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Creation of Dark Solitons and Vortices in Bose-Einstein Condensates

R. Dum/?3 J.1. Cirac!?> M. Lewensteirt, and P. Zollef
lInstitute fur Theoretische Physik, Universitat Innsbruck, A-6020 Innsbruck, Austria
’Departamento de F'isica Aplicada, Universidad de Castilla—La Mancha, E-13071 Ciudad Real, Spain
3Ecole Normale Supérieure, Laboratoire Kastler Brossel, F-75231 Paris Cedex 05, France
‘DSM/DRECAM/SPAM, Centre d’Etudes de Saclay, F-91191 Gif-sur-Yvette, France
(Received 22 October 1997

We propose and analyze a scheme to create dark solitons and vortices in Bose-Einstein condensates.
This is achieved starting from a condensate in the internal tatand transferring the atoms to the
internal statgb) via a Raman transition induced by laser light. By scanning adiabatically the Raman
detuning, dark solitons and vortices are created. [S0031-9007(98)05713-5]

PACS numbers: 03.75.Fi, 03.40.Kf, 05.30.Jp

Recently Bose-Einstein condensation has been demomaiong the condensate, and, therefore, one can neglect the
strated for dilute atomic gases in magnetic traps [1]. Thikinetic energy compared to the mean interaction energy.
state of matter resembles other states found in the fields ¢fere, we generalize this approach to find other stationary
superfluidity, superconductivity, and nonlinear optics. Itsolutions that contain solitons and vortices centered near
is, thus, natural to expect to observe phenomena similahe origin, say at positions with |F| < ro (wherery has
to the ones in those fields, such as solitons and vortice$o be determined consistently at the end). We, therefore,
In fact, the Gross-Pitaevskii equation (GPE) [2] describHdook for solutions of the GPE that vary slowly along
ing the wave function of the macroscopically occupiedthe condensate except at the center; this suggests the
state allows stationary solutions that represent dark solfollowing ansatz:
tons (see below) and vortices (see also [3]). We propose SUr=N 4= -
to “engineer” these solutions incntrolled way:once the () = (F)Pe(F), (2)
condensate has formed, we use a coherent Raman procegsere ®;(7) is an envelope function that varies slowly
to couple the internal state:) where the condensate is along the condensate, wheregsr) can vary strongly
formed with another internal staté) (Fig. 1). The laser around the center of the potential and fulfilts ()| — 1
parameters are chosen such that the state after the trarfigr |[F| = ro. We substitute (2) in the GPE and distinguish
fer is a stationary state of the GPE corresponding to solitwo regions in space: (i) folr| = ro, we can take
tons or vortices. Given the nonlinear character of thd¢(#)] = 1 and neglect the spatial derivatives ®f;(7)
problem due to atom-atom interactions, straightforwardbbtaining
generalizations of single atom methods of quantum state oy (2 1/2
engineering that mainly use resonant Raman pulses are not Ce(F) = ALE = VO Nl ®)
possible [4]. In fact, atom-atom interactions modify thefor 7 such thatV(7) < E and zero otherwise; (ii) for
spatial wave function as well as the energy of the atom$’| = ro, we can neglect () compared toE both in
during the transfer process, making the problem highly®z(7) [see Eqg. (3)] and in the GPE (1) obtaining
nontrivial. Our method relies on aadiabatic transfer { F2V2

process that takes fully into account these interactions,
and is very robust against uncertainties in the experimental

parameters. The energy E is determined by imposing

Let us start by showing that one can have stationary[ ;3,|@,(7)|* = 1, which reflects particle conservation.
states of a Bose condensate that represent solitons or

vortices. In the Hartree-Fock approximation a stationary

state & of a condensate oV bosons confined in a ()
potentialV (7) is described by the time-independent GPFE =~ —.__._.
[ R2V2
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+ V(F) + NgICIJ(F,t)IZ}CI)(F,t) = E®(F,1).
(1)

