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A Baryon Model in Covariant Constraint Dynamics
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An important ingredient of parton or string cascade models for ultrarelativistic heavy-ion reacti
is a parton description of the baryon. We have developed a new model using Dirac’s approac
Poincaré-covariant many-body dynamics with constraints. The baryon is described as a dynamic
of three valence quarks and a fourth particle, the “junction,” which carries the momentum fraction
the sea quarks as well as all of the glue. The model’s parameters are the quark current masses, a
interaction strength, determined by the proton radius. We obtain a remarkably good fit to the val
quark structure functions of the baryon. [S0031-9007(98)05696-8]

PACS numbers: 12.39.Ki, 14.20.–c, 24.10.Lx, 25.75.–q
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Among the methods employed in describing ultrarel
tivistic heavy ion reactions theoretically, various casca
models [1,2], (cf. also [3]), play an important role. Thes
models follow the space-time development of the rea
tion dynamics in phase space; they are therefore essent
classical models. They simulate the nuclear reaction b
series of elementary propagations, fusions, and decay
partons or strings. When successful, cascade models
only reproduce the experimental data as asymptotic sta
of the reaction but give some information on the dynam
cal, nonequilibrium development of the intermediate stat
including a phase transition to a quark-gluon plasma—
such a phase transition should indeed occur.

The basic objects in [1] are strings; (confined) baryo
or mesons are described by such strings sweepings1 1 1d-
dimensional periodic hypersurfaces in space-time (“yo-
motions”). A baryon is thus modeled as a system of
quark and a diquark. Parton distributions are not includ
in this ansatz.

In this Letter we will present a new Poincaré-covaria
dynamical model for a baryon, leading to yo-yo-like mo
tion of its constituents. Three valence quarks and a “jun
tion” (representing sea quarks and all gluonic degrees
freedom) interact as classical point particles via a quasi
tential. This model, which is free of adjustable param
ters, approximately reproduces the valence quark struct
functions. TheQ2 dependency of the structure function
will be discussed at the end of this Letter.

Constraint Dynamics.—In constructing a Poincaré-
covariant system ofN interacting point particles, one ha
to face the consequences of the no-interaction theorem
This theorem asserts that the only canonical Hamilton
theory that is fully covariant under Poincaré transfo
mations is that of a system of noninteracting particle
Dirac’s method of introducing dynamical constraints [5
circumvents this problem.

In this paper we use a set ofs2Nd second-class con-
straints, written in the scheme of [6] (cf. also [7]). Th
phase space is expanded to8N dimensions:

G :­ hqm

sid, p
m

sidji ­ 1 . . . N , m ­ 0 . . . 3j .
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An evolution parameters—without any direct physical
meaning—is introduced for the parametrization of th
phase space trajectories. A set ofs2N 2 1d Poincaré-
covariant constraintshFr jr ­ 1 . . . s2N 2 1dj and one
connectionF2N between the evolution parameters and
the phase space variables are introduced, which redu
the degrees of freedom of the system to a physic
6N-dimensional hypersurfaceG0. We use the standard
notation of writingA ø B to denote that an equation holds
only onG0; we also employ a summation convention ove
equal indices wherever applicable.

The equations of motion are generated by a Poinca
invariant “Hamiltonian” H :­ ljFj via the Poisson
brackets,

dqsid

ds
ø hqsid, Hj ø hqsid, Fjjlj , (1a)

dpsid

ds
ø hpsid, Hj ø hpsid, Fjjlj . (1b)

The Lagrange parameterslj are determined by the re-
quirement thatH preserve the constraints:dFi

ds ø ≠Fi

≠s 1

hFi , Fjjlj ø 0. Denoting the matrix of the Poisson
brackets hFi , Fjj by Pi,j , the lj are given bylj ø
2sP 21dj,k ≠Fk

≠s ; since of all the constraints onlyF2N de-
pends explicitly ons, we obtain

lj ø 2sP 21dj,2N ≠F2N

≠s
. (2)

(It is straightforward to see thatl2N ø 0; thus H is
independent ofs.) Using Eqs. (1) and (2), one obtains the
equations of motion for physically interpretable variable
on the hypersurfaceG0.

With constraint dynamics it is possible to construc
a dynamical system, consisting of two massive particle
ms1,2d, which reproduces the essential features of the y
yo solution of the Lund model (cf. also [8]). Specifically,
the effective masses of the two particles increase due to
quadratic quasipotential between them:

sms1,2deffd2 :­ sps1,2dd2 ­ sms1,2dd2 2 V

­ sms1,2dd2 2 k2sqs1d 2 qs2dd2.
© 1998 The American Physical Society
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[Note that, in this Poincaré-covariant formulation, th
quasipotential has a dimension ofsmassd2, and thus the
energy (in the rest frame of each particle) increase
linearly with distance, as is the case in the Lund model.

