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Mixmaster Behavior in Inhomogeneous Cosmological Spacetimes
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Numerical investigation of a class of inhomogeneous cosmological spacetimes shows evidence
that at a generic point in space the evolution toward the initial singularity is asymptotically that
of a spatially homogeneous spacetime with mixmaster behavior. This supports a long-standing
conjecture due to Belinskiet al.on the nature of the generic singularity in Einstein’s equations.
[S0031-9007(98)05688-9]

PACS numbers: 98.80.Hw, 04.20.Dw

If one assumes that our expanding universe can be dsingularity is approximated by an infinite sequence of
scribed by a spatially homogeneous and isotropic soluKasner spacetimes with a deterministically chaotic tran-
tion to Einstein’s equations, one can “run the expansiorsition from one Kasner to the next [5]. In Bianchi type 1X
backward” to a hotter, denser universe in the past. Sucthe transitions are caused by “bounces” off a potential pro-
an analysis leads to an understanding of the cosmic misided by the spatial scalar curvature [6,7]. In Bianchi type
crowave background and primordial light element abunVI, with magnetic field there are bounces off a potential
dances. Running a further finite time into the past yieldgprovided by the magnetic field in addition to the curvature
the big bang—a singularity characterized by infinite den-bounces [8].
sity, temperature, and gravitational tidal force. While this While much progress has been made in understanding
standard cosmological model accounts for observed fedhe homogeneous case [9,10], the behavior of spatially
tures of the universe, the reliability of its predictions aboutinhomogeneous solutions to Einstein’s equations near
features that have not been observed depends on the st initial singularity is largely unknown. In a number
bility of those predictions when the conditions of homo- of very limited classes of solutions [various classes of
geneity and isotropy are relaxed. spacetimes with two-torus spatial symmetry and polarized

Einstein’s equations allow for a rich variety of cos- vacuum spacetimes with U(1) symmetry] there is strong
mological spacetimes, by which we mean solutions thaévidence for AVTD behavior [2,11-13]. However, few
are deterministic (contain a compact Cauchy surface) aneixpect AVTD behavior to occur generally in cosmologi-
have a physically reasonable stress energy tensor (omal spacetimes. Rather the conjecture has been that
that satisfies the strong energy condition). Powerful thegenerically there is mixmaster behavior, in which the
orems state that, generically, such spacetimes have an irgvolution toward the singularity at a generic spatial point
tial singularity. But the theorems do not describe theapproaches that of one of the homogeneous mixmaster
nature of the singularity. In the approach to the initialspacetimes [6,14]. In a spatially inhomogeneous AVTD
singularity in the standard cosmological model, the ki-spacetime the evolution at different spatial points will
netic energy of the isotropic collapse (proportional to theapproach that of different Kasner solutions. In a spatially
square of the Hubble parameter) dominates the spati@dhomogeneous spacetime that has mixmaster behavior
curvature. A similar type of approach to the singular-the evolution at different spatial points will approach
ity is found in the Kasner spacetimes [1]. These vacuunthat of different mixmaster solutions. Although these
solutions are anisotropic, spatially homogeneous, and spawo possibilities are mutually exclusive, in both cases
tially flat (type | in the Bianchi classification of homoge- the presence of the inhomogeneity ceases to govern the
neous spaces). Since they are spatially flat, the spatidlynamics asymptotically toward the singularity. This is
curvature terms are absent from the evolution equationa drastic assumption. The space remains inhomogeneous
for these models, and the kinetic energy of the anisotropiat all times, yet the effect of inhomogeneities on the
collapse drives the approach to the singularity. A cosevolution becomes negligible.
mological spacetime is said to have an asymptotically Until now there has been no evidence that mixmaster
velocity term dominated (AVTD) singularity if the evolu- behavior occurs in inhomogenous spacetimes. We have
tion toward the singularity at each spatial point approachesbtained such evidence, and discuss it in this Letter. We
that of one of the Kasner spacetimes or that of a nonvahave focused on a class of cosmological spacetimes that is
cuum Bianchi | spacetime with fixed Kasner exponentsan inhomogeneous generalization of Bianchi typgwith
[2—4]. Another possible behavior near the singularitymagnetic field. Numerical study of the evolution toward
is exemplified by the spatially homogeneous mixmastethe singularity for a representative sample of initial data
spacetimes, in which the dynamics of the collapse to thehows that a regime consistent with mixmaster behavior is
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reached. It is impossible to follow the evolution all the composition. It is an adaptation of a code used for the
way to the singularity numerically. But analysis of the Gowdy spacetimes [11], and uses the fourth order decom-
evolution equations under the conditions that exist late irposition and also fourth order accurate representation of
the numerical evolution show that the regime will continue.the spatial derivatives.