The nonlinear term wittg > 0 describes the mean field
due to the atomic interaction. ~
In the following we will concentrate on the Thomas- la) 16) la) [b)

Fermi limit [5] valid for current experiments. In this limit, FiG. 1. Schematic representation of the process: (a) initial
the lowest stationary solution of Eq. (1) varies slowly state; (b) final state.
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Equation (4) is the familiar GPE for the homogeneousatoms do not feel the off-resonant laser anymore. The
case which is known to give rise to dark solitons [6] reason is that adiabatic transfer depends only on the initial
and vortices. The ground state solution of the GPEand final values ob.
corresponds tap(7) = 1 so that it is identical tobg(7) In order to describe this process, we wish to determine
in Eq. (3) withE = w, the chemical potential. the relevant stationary states of the Hamiltoni&fy in
In our model we take bosons with two internal levelsEq. (5) for each particular value of the Raman detuning
la)y and|b) as in Rb [7] (see also [8]). After condensation §, i.e.,
in level |a), we drive the transitiona) — |b) with a > 2
Raman laser configuration (Fig. 1). The spin@rz Ha®s = EsPs. ()
(®,, P,) obeys a two-component time-dependent GPE In analogy to the noninteracting case, we will call the
d - . statesd; dressed statel0]. According to the adiabatic
ih3;®GJ%=3ﬁ¢GJ) theorem, if the initial state fulfillsb(r = 0) = @5, and
I 1/\(;) R the change of the detuning is sufficiently slow frasy
= ( L) I; 5)‘13(?,0, (5) to &7, we will have ®(r;) = ®5,. We have to choose
2T 8o such that(f)@O = (®,,0), and design the laser so that

where the scalar (nonlinear) Hamiltonian ‘i)&/ = (0, ®*?) where®*" is the desired solution of (2).
F2V2 ) ) ) In order to construct the relevant solutions of (7) we
H=-—-+% V(7) + Ng[|®,(F, 0)]* + |D,(F, )] have developed the following method. First, we look for

(6) pairs of functions forming a spinoﬁ)”" = (O, Dy")
that fulfills the coupled equations
describes the evolution in the potential7) (for which
we choose an anisotropic harmonic potential with fre- HOT«(F) = € D(F),
qguencieswy , ;) in the presence of interactions [9]. In Ta(=y _ _TaggyTa(z
(5) A(F) = Q.(F)Q,(7)/(4A), where A is the detuning H®) () = €' ®y" (7)),
from the intermediate levelr), and Q,;, are the Rabi for a given value of the population, = fd3?|CI>;T“(?)|2

frequencies couplinde) and|b) to |r), respectively (see . -
Fig. 1). The Raman two-photon detuning is denoted b)}n level a (note m, + m, =1, where 7, denotes the

. : : opulation in leveb). There are many pairs of solutions

(}' d;ﬁ%i‘;’;‘lieﬂfl’gﬁ’(‘;ﬁ% tiellnumber of particles glvesgf Eq'w@%' We choose those that fulfild™=! = @,