The dynamical system is defined by the constraints

F1,2 :­ sps1,2dd2 2 sms1,2dd2 1 k2sqs1d 2 qs2dd2, (3a)

F3 :­ sqs1d 2 qs2dd sps1d 1 ps2dd , (3b)

F4 :­
ps1d 1 ps2d

jps1d 1 ps2dj
qs1d 2 s . (3c)

The physical meaning of these constraints is the fo
lowing: F1,2 guarantee that the particles are on ma
shell wherever the quasipotential vanishes. Their effe
tive masses increase with increasing distance.F3 ensures
that in the center-of-momentum system (CMS) the partic
distance is spacelike, andF4 connects the evolution pa-
rameters with the particle times in the CMS.

The solutions of the equations of motion for this syste
are trigonometric functions (Fig. 1). In the CMS and with
vanishing particle masses, the period of this yo-yo motio
is T :­ pMys2kd, whereM2 :­ sps1d 1 ps2dd2. Setting
k ­ py4kLund, one obtains the same period as in th
Lund model. As a consequence, the maximum time f
one fragmentation [1] would be the same in both model

This fully Poincaré-covariant model can thus be thoug
of as a naive simulation of a meson of total massM,
composed of two quarks with current massesms1,2d. As
in the Lund model, the quarks in the meson are confine
and this increases their effective masses. In contrast,
yo-yo solution of the Lund model is only boost invarian
in one direction. Current quark masses are not included
the Lund model.

This simple model does not, of course, purport to giv
a fully adequate description of a meson—no account
given, e.g., for gluonic degrees of freedom. It is pre
sented here merely as an example of the principal meth
employed.

Model of the baryon.—In the spirit of the above, a naive
model for a baryon would be a system of three valen
quarks, each carrying one-third of the baryon momentu
This, however, is too gross a simplification, since from
deep inelastic scattering we know that about one-half of t
momentum is carried by sea quarks and gluonic degre
of freedom. In the model to be described now, we wi
introduce a fourth (classical) particle, the junction [9,10
which binds the valence quarks, and thus models the
degrees of freedom (cf. Fig. 2).

In keeping with the discussion in the previous sectio
we will again use a quadratic quasipotential depending
the distances between the junction and the valence qua
(again, constraints will ensure that these distances
spacelike in the CMS). This quasipotential should affe
the effective massspsJdd2 of the junction, because pushing
away a valence quark will increase the number of s
quarks and gluons, which are modeled by the junction. F
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FIG. 1. Solution of the equations of motion in the CMS of
the constraint dynamics model [Eqs. (3)] compared to the Lun
solution, incoordinateand inmomentumspacesms1,2d ­ 0d.

simplicity, we will assume the valence quarks to alway
remain on mass shell.

The above physical requirements are embodied in th
following constraints:

F1,2,3 :­ sps1,2,3dd2 2 sms1,2,3dd2, (4a)

FJ :­ spsJdd2 1 k2
3X

i­1

sqsid 2 qsJdd2, (4b)

F5,6,7 :­ sqs1,2,3d 2 qsJddP , (4c)

F8 :­
P
jPj

qsJd 2 s , (4d)

whereP :­ psJd 1
P3

i­1 psid is the total four-momentum
of the system.

The equations of motion for this system have no simpl
solution in closed form; but they are, of course, easil
solved numerically. For the simulation of a proton,
we use Mp ­ jPj ­ 0.938 GeV (proton mass),k ­
0.5 GeVyfm (leading to a proton radius ofø0.8 fm), and
3015
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FIG. 2. Model for the baryon: A junctionsJd is binding
the valence quarks (1,2,3) by a confinement potential. T
junction carries the average momentum of sea quarks a
gluonic degrees of freedom.

estimated values for the current masses of the quarks [1
ms1d ­ ms2d ­ msud ­ 5 MeV, ms3d ­ msdd ­ 10 MeV.

Q2-independent structure functions.—For fixed values
of the variablex :­ Q2y2Mn, the substructure of nucle-
ons is rather independent of the four-momentum trans
sQ2d. (M denotes the nucleon mass andn the transferred
energy.) In the parton model this scaling behavior is e
plained in terms of the presence of pointlike charged co
stituents, called “partons.” Using the parton hypothesisx
can be interpreted as the fractional momentum of a par
in the infinite momentum frame. The distribution func
tions of this variable can be obtained from the data of de
inelastice-p collision experiments. For comparison with
our results, we shall use the parametrization of the valen
quark distribution functionsuysxd, dysxd given in [12].

