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Quantum scattering systems described by Hamiltonians which are constructed from the Casim
operators of certain noncompact groupsG are considered. We obtain the following result: IfUx and
Ux̃ are the Weyl-equivalent representations of the symmetry groupG of the dynamical system, the
correspondingS matrices are constrained to satisfy SUx sgd  Ux̃ sgdS, for all g [ G. This relation
enables one to deriveS. As applications, theS matrices corresponding to the dynamical groups
SO0sp, qd are derived. [S0031-9007(98)05542-2]
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In recent years, dynamical group theories have attract
much attention, for it has been discovered that som
quantum scattering systems can be described by th
theories. An important development which inspired muc
of the current work in this direction was presented i
Refs. [1,2]. One can algebraically determine theS matrix
of a scattering system whose Hamiltonian is construct
from the Casimir operator of a noncompact groupG.
This technique, which is called Euclidean connection
essentially uses [3] the theory of group expansions
deformations. The explicit calculation of theS matrix
is achieved by writing the infinitesimal operators o
representations of the dynamical groupG in terms of
those of the asymptotic groupG0 which describes the
problem in the absence of interactions. However, due
the absence of a general procedure for the descriptions
such connection formulas [4], it is rather difficult to derive
theS matrix using the above mentioned method.

In this Letter, we give a new algebraic description o
the S matrix for such scattering systems. We show tha
the S matrix for systems under consideration can be d
termined from dynamical symmetry principles without th
knowledge of the relation between infinitesimal operato
of G and those ofG0.

Suppose a HamiltonianH of quantum scattering system
is constructed from Casimir operatorC of some noncom-
pact groupG

H  fsCd . (1)

For example, the Hamiltonian of the two-dimensiona
Coulomb problemH  p2y2 1 byr is related to the
Casimir invariantC  E2

0 1 sE1E2 1 E2E1dy2 of the
noncompact group SO(2, 1) is [2]

H  2
b2

2sC 1
1
4 d

. (2)

Recall the generatorsE0, E6 satisfy the commutation re-
lations fE0, E6g  6E6, fE1, E2g  2E0, and they are
expressed in terms of the angular momentumM and
the Runge-Lentz vectorAi, i  1, 2 as E0  M, E6 
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s2Hd21y2siA1 6 A2d. The scattering eigenstates form a
basis for the principal series of the unitary irreducible rep
resentations (UIR’s) of SO(2, 1) (for details, see Ref. [2
and references therein).

Our aim is to determine theS matrix which connects
any arbitrary incomingCin to an outgoingCout state

Cout  SCin. (3)

The state vectorsCin andCout are assumed to satisfy
the free Schrödinger equation (corresponding to the sa
value E of the energy)H0Fa  EFa , with a being a
complete set of variables that commute withH0.

However, we find it expedient to use a definition of th
S matrix in terms of exact states rather than free ones:

C2  SC1, (4)

whereC6 are the eigenstates of the full HamiltonianH
which are labeled by the same quantum numbers asF,

HC6
a  EC6

a . (5)

The relation of the statesC1 and C2 to Cin and Cout

are as follows: IfC1std andC2std are the wave packets
which are centered about the stationary statesC1 and
C2, respectively, we have

lim
t!2`

C6std  Cinstd, lim
t!1`

C2std  Coutstd .

Here, Cinstd and Coutstd are wave packets constructed
from the free states. In other words, the statesC1

and C2 are the solutions of the Lippman-Schwinge
equations.

On the other hand, by the assumption [see Eq. (1
the state vectorsC1 and C2 are the eigenstates of the
Casimir operatorC of the symmetry groupG:

CC6  qC6, (6)

where q  f21sEd. Thus, the scattering eigenstate
hC1

a j and hC2
a j form the bases for the Weyl-equivalen

representation of the algebrag of the symmetry group
G, which we denote byUx and U x̃ , respectively. (The
representationsUx and Ux̃ have the same Casimir
© 1998 The American Physical Society
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eigenvalues. Such representations are called W
equivalent.) Moreover, it follows from Eq. (4) that the
representationsUx and Ux̃ are related by a similarity
transformationUx̃  SUxS21. TheS matrix for the sys-
tem under consideration is then subject to the constra
equation

SUx sbd  Ux̃sbdS, for all b [ g , (7)

or

SUx sgd  Ux̃ sgdS, for all g [ G , (8)

Here,Uxsgd andUx̃sgd are the corresponding representa
tions of the groupG. Equation (7) [or Eq. (8)] actually is
used in deriving theS matrix.

