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Numerical investigation of a class of inhomogeneous cosmological spacetimes shows evid
that at a generic point in space the evolution toward the initial singularity is asymptotically t
of a spatially homogeneous spacetime with mixmaster behavior. This supports a long-stan
conjecture due to Belinskiiet al. on the nature of the generic singularity in Einstein’s equation
[S0031-9007(98)05688-9]
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If one assumes that our expanding universe can be d
scribed by a spatially homogeneous and isotropic sol
tion to Einstein’s equations, one can “run the expansio
backward” to a hotter, denser universe in the past. Su
an analysis leads to an understanding of the cosmic m
crowave background and primordial light element abun
dances. Running a further finite time into the past yield
the big bang—a singularity characterized by infinite den
sity, temperature, and gravitational tidal force. While thi
standard cosmological model accounts for observed fe
tures of the universe, the reliability of its predictions abou
features that have not been observed depends on the
bility of those predictions when the conditions of homo
geneity and isotropy are relaxed.

Einstein’s equations allow for a rich variety of cos
mological spacetimes, by which we mean solutions th
are deterministic (contain a compact Cauchy surface) a
have a physically reasonable stress energy tensor (o
that satisfies the strong energy condition). Powerful th
orems state that, generically, such spacetimes have an
tial singularity. But the theorems do not describe th
nature of the singularity. In the approach to the initia
singularity in the standard cosmological model, the k
netic energy of the isotropic collapse (proportional to th
square of the Hubble parameter) dominates the spa
curvature. A similar type of approach to the singular
ity is found in the Kasner spacetimes [1]. These vacuu
solutions are anisotropic, spatially homogeneous, and s
tially flat (type I in the Bianchi classification of homoge-
neous spaces). Since they are spatially flat, the spa
curvature terms are absent from the evolution equatio
for these models, and the kinetic energy of the anisotrop
collapse drives the approach to the singularity. A co
mological spacetime is said to have an asymptotical
velocity term dominated (AVTD) singularity if the evolu-
tion toward the singularity at each spatial point approach
that of one of the Kasner spacetimes or that of a nonv
cuum Bianchi I spacetime with fixed Kasner exponen
[2–4]. Another possible behavior near the singularit
is exemplified by the spatially homogeneous mixmast
spacetimes, in which the dynamics of the collapse to th
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singularity is approximated by an infinite sequence o
Kasner spacetimes with a deterministically chaotic tra
sition from one Kasner to the next [5]. In Bianchi type IX
the transitions are caused by “bounces” off a potential pr
vided by the spatial scalar curvature [6,7]. In Bianchi typ
VI 0 with magnetic field there are bounces off a potentia
provided by the magnetic field in addition to the curvatur
bounces [8].

While much progress has been made in understand
the homogeneous case [9,10], the behavior of spatia
inhomogeneous solutions to Einstein’s equations ne
an initial singularity is largely unknown. In a number
of very limited classes of solutions [various classes o
spacetimes with two-torus spatial symmetry and polarize
vacuum spacetimes with U(1) symmetry] there is stron
evidence for AVTD behavior [2,11–13]. However, few
expect AVTD behavior to occur generally in cosmologi
cal spacetimes. Rather the conjecture has been t
generically there is mixmaster behavior, in which th
evolution toward the singularity at a generic spatial poin
approaches that of one of the homogeneous mixmas
spacetimes [6,14]. In a spatially inhomogeneous AVT
spacetime the evolution at different spatial points wi
approach that of different Kasner solutions. In a spatial
inhomogeneous spacetime that has mixmaster behav
the evolution at different spatial points will approach
that of different mixmaster solutions. Although thes
two possibilities are mutually exclusive, in both case
the presence of the inhomogeneity ceases to govern
dynamics asymptotically toward the singularity. This i
a drastic assumption. The space remains inhomogene
at all times, yet the effect of inhomogeneities on th
evolution becomes negligible.

