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Creation of Dark Solitons and Vortices in Bose-Einstein Condensates
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We propose and analyze a scheme to create dark solitons and vortices in Bose-Einstein condens
This is achieved starting from a condensate in the internal statejal and transferring the atoms to the
internal statejbl via a Raman transition induced by laser light. By scanning adiabatically the Rama
detuning, dark solitons and vortices are created. [S0031-9007(98)05713-5]
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Recently Bose-Einstein condensation has been dem
strated for dilute atomic gases in magnetic traps [1]. Th
state of matter resembles other states found in the fields
superfluidity, superconductivity, and nonlinear optics.
is, thus, natural to expect to observe phenomena sim
to the ones in those fields, such as solitons and vortic
In fact, the Gross-Pitaevskii equation (GPE) [2] descri
ing the wave function of the macroscopically occupie
state allows stationary solutions that represent dark so
tons (see below) and vortices (see also [3]). We propo
to “engineer” these solutions in acontrolled way:once the
condensate has formed, we use a coherent Raman pro
to couple the internal statejal where the condensate is
formed with another internal statejbl (Fig. 1). The laser
parameters are chosen such that the state after the tr
fer is a stationary state of the GPE corresponding to so
tons or vortices. Given the nonlinear character of th
problem due to atom-atom interactions, straightforwa
generalizations of single atom methods of quantum st
engineering that mainly use resonant Raman pulses are
possible [4]. In fact, atom-atom interactions modify th
spatial wave function as well as the energy of the atom
during the transfer process, making the problem high
nontrivial. Our method relies on anadiabatic transfer
process that takes fully into account these interactio
and is very robust against uncertainties in the experimen
parameters.

Let us start by showing that one can have stationa
states of a Bose condensate that represent solitons
vortices. In the Hartree-Fock approximation a stationa
state F of a condensate ofN bosons confined in a
potentialV s$rd is described by the time-independent GPE∑

2
h̄2 $=2

2m
1 V s$rd 1 NgjFs$r , tdj2

∏
Fs$r, td ­ EFs$r , td .

(1)

The nonlinear term withg . 0 describes the mean field
due to the atomic interaction.

In the following we will concentrate on the Thomas
Fermi limit [5] valid for current experiments. In this limit,
the lowest stationary solution of Eq. (1) varies slowl
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along the condensate, and, therefore, one can neglect
kinetic energy compared to the mean interaction energ
Here, we generalize this approach to find other stationa
solutions that contain solitons and vortices centered ne
the origin, say at positions$r with j$rj & r0 (wherer0 has
to be determined consistently at the end). We, therefor
look for solutions of the GPE that vary slowly along
the condensate except at the center; this suggests
following ansatz:

Fsys$r d ­ fs$r dFEs$r d , (2)

where FEs$rd is an envelope function that varies slowly
along the condensate, whereasfs$rd can vary strongly
around the center of the potential and fulfillsjfs$rdj ! 1
for j$rj * r0. We substitute (2) in the GPE and distinguish
two regions in space: (i) forj$rj * r0, we can take
jfs$rdj . 1 and neglect the spatial derivatives ofFEs$rd
obtaining

FEs$rd ­ hfE 2 V s$rdgysNgdj1y2, (3)

for $r such thatV s$rd , E and zero otherwise; (ii) for
j$rj & r0, we can neglectV s$rd compared toE both in
FEs$rd [see Eq. (3)] and in the GPE (1) obtaining∑

2
h̄2 $=2

2m
1 Ejfs$r dj2

∏
fs$r d ­ Efs$r d . (4)

The energy E is determined by imposingR
d3r jFEs$rdj2 ­ 1, which reflects particle conservation.

FIG. 1. Schematic representation of the process: (a) initia
state; (b) final state.
© 1998 The American Physical Society
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Equation (4) is the familiar GPE for the homogeneou
case which is known to give rise to dark solitons [6
and vortices. The ground state solution of the GP
corresponds tofs$rd ­ 1 so that it is identical toFEs$rd
in Eq. (3) withE ­ m, the chemical potential.