To obtain valence quark structure functions in our mod
described by Eqs. (4), we first need the variablex in
the context of our model. We define the longitudin
momentum fraction of particlei in terms of the ratio of the

light-cone variables:xsid :­
p1

sid
P1 :­

p0
sid1pz

sid
P01Pz . Note that this

definition is flavor dependent because we are using flav
dependent quark masses (cf. end of the previous sectio

We have then sampled distributions of these mome
tum fractions by randomly choosing different initial con
ditions for the dynamical system of Eqs. (4); during th
evolution of the system with one set of initial conditions
values ofxsid are sampled and averaged over. The resu
of these calculations are given in Fig. 3 and compar
with the parametrization of [12].

The rather good overall agreement of our result with t
data seems rather remarkable, given the fact that our
a purely classical particle model, and no free paramet
were fitted in obtaining these results.

The tails of these distributions are definitely overes
mated by our model. However, one should note that
x ø 0.8 the number of events in the sample is vastly le
than forx ø 0.1 (by about a factor of1026), so any error
in the tail of the distribution hardly contributes to the mo
mentum distribution of the proton.

A fragmentation mechanism using the baryon mod
described here has been presented elsewhere [13].
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FIG. 3. Sampled distributions of the valence quark longit
dinal momentum fractionxuysxd (up quark) andxdysxd (down
quark). The solid and dashed lines are the results obtained w
the parametrization [12].

Q2-dependent structure functions.—Experiments at
HERA with high four-momentum transfer show that th
total momentum carried by the valence quarks decrea
with increasingQ2, and that the number of gluons and se
quarks increases [14]. In terms of our model, this wou
mean that the effective massspsJdd2 of the junction should
increase withQ2, as it is the junction which models these
degrees of freedom. However, since by construction t
momentum transferQ2 does not enter the dynamics of ou
model baryon at all, the only way to include this effec
is by introducing an additionalphenomenologicalmass
term in the equations of motion for the junction. We thu
replace the constraintFJ in Eqs. (4) by

FJ :­ spsJdd2 2 fmsJdsQ2dg2 1 k2
3X

i­1

sqsid 2 qsJdd2,

(5)

with a phenomenologicalQ2-dependent termmsJdsQ2d.
Instead of simply fittingmsJdsQ2d to the data, we proceed
as follows: The measured parton distribution functions f
valence as well as for sea quarks and gluons,fksx, Q2d, are
parametrized in [14]. From these we calculateintegrated
momentum fractions̄xksQ2d :­

R1
0 xfksx, Q2d dx. x̄glue

andx̄sea are a measure of the amount of the correspondi
“mean field” carried by theJ particle in our model and
which we want to represent bymsJd. However, since a
certain part of this mean field is generated dynamically
the system in the form of the effective mass squared
the junctionspsJdd2, we have to subtract this part to avoid
double counting. We are thus led to the ansatz,

msJd :­

∑
x̄glue 1 x̄sea 2

a

1 2 a
sx̄dy

1 x̄uy
d
∏

Mp ,
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FIG. 4. Sampled distributions of the valence quark longitud
nal momentum fractionxuysxd (up quark) andxdysxd (down
quark), atQ2 ­ s200 GeVd2. The solid and dashed lines are
the results obtained with the parametrization [14].

where the proton massMp is needed for dimensional
reasons. The factora, finally, is determined by the
requirement thatmsJdsQ2d vanish at the point where
we connect with theQ2-independent calculation:Q2 ­
2 GeV2. Thus we takemsJdsQ2d to be given by

msJdsQ2d :­

∑
x̄gluesQ2d 1 x̄seasQ2d

2
0.55
0.45

fx̄dy
sQ2d 1 x̄uy

sQ2dg
∏

Mp . (6)

With this Q2-dependent term added, we again solv
the equations of motion of the system and sample t
distributions of the valence quark structure functions
the manner described above. The results are presente
Figs. 4 and 5, in comparison with [14].

In conclusion, we have presented a truly Poincar
covariant model for a baryon [15] in terms of a completel
classical particle description which, in spite of its simplic
ity, seems to describe some of the features of the bary
surprisingly well. We believe this model (possibly with
further refinements) to be useful in constructing mode
for ultrarelativistic heavy-ion reactions of the parton cas
cade type.

In such a cascade model, scattering of baryons (
rather, their constituents, including the junction) would b
implemented by a suitable generalization to many particl
of the constraint approach, and hadronization would
introduced via phenomenological fragmentation function
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FIG. 5. Sampled integrated momentum fractionsx̄u, x̄d of the
valence up quarksshd and down quarkssed, as a function of
Q2. The solid and dashed lines are the results obtained w
the parametrization [14].

in much the same way as in [8]. We are currently in th
process of developing such a code.
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