Until now there has been no evidence that mixmast
behavior occurs in inhomogenous spacetimes. We ha
obtained such evidence, and discuss it in this Letter. W
have focused on a class of cosmological spacetimes tha
an inhomogeneous generalization of Bianchi type VI0 with
magnetic field. Numerical study of the evolution toward
the singularity for a representative sample of initial dat
shows that a regime consistent with mixmaster behavior
© 1998 The American Physical Society
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reached. It is impossible to follow the evolution all th
way to the singularity numerically. But analysis of th
evolution equations under the conditions that exist late
the numerical evolution show that the regime will continu

The spacetime manifold on which these solutions a
defined is S3 3 R, where S3 is a solv-twisted two-
torus bundle over the circle [15]. While this manifold
does not admit a global two-torus action, it does adm
the local group action corresponding to Bianchi VI0,
which contains a local two-torus action as a subgrou
Spacetimes in the class we studied have this local spa
two-torus symmetry and their metrics can be written in t
three-torus Gowdy [16] form with appropriate nonperiod
boundary conditions on some of the metric coefficien
In particular, we can write the metrics for this class o
spacetimes as
g ­ 2eflsu,td23tgy2 dt2 1 eflsu,td1msu,td1tgy2 du2

1 ePsu,td2tffdx 1 Qsu, td dyg2 1 e22Psu,td dy2g .
(1)

The metric functionsl andm are periodic inu. Psu 1

2p , td ­ Psu, td 1 2pa and Qsu 1 2p , td ­ Qsu,
tde22pa. Here a is a constant determined by th
manifold twist. Whenl and m are independent ofu
and Psu, td ­ Psu0, td 1 asu 2 u0d and Qsu, td ­
Qsu0, tde2asu2u0d the spacetime is locally homogeneou
Bianchi VI0. As in Bianchi VI0 with magnetic field, we
take the Maxwell tensor to beF ­ B dx ^ dy. It then
follows from the Einstein-Maxwell field equations thatB
is necessarily constant in space and time. The non
namical functionm is nonzero only if the electromagnetic
field is nonzero. The time coordinatet has been defined
(without loss of generality) so that the singularity is a
t ­ `.

The evolution equations for these solutions of th
Einstein-Maxwell field equations can be derived from th
Hamiltonian densityH ­ H1 1 H2 1 H3,

H1 ­
1

4pl

fp2
P 1 e22Pp2

Qg , (2)

H2 ­
1

4pl

fe22tP02 1 e2sP2tdQ02g , (3)

H3 ­ 4plesl1tdy2B2. (4)
In addition, the following constraint equations must b
satisfied,

pPP0 1 pQQ0 1 pll0 ­ 0, pl ­
1
2 emy4, (5)

wherepP , pQ , andpl are the momenta conjugate toP,
Q, andl.

This three Hamiltonian form is useful for the follow
ing reason. If any one of the three sub-Hamiltonians
taken by itself, and the other two ignored, the system
exactly solvable. Thus, after approximating the contin
ous system by a discrete one, Suzuki’s decomposition
exponential operators [17] can be used to decompose
evolution operator, with each piece exact. The compu
code we use for numerical evolution is based on this d
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composition. It is an adaptation of a code used for t
Gowdy spacetimes [11], and uses the fourth order deco
position and also fourth order accurate representation
the spatial derivatives.

