas follows: The measured parton distribution functions for
with the parametrization of [12]. valence as well as for sea quarks and glugipé;, 0?), are
The rather good overall agreement of our result with theparametrized in [14]. From these we calculatiegrated
data seems rather remarkable, given the fact that ours lmomentum fractions;(Q?) = f(l) xfi(x, Q%) dx. Xolue
a purely classical particle model, and no free parameterandx,., are a measure of the amount of the corresponding
were fitted in obtaining these results. “mean field” carried by the/ particle in our model and
The tails of these distributions are definitely overesti-which we want to represent by ;). However, since a
mated by our model. However, one should note that focertain part of this mean field is generated dynamically by
x = 0.8 the number of events in the sample is vastly lesghe system in the form of the effective mass squared of
than forx =~ 0.1 (by about a factor 0f0~°), so any error  the junction( p;)?, we have to subtract this part to avoid
in the tail of the distribution hardly contributes to the mo- double counting. We are thus led to the ansatz,
mentum distribution of the proton.
A fragmentation mechanism using the baryon model
described here has been presented elsewhere [13].
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FIG. 4. Sampled distributions of the valence quark longitudi- Q* [GeV’]

nal momentum fractionu, up quark) andxd, down . L
quark), atQ> = (200 Ge\bf)z(_x)-l-(hg sqolid z;nd dash(g()j fines are FIG. 5. Sampled integrated momentum fractianst, of the

; f At valence up quarkg§]) and down quark$<), as a function of
the results obtained with the parametrization [14]. Q2. The solid and dashed lines are the results obtained with

the parametrization [14].

where the proton massa/, is needed for dimensional
reasons. The factor, finally, is determined by the in much the same way as in [8]. We are currently in the
requirement thatm(;(Q?) vanish at the point where process of developing such a code.
we connect with thep?-independent calculation®? =
2 Ge\2. Thus we taken(;)(Q?) to be given by
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