The spacetime manifold on which these solutions are One can understand the structure of the numerically
defined is¥* X R, where 3° is a solv-twisted two- observed metric evolution for these spacetimes in terms
torus bundle over the circle [15]. While this manifold of the evolving relative dominance of the three sub-
does not admit a global two-torus action, it does admitHamiltonians. Let us fix a spatial poipt = (6o, xo, yo)-
the local group action corresponding to BianchipVl Once the mixmaster regime is reached, then for most of the
which contains a local two-torus action as a subgroupevolution towards the singularityr — o) at that point,
Spacetimes in the class we studied have this local spatiale observe numerically tha; dominatesH, and Hj;,
two-torus symmetry and their metrics can be written in theand the metric evolution is essentially that of some Kasner
three-torus Gowdy [16] form with appropriate nonperiodicspacetime. Time intervals during which this happens are
boundary conditions on some of the metric coefficientscalled Kasner epochs. Forintermittent short periods, either
In particular, we can write the metrics for this class of H, or H3 (but never both at once) also becomes significant.
spacetimes as These are the potentials that cause the bounces. When

g = —eMON3T2 472 o JMODFubO.DF7)/2 g2 []:11 + H, ig domina?t ﬁya, the evolgj[ion L; ﬁS?'l?ntisnfllg]S;
PO.7)—7 ’ 2P 4.2 if p were in one of the vacuum Bianchi au
+ "0 dx + (0, ) dyF + e 20T ay?]. spacetimes. Whe#/; + H; is dominant, the evolution
D s essentially as ifp were in one of the Bianchi | with

The metric functions\ and u are periodic ind. P( +  magnetic field (Rosen [19]) spacetimes. Both the Taub
2m,7) = P(0,7) + 2ma and Q(9 + 2m,7) = Q(A, and the Rosen solutions approach one Kasner solution
T)e 279, Here a is a constant determined by the toward the singularity and another Kasner solution in
manifold twist. WhenA and w are independent o  the opposite time directiofr — —«). Given a Kasner
and P(0,7) = P(6o,7) + a0 — 6p) and Q(6,7) =  solution there is no more than one Taub or Rosen solution
0(6o, )e =% the spacetime is locally homogeneousthat approaches it as — —. So given a particular
Bianchi Vly. As in Bianchi Vi, with magnetic field, we Kasner epoch at poinp, one knows which Taub or
take the Maxwell tensor to b& = Bdx A dy. It then  Rosen solution approximates the next bounce toward the
follows from the Einstein-Maxwell field equations th&t  singularity. This allows one to approximate the sequence
is necessarily constant in space and time. The nondyf Kasner epochs that will occur in a given mixmaster
namical functionu is nonzero only if the electromagnetic evolution.
field is nonzero. The time coordinatehas been defined  To understand qualitatively why the bounces occur, let
(without loss of generality) so that the singularity is atus assume that the functio®s Q, A, mp, 7g, ), and
T = %, their derivatives develop in time in such a way that they

The evolution equations for these solutions of thedo not counteract any explicit exponential decay in any of
Einstein-Maxwell field equations can be derived from thethe terms inH or the resulting evolution equations. We
Hamiltonian density? = H, + H, + Hjs, shall call this “assumption A.” For example, if at some

1 _ spacetime point(p, 7), one has the following (which we
Hy = 47, [7p + e 2P7T<22]’ (2)  shall call “the Kasner conditions”),
1 7> 0, A+ 70, P-171<x0, (6
Hy = — [67271)/2 + eZ(P*T)Q/Z]’ (3) . . . '
47) then assumption A implies that at that poiH > H,
H; = 4meu+r>/szl ) andHl_ > Hj; qnd furth.er it implies that the terms_ in the
. ) ) , evolution equations which are derived fraifj dominate
In gd_dltlon, the following constraint equations must bethose derived fromi, and Hy. The relative values of
satisfied, | H,, H,, andH3 accurately monitor the relative importance
mpP' + Q' + mA' =0, mi=7e"* (5)  of the terms derived from them in the evolution towards
wherep, mp, andm, are the momenta conjugate By  the singularity because the exponential factors control
0, andA. the growth and decay of the terms in which they are