In our model we take bosons with two internal level
jal andjbl as in Rb [7] (see also [8]). After condensation
in level jal, we drive the transitionjal ! jbl with a
Raman laser configuration (Fig. 1). The spinor$F ­
sFa, Fbd obeys a two-component time-dependent GPE

ih̄
d
dt

$Fs $r , td ­ Hd
$Fs $r , td

­

√
H

1
2 ls$rd

1
2 ls$rdp H 2 d

!
$Fs$r, td , (5)

where the scalar (nonlinear) Hamiltonian

H ­ 2
h̄2 $=2

2m
1 V s$rd 1 NgfjFas$r , tdj2 1 jFbs$r , tdj2g

(6)

describes the evolution in the potentialV s $rd (for which
we choose an anisotropic harmonic potential with fre
quenciesvx,y,z) in the presence of interactions [9]. In
(5) ls$rd ­ Vas$rdVbs$rdys4Dd, where D is the detuning
from the intermediate leveljrl, and Va,b are the Rabi
frequencies couplingjal and jbl to jrl, respectively (see
Fig. 1). The Raman two-photon detuning is denoted b
d. The conservation of the number of particles giveR

d3 $rfjFas$rdj2 1 jFbs$rdj2g ­ 1.
As the initial state we takesFm, 0d [see Eq. (3)] that

is the lowest lying stationary state of the GPE forme
in the internal leveljal. We will designls$rd and dstd
such that the atoms are transferred tojbl with a wave
function that corresponds to dark solitons or vortices.
the absence of interactions (g ­ 0) the problem reduces
to the one of a single trapped particle. In that case, o
can simply use a resonant laser pulse of a well defin
area to carry out the population transfer [4]. In presen
of interactions, this method will not work: as soon a
particles are transferred to a different state, the shape
the wave function as well as the interaction energy chan
[Figs. 1(a) and 1(b)]. Therefore, an initially resonan
Raman laser pulse soon becomes off resonant, and
transfer process will stop unless one tailors the Ram
pulse (detuning and area) which is extremely difficu
due to the narrowness of the Raman resonance. W
circumvent this problem by usingadiabatic passage:we
start from anegativeRaman detuning so that the atom
do not feel the laser [Fig. 1(a)] and change it adiabatica
to sufficiently largepositivevalues [Fig. 1(b)]. As soon
as the laser frequency approaches the Raman resona
the atoms will start flowing to the statejbl. The fact
that the interaction energy changes will shift the Rama
resonance. This will not affect the process, provided th
final value of d is large enough so that at the end th
s
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atoms do not feel the off-resonant laser anymore. Th
reason is that adiabatic transfer depends only on the initi
and final values ofd.

In order to describe this process, we wish to determin
the relevant stationary states of the HamiltonianHd in
Eq. (5) for each particular value of the Raman detunin
d, i.e.,

Hd
$Fd ­ Ed

$Fd . (7)

In analogy to the noninteracting case, we will call the
states $Fd dressed states[10]. According to the adiabatic
theorem, if the initial state fulfills$Fst ­ 0d ­ $Fd0 and
the change of the detuning is sufficiently slow fromd0

to df, we will have $Fstfd ­ $Fdf . We have to choose

d0 such that $Fd0 . sFm, 0d, and design the laser so that
$Fdf

­ s0, Fsyd whereFsy is the desired solution of (2).
In order to construct the relevant solutions of (7) we

have developed the following method. First, we look for
pairs of functions forming a spinor$Fpa ­ sFpa

a , F
pa
b d

that fulfills the coupled equations

HFpa
a s$r d ­ epa

a Fpa
a s$rd ,

HF
pa
b s$r d ­ e

pa
b F

pa
b s$rd ,

(8)