Now we are in a position to outline our general metho
for obtaining theS matrix for scattering problems under
consideration. In order to determine theS matrix, we
can proceed in two ways. If the principal series of th
algebrag in the scattering basis is known, we can ge
the recurrence relations for theS matrix by applying
both sides of Eq. (7) to the basis vectors. By solvin
the recurrence relations, one can find the explicit form
theS matrix as a function of the parameters specifying th
representation ofg. An alternative way employs Eq. (8).
By using the “mathematical” realization of a principa
series ofG on a Hilbert space of some functions, it is
possible to derive, from Eq. (8), the functional relation
for the kernel of operatorS which allow one to determine
it. This global approach, which is complimentary to th
infinitesimal treatment, allows one to obtain the integr
expression for theS matrix.

To gain a better understanding of our approach, w
first illustrate it for scattering models with the SO0s2, 1d
symmetry group. To be able to use Eq. (7) in th
computation of theS matrix, we have to know an abstrac
realization of the principal series of sus1, 1d > sos2, 1d
algebra.

We recall that the principal series of sus1, 1d are
characterized by the pairx  sr, ed, wheree is equal to
0 or 1

2 , while 0 # r , `. The representations specified
by the labelsx  sr, ed and x̃  s2r, ed are Weyl
equivalent. We can take the eigenvectorjx; ml of E0,
with m  n 1 e, n  0, 61, 62, . . . as the scattering
basis of the carrier space of the representation. T
principal series of sus1, 1d is given by [5]

E
x
0 jx; ml  mjx ; ml , (9)

E
x
6jx ; ml  s 1

2 2 ir 6 md jx; m 6 1l , (10)

with the Casimir invariantC  2
1
4 2 r2.

We are now ready to define theS matrix. Using
the relations SE

x
0  SE

x̃
0 [see Eq. (7)] and (9), one

has E
x̃
0 Sjx ; ml  mSjx; ml, and we can conclude that

Sjx; ml  Smjx̃; ml. Let us find the numbersSm. To
this end, we apply both sides of equalitySE

x
1  E

x̃
1S to
eyl
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the basisjx; ml. We then obtain the recurrence relation

s 1
2 2 ir 1 mdSm11  s 1

2 1 ir 1 mdSm , (11)

which implies

Sm  csrd
Gs 1

2 1 ir 1 md
Gs 1

2 2 ir 1 md
, (12)

wherecsrd is a constant of modulus 1. The energy-
dependent parameterr is determined by the relation
between the HamiltonianH and the Casimir invariantC.
For example, for the Hamiltonian of Eq. (2),r  byk.

Note that the operatorS does not mix states belonging
to different one-dimensional subspacesHm which are
spanned byjx; ml. This observation suggests that ther
might exist a class of one-dimensional potentials relate
to SOs2, 1d for which theS matrix is given by the number
Sm. This, in fact, is exactly what happens in the “potentia
group” approach to the scattering problems in whic
the representations of groupG describe scattering states
with the same energy but different potential strength
For example, the group SOs2, 1d appears as the potential
group for the Pöschl-Teller potential, whereH  2sC 1
1
4 d and the eigenvaluem of E0 is associated with the
potential strength. The correspondingS matrix is a2 3 2
diagonal matrix with elements equal toSm (for details, see
Ref. [1,2,6]).

We now wish to show briefly how our general method
when applied to the particularly simple case of scatte
ing problems with SO0sp, qd dynamical symmetry, re-
produces all of the familiar formulas of Refs. [1–3,6,7]
For this purpose, we restrict ourselves to the maximal
degenerate principal series [8,9] of SO0sp, qd. We can,
without loss of generality, assumep $ q. Moreover, we
examine the general caseq . 1 and, in conclusion, in-
dicate briefly the difference from the general case whe
q  1.

The maximally degenerate principal series o
SO0sp, qd, whose second-order Casimir operatorC
is identically a multiple of the unit, while all higher-
order Casimir operators are zero, is labeled by the pa
sr, ed and C  2sp 2 qd2y2 2 r2, where0 # r , `

and e takes the value 0 or 1. The representation
specified by labelsx  sr, ed and x̃  s2r, ed are
equivalent. The relevant basis on the carrier spa
of the representation is given by the decompos
tion with respect to the maximal compact subgroup
SO0sp, qd . SOspd 3 SOsqd . · · · . SOs2d, where
each irreducible representation of a subgroup occurs,
most, once in the reduction. The scattering basis sta
are denoted byjx ; lmMl, l 1 m  esmod 2d, where the
labels l and m specify the symmetric tensor representa
tions of SOspd and SOsqd, respectively, andM denotes
the remaining labels specifying the representations
SOsp 2 1d 3 SOsq 2 1d, and so on down the chain.