As the initial state we také®d,,0) [see Eqg. (3)] that and®,” "~ = @ thatis, form, = 1 and7, = 0 they
is the lowest lying stationary state of the GPE formed'ePresent the desired initial and final states. THese
in the internal levella). We will designA(7) and 8(¢) states_can be found using e_|ther the generalized Thomas-
such that the atoms are transferred|b with a wave Fermi approach outlined in the context of Eq. (2), or
function that corresponds to dark solitons or vortices. IrSiMPly numerically. This gives for each value af,
the absence of interactiong & 0) the problem reduces the energy separatiod,}, = e," — €;* and, thus, the
to the one of a single trapped particle. In that case, ongésonance conditions — A,%. For an appropriately
can simply use a resonant laser pulse of a well define@esignedi(r) we can restrict the solution of Eq. (7) to the
area to carry out the population transfer [4]. In presencéolutions of Eq. (8); that is, we substitutes — ®™«(?) in
of interactions, this method will not work: as soon as(7). Multiplying the two resulting equations b7 (7)"
particles are transferred to a different state, the shape @nd ®,"(7)", respectively, using (8) and integrating we
the wave function as well as the interaction energy changgbtain
[Figs. 1(a) and 1(b)]. Therefore, an initially resonant - -
Raman laser pulse soon becomes off resonant, and the <)f;;* wf\_ 6><\/7T_“> = E5<\/7T_“> C)]
transfer process will stop unless one tailors the Raman b V7 V7
pulse (detuning and area) which is extremely difficultyynere we have defined
due to the narrowness of the Raman resonance. We
circumvent this problem by usingdiabatic passagewe T — 1 f PE
start from anegativeRaman detuning so that the atoms N 2 /7Ty
do not feel the laser [Fig. 1(a)] and change it adiabatically
to sufficiently largepositivevalues [Fig. 1(b)]. As soon From Eq. (9) we can determine the valuesmf corre-
as the laser frequency approaches the Raman resonanggonding to a gived as well asEs, the dressed state en-
the atoms will start flowing to the statg). The fact ergy. The restriction to this particular solution isjgstified
that the interaction energy changes will shift the Ramargiven that the coupling strength between the level® &f
resonance. This will not affect the process, provided thevhich is given bya™ /8§ is much larger than the coupling
final value of é is large enough so that at the end thestrength of®7« to other levels. Typically®” in level

(8)

FAF) ®T(F) @, (F).  (10)
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a corresponds to the lowest lying state (zero nodes) and 0.2

®,“ in level b to one of the excited states, with say one (a) ot=0
or two nodes (remember we finally want a soliton or vor- =

tex in level b); therefore,A(7) has to be slowly varying 01

along the condensate as otherwise coupling to solutions

with many nodes will be dominant (see later). The condi- 0

tion for adiabaticity (and, therefore, for the time scale for 0.2

the change ob) is given by the avoided crossing, which
is A7 for @, = 1/2.

We illustrate this procedure for the 1D case, that is,
the limit w,, > w;, so that the dynamics along the
x and y direction is frozen. Our goal is to create a
dark soliton with a zero at the trap center starting from -10
®,(z). This requires that the laser interaction changes
the parity of the wave function when the atoms are
transferred froma to b: we choose the simplest laser
configuration, so thal\(z) = A sin(kz), i.e., a standing
wave. In order to achieve an efficient coupling between
the ground state and the soliton and to avoid coupling
to other states we take < 1/zy, wherez, is the size

