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Quantum scattering systems described by Hamiltonians which are constructed from the Casimir
operators of certain noncompact grou@sare considered. We obtain the following result: U and
UX are the Weyl-equivalent representations of the symmetry g@ugf the dynamical system, the
correspondingS matrices are constrained to satisfy 'Slg) = U¥(g)S, for all g € G. This relation
enables one to derivé. As applications, theS matrices corresponding to the dynamical groups
SQy(p, g) are derived. [S0031-9007(98)05542-2]

PACS numbers: 03.80.+r, 03.65.Fd, 03.65.Nk, 11.30.Na

In recent years, dynamical group theories have attracte@H)~'/2(iA; + A,). The scattering eigenstates form a
much attention, for it has been discovered that soméasis for the principal series of the unitary irreducible rep-
quantum scattering systems can be described by thesesentations (UIR’s) of SO(2, 1) (for details, see Ref. [2]
theories. An important development which inspired muchand references therein).
of the current work in this direction was presented in Our aim is to determine th§ matrix which connects
Refs. [1,2]. One can algebraically determine shanatrix ~ any arbitrary incoming?™™ to an outgoing¥°'t state
of a scattering system whose Hamiltonian is constructed out -
from the Casimir operator of a noncompact groGp W = SWH. (3)
This technique, which is called Euclidean connection, The state vector®™ and ¥°" are assumed to satisfy
essentially uses [3] the theory of group expansions othe free Schrédinger equation (corresponding to the same
deformations. The explicit calculation of the matrix  value E of the energy)H,®, = E®,, with « being a
is achieved by writing the infinitesimal operators of complete set of variables that commute wifh.
representations of the dynamical grogp in terms of However, we find it expedient to use a definition of the
those of the asymptotic groug® which describes the § matrix in terms of exact states rather than free ones:
problem in the absence of interactions. However, due to
the absence of a general procedure for the descriptions of Vo= Ssv, 4)
such connection formulas [4], it is rather difficult to derive where W= are the eigenstates of the full Hamiltoniah
the S matrix USing the above mentioned method. which are labeled by the same quantum number® as

In this Letter, we give a new algebraic description of
the S matrix for such scattering systems. We show that H‘I’;f = E‘I’§ . (5)
the S matrix for systems under consideration can be dethe relation of the state®+ and ¥~ to Wi and wout
termined from dynamical symmetry principles without the 5,6 55 follows: I\ (r) and W~ (¢) are the wave packets
knowledge of the relation between infinitesimal operators,hich are centered about the stationary states and

0 .
of G and those of;". , ¥, respectively, we have
Suppose a HamiltoniaH of quantum scattering system

is constructed from Casimir operatérof some noncom- lim T*() = (), lim ¥~ () = PU(1).
{——0 t—+®
pact groupG .
Here, ¥'"(r) and ¥°"(r) are wave packets constructed
H = f(C). (1) from the free states. In other words, the states
and ¥~ are the solutions of the Lippman-Schwinger

For example, the Hamiltonian of the two-dimensional
Coulomb problemH = p?/2 + B/r is related to the
Casimir invariantC = E; + (ELE_ + E_E.)/2 of the
noncompact group SO(2,1) is [2]
B? . .
H=—-——""—-. 2 CV= =qgV¥-~, (6)
2(C + 3)

equations.

On the other hand, by the assumption [see Eq. (1)],
the state vectord’* and ¥~ are the eigenstates of the
Casimir operatoC of the symmetry groujis:

where ¢ = f~'(E). Thus, the scattering eigenstates
Recall the generatorg, E+ satisfy the commutation re- {¥/} and{¥_} form the bases for the Weyl-equivalent
lations[Ey, E~] = *E+, [E+,E_] = 2E,, and they are representation of the algebg of the symmetry group
expressed in terms of the angular momentdmand G, which we denote by/X and UX, respectively. (The
the Runge-Lentz vectad;, i = 1,2 asEy = M, E+ = representationsUX and UX have the same Casimir
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eigenvalues. Such representations are called Weyhe basiqy;m). We then obtain the recurrence relation
equivalent.) Moreover, it follows from Eg. (4) that the
representationd/X and UX are related by a similarity % —ip + m)Sy+1 = (% +ip + m)S,, (11)
transformationV¥ = SUYS~!. TheS matrix for the sys-
tem under consideration is then subject to the constrai
equation Loy
a S = c(py LG T ip )
SU(b) = UX(b)S, forallb € g, 7) LGz —ip +m)
wherec(p) is a constant of modulus- 1. The energy-
dependent parametes is determined by the relation
. between the Hamiltonia® and the Casimir invariant.
SU(e) = UX(e)S, forallg € G, ® For example, for the Hamiltonian of Eq. (9),= B/k.
Here,UX(g) andU*X(g) are the corresponding representa- Note that the operata$ does not mix states belonging
tions of the grougs. Equation (7) [or Eq. (8)] actually is to different one-dimensional subspac&s, which are
used in deriving theS matrix. spanned byl y; m). This observation suggests that there
Now we are in a position to outline our general methodmight exist a class of one-dimensional potentials related
for obtaining theS matrix for scattering problems under to SQ2, 1) for which theS matrix is given by the number
consideration. In order to determine tSematrix, we  S,. This, in fact, is exactly what happens in the “potential
can proceed in two ways. |If the principal series of thegroup” approach to the scattering problems in which
algebrag in the scattering basis is known, we can getthe representations of group describe scattering states
the recurrence relations for th& matrix by applying with the same energy but different potential strengths.
both sides of Eq. (7) to the basis vectors. By solvingFor example, the group SQ 1) appears as the potential
the recurrence relations, one can find the explicit form ofgroup for the Pdschl-Teller potential, whele= —(C +
the S matrix as a function of the parameters specifying the}) and the eigenvaluen of E; is associated with the
representation og. An alternative way employs Eq. (8). potential strength. The correspondifignatrix is a2 X 2
By using the “mathematical” realization of a principal diagonal matrix with elements equal $g (for details, see
series ofG on a Hilbert space of some functions, it is Ref. [1,2,6]).
possible to derive, from Eq. (8), the functional relations We now wish to show briefly how our general method,
for the kernel of operata$ which allow one to determine when applied to the particularly simple case of scatter-
it. This global approach, which is complimentary to theing problems with S@(p,q) dynamical symmetry, re-
infinitesimal treatment, allows one to obtain the integralproduces all of the familiar formulas of Refs. [1-3,6,7].
expression for th& matrix. For this purpose, we restrict ourselves to the maximally
To gain a better understanding of our approach, welegenerate principal series [8,9] of &®,q). We can,
first illustrate it for scattering models with the §Q@,1)  without loss of generality, assume= . Moreover, we
symmetry group. To be able to use Eg. (7) in theexamine the general cage> 1 and, in conclusion, in-
computation of thes matrix, we have to know an abstract dicate briefly the difference from the general case when
realization of the principal series of @ul) = s02,1) g =1.
algebra. The maximally degenerate principal series of
We recall that the principal series of (dul) are  SQy(p,q), whose second-order Casimir operatGr
characterized by the paj = (p, €), wheree is equal to is identically a multiple of the unit, while all higher-
0 or % while 0 = p < ». The representations specified order Casimir operators are zero, is labeled by the pair
by the labelsy = (p,e) and ¥y = (—p,e) are Weyl (p,e) andC = —(p — ¢)*/2 — p?, where0 = p < =
equivalent. We can take the eigenvectgr m) of E;, and e takes the value O or 1. The representations
with m =n + €, n =0,%1,*2,... as the scattering specified by labelsy = (p,€) and y = (—p,€) are
basis of the carrier space of the representation. Thequivalent. The relevant basis on the carrier space

rWhich implies
(12)

or

principal series of dU, 1) is given by [5] of the representation is given by the decomposi-
N tion with respect to the maximal compact subgroups
Eglx;m) = mlx;m), 9  SQ)(p,q) DSOAp) X SOg) D ---DSOR), where

. each irreducible representation of a subgroup occurs, at
EX|y;m)= (3 —ip =m)lysm = 1), (10) most, once in the reduction. The scattering basis states
. N . o 5 are denoted byy; imM), | + m = e(mod2), where the
with the Casimir invarianC = —3 — p%. _ labels! and m specify the symmetric tensor representa-
We are now Xready ;E(O define the matrix. Using jong of Sdp) and SQgq), respectively, and/ denotes
the relationsSE; = SE; [see Eq. (7)] and (9), one the remaining labels specifying the representations of
has Ej S|x:m) = mS|y:m), and we can conclude that SQ(p — 1) X SQ(g — 1), and so on down the chain.
Slx;m) = S,lx;m). Let us find the numbers,,. To Since the matrix of representation for the maximal com-
this end, we apply both sides of equalffY = EYS to  pact subgroup S@) X SQ(g) in this basis is diagonal, it
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follows from (7) thatS|y; imM) = S;,|v;ImM). Thus, the plang(l,n) withn = p + g, namely,
the S matrix is determined by the numbessg, . 3
Let us define the numbers;,,. For this purpose, it SIy, = 1{,S. (13)
is sufficient to consider the fulfilment of condition (7)
for infinitesimal operator]ff,, corresponding to a one- The operatodffn acts on the canonical basis according
parameter subgroup consisting of hyperbolic rotations| ino the formula [8,9]

rPtgq

Iff,,l)(;lmM)= <— +1+ip—1—- m)cll/\/;l +1,m+ 1,M) + <—¥ —1+4+ip—1+ m)