Since the matrix of representation for the maximal com
pact subgroup SOspd 3 SOsqd in this basis is diagonal, it
2977
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follows from (7) thatSjx; lmMl  Slmjx̃; lmMl. Thus,
theS matrix is determined by the numbersSlm.

Let us define the numbersSlm. For this purpose, it
is sufficient to consider the fulfillment of condition (7)
for infinitesimal operatorI

x
1,n corresponding to a one-

parameter subgroup consisting of hyperbolic rotations
2978
in

the planes1, nd with n  p 1 q, namely,

SI
x
1,n  I

x̃
1,nS . (13)

The operatorI
x
1,n acts on the canonical basis according

to the formula [8,9]
)

I
x
1,njx; lmMl 

µ
2

p 1 q
2

1 1 1 ir 2 l 2 m

∂
c1jx; l 1 1, m 1 1, Ml 1

µ
2

p 2 q
2

2 1 1 ir 2 l 1 m

∂
3 c2jx ; l 1 1, m 2 1, Ml 1

µ
p 2 q

2
1 1 1 ir 1 l 2 m

∂
c3jx; l 2 1, m 1 1, Ml

1

µ
p 1 q

2
2 3 1 ir 1 l 1 m

∂
c4jx; l 2 1, m 2 1, Ml ,

whereci , i  1, . . . , 4 , are positive numbers which depend onl andm. We then apply both sides of the equality (13
to the basis vectorjx; lmMl. As a result, we obtain a system of equations:µ

2
p 1 q

2
1 1 1 ir 2 l 2 m

∂
Sl11,m11 

µ
2

p 1 q
2

1 1 2 ir 2 l 2 m

∂
Sl,m ,µ

2
p 2 q

2
2 1 1 ir 2 l 1 m

∂
Sl11,m21 

µ
2

p 2 q
2

2 1 2 ir 2 l 1 m

∂
Sl,m ,µ

p 2 q
2

2 1 1 ir 1 l 2 m

∂
Sl21,m11 

µ
p 2 q

2
2 1 2 ir 1 l 2 m

∂
Sl,m ,µ

p 1 q
2

2 3 1 ir 1 l 1 m

∂
Sl21,m21 

µ
p 1 q

2
2 3 2 ir 1 l 1 m

∂
Sl,m ,

with l 1 m  esmod 2d. It follows then,

Slm  gsrd
Gssss p1q22

2 1 ir 1 l 1 mdy2dddGssss p2q12
2 1 ir 1 l 2 mdy2ddd

Gssss p1q22
2 2 ir 1 l 1 mdy2dddGssss p2q12

2 2 ir 1 l 2 mdy2ddd
, (14)
-
s-

of

r-
by
5]
ee
d

to
where gsrd is a constant of modulus 1. The S
matrices for SO0sp, 1d groups can be obtained from (14)
by substitutingq  1 andm  0.

These results can be used in either direction. If th
symmetry properties of the dynamical systems are co
sidered as the fundamental assumptions of the quant
theory, then the results actually provide the analytic stru
ture of theS matrix from symmetry principles which do
not explicitly contain the notion of space or time. Ther
exist a number of interesting results in this way whic
were used to analyze collisions between heavy ions [1
and nuclear reactions [11]. In another direction, if one a
sociates an integrable model with Lie algebra through th
HamiltonianH, then one can establish the correspondin
S matrix. Such realizations were applied to a family o
solvable potentials [1,2,6,12].