10 -10

~~~~~~~~

800 1200 1600

of ®, [11]; note that the effectiver defined in (10)

will be very small if kzo > 1. In this case the avoided ot

crossing of the dressed energy levels will be of the orderiG. 2. Generation of a dark soliton. The detuning is varied
Ao, Which sets the time scale for the adiabaticity. Onlinearly from 6 = —1.50 to 6 = 6.5w in a time wt =

the other hand, has to be smaller than the energy 1500. Other parameterst, = 0.15, kr = 0.5/ag, andNg =
separation$A ;| so that the Stark shifts do not mix these 50%wao, whereay = i/(mw). (a) Snapshots of the position

; : ; ; distributions of the wave functions corresponding to atoms in
wave functions with others of higher energlesm'l':r}e level |a) (solid line) and|b) (dashed line) for different times;

initial value of the Raman detuning must bg < =Aoa,h » (b) populations of these levels as a function of time.
whereas the final value must fulfilb, > A75 . In

Fig. 2 we have plotted numerical re;ults of the solut|onscf)( ) = [ba(2), b1(2)]Px(2), With ©x(z) defined in (3).

of the time-dependent GPE (5). Figure 2(a) shows th?\lear the trap center Eq. (8) becomes

spatial distributionP, ;(z) = |®,(z)|* corresponding to P a-

statega) (solid line) and b) (dashed line). As the transfer h* d?

progresses, we see that the wave function of the atoms {n_% a2’ Ella@)I* +1¢5(2)1] - 6a,bi|¢a,b(z) =0,

|a) narrows and one of the atomsl|it) develops a hole in (11)

the center; that is, a dark soliton is formed. This manifests

itself also in the effective (trap plus mean field) potential,with the boundary conditionsp,(z)| — 0 and|¢,(z)| —

it is initially flat, and later it develops a narrow dip [see 1 as|z| — «. We find the solution

Fig. 1(b)]. Those atoms still ina) become trapped in

a bound state of this dip, which becomes deeper as we - A secht ’Z—faz)

move more atoms in the excited state. In Fig. 2(b) we D(z) = — Dp(2), (12)

have plotted the fractionr,, of atoms ina andb. As tanhy %= az)

this figure shows, the transfer efficiency is essentially

100%. We have performed a full 3D integration of thewith 1 — A?> = a?, ¢, = E, and €, = E(1 — a?/2)

time dependent GPE (5) in order to make sure that theorresponding to the energy of a state localized in the

1D results are still valid in the presence of the transversdip of the effective potential. E is determined via the

degrees of freedom [12]. normalization condition. The generalized dressed states
For the analytical understanding of these results, wérom Eq. (9) finally gived and Es for a given value of

proceed as explained above. First, we calculate ther,. The analytical solutions agree perfectly with our

bare states: in the limitr, — 1 one can estimate the numerical results.

value of Aj; using a square well of length equal to A two-soliton solution is obtained by starting from the

the size of the Thomas-Fermi solutish,,; that is, we ground state ir, and coupling with a laser configuration

take as®, the first excited state in the effective po- that preserves the parity(z) = Aocodkz). In order not

tential [V(7) + Ng|®,(#)[*]; when 7, < 1/2 we can to couple to the ground state i, the initial detuning

calculate A} using a generalized Thomas-Fermi ansatzhas to bed, > |Ao|. We then increase the detuning

for the bare states. To this end we write as in Eq. (2diabatically to a sufficiently large value. In Fig. 3 we
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0.25 An issue to address is the stability of vortices and dark
solitons. In [3] it is shown that states localized near

the center of the trap will be preferentially occupied by

collisions thereby destabilizing the vortex. However, we

expect the destabilization time to be much longer than
that required for the creation of vortices and solitons. We
have numerically verified that adding a small perturbation
to the initial condensate function does not change the
conclusions of the present work.

We have demonstrated that one can engineer the
macroscopic wave function of a Bose-Einstein condensed
sample by coupling the internal atomic levels with a laser.
10 The method is based on adiabatic transfer of population

along generalized dressed states that include the nonlinear
FIG. 3. Generation of two dark solitons. The detuning isgtom-atom interactions.
varied linearly fromd = 0.25» 1 6 = 5w in a time wr = We thank K. Burnett and Y. Castin for discussions.
%(S)(I)i(i.)agther parametersiy = 015w, ki = 0.5/a0, andNg = ic™\ ok was supported by the TMR ERB-FMRX-
CT96-0087 and the Austrian SF.
Note added—After submission of the present Letter an

show plots of numerical solutions. At the end of the ypicle has appeared [14] that proposes to create vortices
process all the particles are in the stfi¢ with a wave using resonant Raman pulses.

function that includes two dark solitons.
A 2D situation arises in the limiv, > 0w, = w, =
wy. In this case we are interested in creating vortex

ot=0

P(z)

[=
N
(4l

~ 01=1000

1
i

10 -10
z/a,

solutions of the form®(p, ¢) = f(p)e'?, wherep and
¢ are cylindrical coordinates, antip) is a function with

a zero ato = 0. In order to provide the required angular
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