One can understand the structure of the numerica
observed metric evolution for these spacetimes in ter
of the evolving relative dominance of the three su
Hamiltonians. Let us fix a spatial pointp ­ su0, x0, y0d.
Once the mixmaster regime is reached, then for most of
evolution towards the singularityst ! `d at that point,
we observe numerically thatH1 dominatesH2 and H3,
and the metric evolution is essentially that of some Kas
spacetime. Time intervals during which this happens
called Kasner epochs. For intermittent short periods, eit
H2 or H3 (but never both at once) also becomes significa
These are the potentials that cause the bounces. W
H1 1 H2 is dominant atp, the evolution is essentially as
if p were in one of the vacuum Bianchi II (Taub [18]
spacetimes. WhenH1 1 H3 is dominant, the evolution
is essentially as ifp were in one of the Bianchi I with
magnetic field (Rosen [19]) spacetimes. Both the Ta
and the Rosen solutions approach one Kasner solu
toward the singularity and another Kasner solution
the opposite time directionst ! 2`d. Given a Kasner
solution there is no more than one Taub or Rosen solut
that approaches it ast ! 2`. So given a particular
Kasner epoch at pointp, one knows which Taub or
Rosen solution approximates the next bounce toward
singularity. This allows one to approximate the sequen
of Kasner epochs that will occur in a given mixmast
evolution.

To understand qualitatively why the bounces occur,
us assume that the functionsP, Q, l, pP , pQ, pl, and
their derivatives develop in time in such a way that th
do not counteract any explicit exponential decay in any
the terms inH or the resulting evolution equations. W
shall call this “assumption A.” For example, if at som
spacetime point,sp, td, one has the following (which we
shall call “the Kasner conditions”),

t ¿ 0, l 1 t ø 0, P 2 t ø 0 , (6)

then assumption A implies that at that pointH1 ¿ H2

andH1 ¿ H3; and further it implies that the terms in th
evolution equations which are derived fromH1 dominate
those derived fromH2 and H3. The relative values of
H1, H2, andH3 accurately monitor the relative importanc
of the terms derived from them in the evolution towar
the singularity because the exponential factors con
the growth and decay of the terms in which they a
present. Without exception, our numerical results supp
assumption A, and we assume it throughout the followin

Let us say that the Kasner conditions are satisfied
some pointsp, td, so the evolution atsp, td is dominated
by H1. If H2 andH3 were zero, the evolution atp would be
exactly Kasner. The quantity which determines which ty
of bounce will occur next isy ­

p
H1ypl. One calculates

(using assumption A along with the Kasner conditions) th
2985
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FIG. 1. Typical evolution at one spatial point. The thic
dashed line is log10s H2

H1
d and the thick solid line is log10s H3

H1
d

(left axis scale). The thin solid line with circles isP (right axis
scale). The bounces are labeled. Note thatH2 ø H1 during the
curvature bounces andH3 ø H1 during the magnetic bounce.
H2
H1

starts to grow after the kinetic bounce.

dH1ydt ø 0 anddplydt ø 0, so during a given Kasner
epoch atp, y is essentially constant in time. We now
argue that ify , 1 there will be a magnetic bounce in finite
time, while if y . 1 there will be a curvature bounce in
finite time.

The reasony is so important during a Kasner epoc
in determining the next bounce is becauseH3yH1 is
controlled by el1t and H2yH1 is controlled byeP2t ,
and in turnl 1 t and P 2 t are controlled byy. In
particular, we find that during a Kasner epoch,dlydt ø
2y2, so thatdsl 1 tdydt ø s1 2 y2d. Thus if y , 1,
one hasel1t increasing exponentially witht and therefore
H3yH1 ! O s1d in finite time; while if y . 1, it follows
that l 1 t decreases witht and H3yH1 stays small.
The evolution forP, governed bydPydt ­ pPy2pl,
is a bit more complicated. However, one finds2y #

dPydt # 1y, so if y , 1, thendsP 2 tdydt , 0 and
H2yH1 must decrease. Hence ify , 1, a magnetic bounce
must occur. Now consider the casey . 1. If pP .