This three Hamiltonian form is useful for the follow- present. Without exception, our numerical results support
ing reason. If any one of the three sub-Hamiltonians isassumption A, and we assume it throughout the following.
taken by itself, and the other two ignored, the system is Let us say that the Kasner conditions are satisfied at
exactly solvable. Thus, after approximating the continu-some point(p, 7), so the evolution afp, 7) is dominated
ous system by a discrete one, Suzuki's decomposition diy H;. If H, andH; were zero, the evolution atwould be
exponential operators [17] can be used to decompose trexactly Kasner. The quantity which determines which type
evolution operator, with each piece exact. The computeof bounce will occur nextis = \/H,/7,. One calculates
code we use for numerical evolution is based on this defusing assumption A along with the Kasner conditions) that
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FIG. 1. Typical evolution at one spatial point. The thick FIG. 2. Evolution at same spatial point as in Fig. 1. The solid
dashed line is I%(%) and the thick solid line is Iolg(Z—f) line is P and the dotted line isry (left axis scale). The dash-

(left axis scale). The thin solid line with circles B (right axis 5 9ie-dotted line isQ and the dash-triple-dotted line is»

. (right axis scale). Note thak is essentially linear i except
scale). The bounces are labeled. Note fitat~ H, during the iy hounces. The other functions are essentially constant
curvature bounces anfl; = H; during the magnetic bounce.

Hy I for most of the evolution. This graph shows to which type of
7, Starts to grow after the kinetic bounce. bounce each function responds.

returns to a Kasner epoch with < 1, so a magnetic
bounce will follow. (3) After a curvature bounce induced
by v > 3, a Kasner epoch occurs with > 1, so another
curvature bounce will follow.

The preceding characterizes the behavior at one point
in space. Sincev, P, and A are functions off, nearby
points will in general not reach the end of a Kasner epoch
at exactly the same time. (See Fig. 4.)

There are two different kinds of exceptions to the
behavior just described. Neither violates assumption A,
but the argument that/, and H; continue to decay and
then grow again breaks down in the following ways.
First, there exist nongeneric spacetimes in the class we are
considering which are not mixmaster. For instance, if we
setB = 0, thenH3, which causes the magnetic bounces,
is missing and these spacetimes will be AVTD.

The second type of exception happens in a generic
spacetime, but only at isolated points, not on an open set in
the spacetime. There are a number of field configurations
that prevent bounces at a point. Some of these have been
seen in studies of the Gowdy spacetimes [1Q2]:= 0
when a curvature bounce would normally occur prevents

dH,/dT = 0 anddm,/d7r = 0, so during a given Kasner
epoch atp, v is essentially constant in time. We now
argue thatifv < 1 there will be a magnetic bounce in finite
time, while if v > 1 there will be a curvature bounce in
finite time.

The reasorw is so important during a Kasner epoch
in determining the next bounce is becaule/H, is
controlled bye**” and H,/H, is controlled bye”"7,
and in turnA + 7 and P — 7 are controlled byv. In
particular, we find that during a Kasner epodh\,/dr =
—v?, so thatd(A + 7)/dT = (1 — v?). Thusifv <1,
one hag**” increasing exponentially with and therefore
H3/H; — O(1) in finite time; while if v > 1, it follows
that A + 7 decreases withr and H;/H; stays small.
The evolution forP, governed bydP/dr = mp /2y,
is a bit more complicated. However, one findy =
dP/dt = +v,soifv <1, thend(P — 7)/dt < 0 and
H,/H; mustdecrease. Henceaif< 1, a magnetic bounce
must occur. Now consider the case> 1. If 7p >
0 and thereforedP/d7 > 0, then the Kasner evolution
leads tomrp /27, — v, and hencel/(P — 7)/dt > 0. It
follows thatH,/H; — O (1) in finite time and there is a
curvature bounce. Hp < 0and sadP/dr < 0, then the
Kasner evolution folP has a single minimum after which 20 g 016
arp > 0 and the evolution proceeds to a curvature bounce s R
as just noted. The evolution df past its minimum is 60 -
called a kinetic bounce. The kinetic bounce, caused by
e*Z”ﬂ-é/4m in H;, keepsH, from dying off in these
spacetimes. (See Figs. 1-3.)