X coly;l +1,m — 1,M) + <172;61 +1+ip+1-— m>C3|/\/;l —1,m+ 1,M)

+
+ <¥ -3 +ip+1+ m>C4|/\/;l —1,m—-1,M),

wherec;, i = 1,...,4, are positive numbers which depend bandm. We then apply both sides of the equality (13)
to the basis vectdry; ImM). As a result, we obtain a system of equations:

4 +
(—pzq+1+ip—l—m>51+1,m+1:<_p2q"'l_ip_l_m)Slvm’

<——p;q—1+ip—l+m51+1m—1 <—¥—l—ip—l+m>51,m,

<—p;q—1+ip+l—m>5171,m+1:<pgq_l_ip"'l_m)Sl,m’
N -

<p2q—3+ip+l+m>slfl,mfl=<p2q_3_lp+l+m>sl’"’

with I + m = e(mod?2). It follows then,
T2 4 ip + 1+ m)/T (L2 +ip + 1 — m)/2)
D2 —ip + 1+ m)/ T2 —ip + 1= m)/2)

Sim = v(p) (14)

where y(p) is a constant of modulus 1. The S | These may be useful in the derivation of integral formu-
matrices for SQ(p, 1) groups can be obtained from (14) las for S matrices of other classes of finite scattering sys-
by substitutingg = 1 andm = 0. tems. As an example, let us compute thenatrices for

These results can be used in either direction. If thehe problems related to principal series representations of
symmetry properties of the dynamical systems are conSQy(3,1) = SL(2,C). The UIR of SI(2, C), in which we
sidered as the fundamental assumptions of the quantuare interested, are labeled by the pair= (p, A), wherea
theory, then the results actually provide the analytic strucis an integer or half integer andlis real. (Note that both
ture of theS matrix from symmetry principles which do of the Casimir invariant§ = J?> — M? andC’' = JM are
not explicitly contain the notion of space or time. Therenonzero;C = A> — p? — 1, andC’ = Ap.) The repre-
exist a number of interesting results in this way whichsentationsy = (p,A) andy = (—p, —A) are equivalent.
were used to analyze collisions between heavy ions [10The corresponding intertwining operators in terms of ker-
and nuclear reactions [11]. In another direction, if one asnels can be extracted from the general formula given by
sociates an integrable model with Lie algebra through th&unz and Stein [13]. Since this was already done in [15]
HamiltonianH, then one can establish the correspondingsee section 16), we only state the result [for details, see
S matrix. Such realizations were applied to a family ofalso Chap. Ill of [14], where this operator is determined
solvable potentials [1,2,6,12]. directly from the intertwining relation (8)].

We end this Letter with an illustration of our second Let the principal series of S2,C) be realized on
procedure. Our task is greatly simplified by the fact thatthe Hilbert space of square integrable functiang) of
the S matrices for scattering systems under consideratiocomplex variableg. Then, in this realization, the unitary
are related to intertwining operators. We mention that theperatorS has the formSe(z) = [ K(z,z')e(z’) dz’ with
operatorS satisfying the Eqgs. (7) or (8) is called the in- the kernel given by

tertwining operator between representations ahd UY. K(z,7) = Q@) i (ip + |A) |2/ — 7|2 27%r
The explicit expressions of the intertwining operators for , oy
semisimple Lie groups in terms of kernels are introduced X (2" =27

in Ref. [13] (see also Refs. [8,9,14]) and have been ex- For our purpose, however, it is more convenient to
tensively studied in Refs. [15,16] in a different context.realize the principal series of 8, C) on the Hilbert
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spaceL3(SU(2)) of square integrable functions(u) on  the intertwining operator for Virasoro algebra in terms of
the group SW2) which obeys the conditiorf(wu) =  vertex operators is explicitly given by [22].
exp(iAB/2)f(u), where w is a2 X 2 diagonal matrix The author thanks I.H. Duru, M.A. Sabaner, and
with elements ex@-iB/2) and exgiB/2) [17]. The Y.A. Verdiyev for useful discussions. This work was
connection between these two realization ar&) =  supported by the Scientific and Technical Research
[t22*2 72721 (12,)?* £ (u), where u;; are the matrix ele- Council of Turkey (TUBITAK).

ments of the matrixx € SU(2). Therefore, when the car-
rier space of the representationﬂ%(SU(z)), the operator
S has the formSf(u) = [ K(u,u’)f(u') du’ with the ker-

nel given by
N o 20 I =1y |2A—2=2ip *On leave of absence from Institute of Physics, Academy
K (u, u') i“ip + IAD 1@'u™ ) of Sciences, 370143 Baku, Azerbaijan.
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