0 and thereforedPydt . 0, then the Kasner evolution
leads topPy2pl ! y, and hencedsP 2 tdydt . 0. It
follows thatH2yH1 ! O s1d in finite time and there is a
curvature bounce. IfpP , 0 and sodPydt , 0, then the
Kasner evolution forP has a single minimum after which
pP . 0 and the evolution proceeds to a curvature boun
as just noted. The evolution ofP past its minimum is
called a kinetic bounce. The kinetic bounce, caused
e22Pp

2
Qy4pl in H1, keepsH2 from dying off in these

spacetimes. (See Figs. 1–3.)
What happens after a given bounce occurs? Since,

noted above, a magnetic bounce is essentially a Ro
solution and a curvature bounce is closely approximat
by a Taub solution, one can use the known features
those solutions to determine the following [8]: (1) Afte
a magnetic bounce, induced byy , 1 at p, the metric
evolution atp returns to a Kasner epoch, this time wit
y . 1. A curvature bounce will eventually follow. (2)
After a curvature bounce induced by1 , y , 3, one
2986
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FIG. 2. Evolution at same spatial point as in Fig. 1. The soli
line is P and the dotted line ispQ (left axis scale). The dash-
single-dotted line isQ and the dash-triple-dotted line ispP
(right axis scale). Note thatP is essentially linear int except
during bounces. The other functions are essentially consta
for most of the evolution. This graph shows to which type o
bounce each function responds.

returns to a Kasner epoch withy , 1, so a magnetic
bounce will follow. (3) After a curvature bounce induced
by y . 3, a Kasner epoch occurs withy . 1, so another
curvature bounce will follow.

The preceding characterizes the behavior at one po
in space. Sincey, P, and l are functions ofu, nearby
points will in general not reach the end of a Kasner epoc
at exactly the same time. (See Fig. 4.)

There are two different kinds of exceptions to th
behavior just described. Neither violates assumption
but the argument thatH2 and H3 continue to decay and
then grow again breaks down in the following ways
First, there exist nongeneric spacetimes in the class we
considering which are not mixmaster. For instance, if w
setB ­ 0, thenH3, which causes the magnetic bounces
is missing and these spacetimes will be AVTD.

The second type of exception happens in a gene
spacetime, but only at isolated points, not on an open se
the spacetime. There are a number of field configuratio
that prevent bounces at a point. Some of these have be
seen in studies of the Gowdy spacetimes [12]:Q0 ­ 0
when a curvature bounce would normally occur preven

FIG. 3. Evolution at the same spatial point as in Figs. 1 an
2. The solid line isl (left axis scale). The dotted line ispl

(right axis scale). Note thatl is essentially linear int except
during bounces.
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FIG. 4. This showsy2 during the first curvature bounce of
Figs. 1–3 with neighboringu values included.y2 is essentially
constant in time during a Kasner epoch and changes during
curvature or a magnetic bounce.

the curvature bounce, andpQ ­ 0 when a kinetic bounce
would normally occur prevents the kinetic bounce (an
hence the next curvature bounce ify . 1). Others are
new:y ­ 1 during a Kasner epoch prevents both the cu
vature and magnetic type of bounce and the Kasner epo
persists. Ify ­ 3 during a Kasner epoch a curvature
bounce will occur, but the subsequent Kasner epoch h
y ­ 1. If pP ­ 0 during a magnetic bounce the next cur
vature bounce is prevented. While more and more of the
exceptional points occur in a given spacetime as the ev
lution continues, they will, for generic initial data, always
be at isolated values ofu [20].

Our numerical study, combined with qualitative analy
sis of the evolution equations, provides strong eviden
that, generically, spacetimes in this class exhibit mix
master behavior. While this class is spatially inhomo
geneous, it is still very restricted. We predict that th
particular topology (which determines the boundary co
ditions on functions ofu) chosen is not necessary and tha
the generic cosmological spacetime with local two-toru
symmetry and a magnetic field perpendicular to the sym
metry directions will also have mixmaster behavior. Bu
this is still a very restricted class. The question remai
whether cosmological spacetimes in general do indeed
hibit mixmaster behavior, which would be a surprisin
simplification of their evolution in the neighborhood o
the initial singularity, or whether some other possibility in
their evolution toward the initial singularity exists [5].
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