What happens after a given bounce occurs? Since, as a
noted above, a magnetic bounce is essentially a Rosen -140 |
solution and a curvature bounce is closely approximated d
by a Taub solution, one can use the known features of [ ‘ ,
those solutions to determine the following [8]: (1) After 10 20 30 T 40 50 60

a magnetlc bounce, induced by <1 at p, the _metrlc_ FIG. 3. Evolution at the same spatial point as in Figs. 1 and
evolution atp returns to a Kasner epoch, this time with 5 "6 5qjid line isA (left axis scale). The dotted line is,

v > 1. A curvature bouncg will eventually follow. (2) (right axis scale). Note that is essentially linear in except
After a curvature bounce induced bly<< v < 3, one during bounces.
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[4] The Kasner exponents are the eigenvalues of the extrinsic
curvature, divided by the mean curvature. In a Kasner
spacetime, the sum of the squares of the Kasner exponents
equals one. In a nonvacuum Bianchi | spacetime the
sum of the squares of the Kasner exponents is less than
one. For examples of cosmological spacetimes which are
AVTD but whose evolution toward the singularity does
not approach that of a Kasner spacetime, see Ref. [9] and
A.D. Rendall, J. Math. Phys37, 438 (1996).

[5] There may be other possiblilities. See P. Breitenlohner,
G. Lavrelashvili, and D. Maison, Report No. gr-qc/

FIG. 4. This showsv? during the first curvature bounce of 9711024; E.E. Donets, D.V. Gal'tsov, and M. Yu. Zotov,
Figs. 1-3 with neighboring values included.v? is essentially Phys. Rev. D66, 3459 (1997).
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the curvature bounce, anty = 0 when a kinetic bounce [8] V.G. LeBlanc, D. Kerr, and J. Wainwright, Classical

would normally occur prevents theT kinetic bounce (and Quantum Gravityl2, 513 (1995).

hence the next curvature bounceuif> 1). Others are 9] J. wainwright and L. Hsu, Classical Quantum Gravily
new:v = 1 during a Kasner epoch prevents both the cur- 1409 (1989).

vature and magnetic type of bounce and the Kasner epogho] A.D. Rendall, Classical Quantum Gravitg4, 2341
persists. Ifv = 3 during a Kasner epoch a curvature (1997); C.G. Hewitt and J. Wainwright, Classical Quan-
bounce will occur, but the subsequent Kasner epoch has tum Gravity10, 99 (1993).

v = 1. If wp = 0during a magnetic bounce the next cur-[11] B.K. Berger and V. Moncrief, Phys. Rev. B8, 4676
vature bounce is prevented. While more and more of these _ (1993). _

exceptional points occur in a given spacetime as the evdd?l B-K. Berger and D. Garfinkle, [Phys. Rev. D (to be

. . X SR published)] Report No. gr-qc/9710102.
It:g-l(;? igg?;lzge\/sélfjheesy(;‘w[”é()f]or generic initial data, always [13] B.K. Berger and V. Moncrief, Report No. gr-qc/9801078;

. . . o S. Kichenassamy and A.D. Rendall, Classical Quantum
Our numerical study, combined with qualitative analy- Gravity (to be published); A.D. Rendall, Gen. Relativ.

sis of the evolution equations, provides strong evidence  Gravit. 27, 213 (1995): Classical Quantum Gravify,

that, generically, spacetimes in this class exhibit mix- 1517 (1995); J. Isenberg and S. Kichenassamy (unpub-
master behavior. While this class is spatially inhomo- lished); P.T. Chrisiel, On Uniqueness in the Large of

geneous, it is still very restricted. We predict that the Solutions of Einstein’s Equations (“Strong Cosmic Cen-
particular topology (which determines the boundary con-  sorship”) (Centre for Mathematics and its Applications,

ditions on functions of) chosen is not necessary and that ~ Australian National University, Canberra, 1991).

the generic cosmological spacetime with local two-torud14] Relating the ratio between the Hubble time and the
symmetry and a magnetic field perpendicular to the sym-  Planck time to the logarithm of the spatial volume in a
metry directions will also have mixmaster behavior. But ~ YPical mixmaster evolution shows that, independent of
this is still a very restricted class. The question remains the definition of time, most mixmaster oscillations occur

. . . . before the Planck time. However, the spirit of this field
whether cosmological spacetimes in general do indeed ex- inquiry is to determine the nature of the singularity in

hibit mixmaster behavior, which would be a surprising classical general relativity. One would expect that, just as

simplification of their evolution in the neighborhood of in electromagnetism, it will be important to understand the
the initial singularity, or whether some other possibility in behavior of classical solutions even if a quantum theory of
their evolution toward the initial singularity exists [5]. gravity is found.
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