We end this Letter with an illustration of our second
procedure. Our task is greatly simplified by the fact tha
the S matrices for scattering systems under considerati
are related to intertwining operators. We mention that th
operatorS satisfying the Eqs. (7) or (8) is called the in-
tertwining operator between representations Ux and Ux̃ .
The explicit expressions of the intertwining operators fo
semisimple Lie groups in terms of kernels are introduce
in Ref. [13] (see also Refs. [8,9,14]) and have been e
tensively studied in Refs. [15,16] in a different context
e
n-
um
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e
h
0]
s-
e
g
f

t
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r
d
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These may be useful in the derivation of integral formu
las for S matrices of other classes of finite scattering sy
tems. As an example, let us compute theS matrices for
the problems related to principal series representations
SO0s3, 1d ø SLs2, Cd. The UIR of SLs2, Cd, in which we
are interested, are labeled by the pairx  sr, ld, wherel

is an integer or half integer andr is real. (Note that both
of the Casimir invariantsC  J2 2 M2 andC0  JM are
nonzero;C  l2 2 r2 2 1, andC0  lr.) The repre-
sentationsx  sr, ld andx̃  s2r, 2ld are equivalent.
The corresponding intertwining operators in terms of ke
nels can be extracted from the general formula given
Kunz and Stein [13]. Since this was already done in [1
(see section 16), we only state the result [for details, s
also Chap. III of [14], where this operator is determine
directly from the intertwining relation (8)].

Let the principal series of SLs2, Cd be realized on
the Hilbert space of square integrable functionswszd of
complex variablesz. Then, in this realization, the unitary
operatorS has the formSwszd 

R
Ksz, z0dwsz0d dz0 with

the kernel given by

Ksz, z0d  s2pd21i2lsir 1 jljd jz0 2 zj2l2222ir

3 sz0 2 zd22l.

For our purpose, however, it is more convenient
realize the principal series of SLs2, Cd on the Hilbert
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spaceL2
lsssSUs2dddd of square integrable functionsfsud on

the group SUs2d which obeys the conditionfsvud 
expsilby2dfsud, where v is a 2 3 2 diagonal matrix
with elements exps2iby2d and expsiby2d [17]. The
connection between these two realization arewszd 
ju22j

2l2222irsu22d2lfsud, where uik are the matrix ele-
ments of the matrixu [ SUs2d. Therefore, when the car-
rier space of the representation isL2

lsssSUs2dddd, the operator
S has the formSfsud 

R
Ksu, u0dfsu0d du0 with the ker-

nel given by

Ksu, u0d  i2lsir 1 jljd jsu0u21d21j
2l2222ir

3 fsu0u21d21g22l.

Taking into account the fact that the basis state
jx ; jml in L2

lsssSUs2dddd differ from the matrix elements
D

j
lm of the UIR of SU(2) only by the factorjx; jml 

p
2j 1 1 D

j
lmsud, 2j # m # j, j  jlj, jlj 1 1, . . . ,

we arrive at the integral formula for theS matrix:

kj0m0jSjjml 
p

s2j 1 1d s2j0 1 1d

3
Z

Ksu, u0dDj
lmsu0dDj 0

2lmsud du du0 ,

wheredu is the normalized invariant measure on SU(2
Consequently, we obtaink j0m0jSjjml  dmm0djj0Sj,
where

Sj  i2jlj Gs1 1 ir 1 jdGs2ir 1 jljd
Gs1 2 ir 1 jdGsir 1 jljd

.

[For calculation of the integral see Ref. [18] ].
These results may have applications in a numb

of scattering problems with SOs3, 1d symmetry. One
application is in the study of the scattering process
with spin degrees of freedom. Such a spin-depende
scattering problem was discussed in Ref. [19], where t
S matrix for the simplest choice (i.e., for the spin- 1

2
case) has been evaluated by obtaining the explicit wa
functions and by studying their asymptotic behavior. It
not difficult to see that, forl  1

2 , the result in Ref. [19]
can be reproduced. The results can also be used
investigate the scattering processes in the Kaluza-Kle
monopole field (see Ref. [20], and references therein).
this case, the quantityl defines electric charge. Thus, it
has become clear that, besides its mathematical bea
the theory of the intertwining operators may provide
method to constructS matrices for models associated with
Lie groups [21].

Finally, the method developed here can also be us
to analyze the scattering problems of infinitely extende
systems (or systems with an infinite number of degre
of freedom) related to the infinite dimensional algebra
especially for the conformal invariant field theories in tw
dimensions (or the string models), where the Viraso
algebra plays the role of the symmetry group of th
theory. Work in this direction is in progress, and w
hope to report on it soon. The important fact is tha
s

).

er

es
nt

he

ve
is

to
in
In

uty,
a

ed
d

es
s

o
ro
e
e
t

the intertwining operator for Virasoro algebra in terms o
vertex operators is explicitly given by [22].
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