for a given value of the populationpa ­
R

d3 $rjFpa
a s$rdj2

in level a (note pb 1 pa ­ 1, where pb denotes the
population in levelb). There are many pairs of solutions
of Eq. (8). We choose those that fulfillFpa.1

a ­ Fm

andF
pa.0
b ­ Fsy ; that is, forpa ­ 1 andpa ­ 0 they

represent the desired initial and final states. Thesebare
statescan be found using either the generalized Thomas
Fermi approach outlined in the context of Eq. (2), or
simply numerically. This gives for each value ofpa

the energy separationD
pa
a,b ; e

pa
b 2 epa

a and, thus, the
resonance conditiond ! D

pa
a,b. For an appropriately

designedls$rd we can restrict the solution of Eq. (7) to the
solutions of Eq. (8); that is, we substitute$Fd ! $Fpasdd in
(7). Multiplying the two resulting equations byFpa

a s$rdp

and F
pa
b s$rdp, respectively, using (8) and integrating we

obtain µ
epa

a lpa

lpap e
pa
b 2 d

∂ µ p
pap
pb

∂
­ Ed

µ p
pap
pb

∂
, (9)

where we have defined

lpa ;
1

2
p

papb

Z
d3 $r ls$rd Fpa

a s$rdp F
pa
b s$rd . (10)

From Eq. (9) we can determine the values ofpa corre-
sponding to a givend as well asEd, the dressed state en-
ergy. The restriction to this particular solution is justified
given that the coupling strength between the levels of$Fpa

which is given bylpa yd is much larger than the coupling
strength ofFpa

a to other levels. TypicallyFpa
a in level
2973
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a corresponds to the lowest lying state (zero nodes) a
F

pa
b in level b to one of the excited states, with say on

or two nodes (remember we finally want a soliton or vo
tex in level b); therefore,ls$rd has to be slowly varying
along the condensate as otherwise coupling to solutio
with many nodes will be dominant (see later). The cond
tion for adiabaticity (and, therefore, for the time scale fo
the change ofd) is given by the avoided crossing, which
is lpa for pa . 1y2.

We illustrate this procedure for the 1D case, that i
the limit vx,y ¿ vz , so that the dynamics along the
x and y direction is frozen. Our goal is to create a
dark soliton with a zero at the trap center starting from
Fmszd. This requires that the laser interaction chang
the parity of the wave function when the atoms ar
transferred froma to b: we choose the simplest lase
configuration, so thatlszd ­ l0 sinskzd, i.e., a standing
wave. In order to achieve an efficient coupling betwee
the ground state and the soliton and to avoid couplin
to other states we takek # 1yz0, where z0 is the size
of Fm [11]; note that the effectivel defined in (10)
will be very small if kz0 ¿ 1. In this case the avoided
crossing of the dressed energy levels will be of the ord
l0, which sets the time scale for the adiabaticity. O
the other hand,l0 has to be smaller than the energ
separationsjD

pa
ab j so that the Stark shifts do not mix these

wave functions with others of higher energiese. The
initial value of the Raman detuning must bed0 ø D

pa­1
a,b ,

whereas the final value must fulfilldf ¿ D
pa­0
a,b . In

Fig. 2 we have plotted numerical results of the solution
of the time-dependent GPE (5). Figure 2(a) shows t
spatial distributionPa,bszd ­ jFa,bszdj2 corresponding to
statesjal (solid line) andjbl (dashed line). As the transfer
progresses, we see that the wave function of the atoms
jal narrows and one of the atoms injbl develops a hole in
the center; that is, a dark soliton is formed. This manifes
itself also in the effective (trap plus mean field) potentia
it is initially flat, and later it develops a narrow dip [see
Fig. 1(b)]. Those atoms still injal become trapped in
a bound state of this dip, which becomes deeper as
move more atoms in the excited state. In Fig. 2(b) w
have plotted the fractionpa,b of atoms ina and b. As
this figure shows, the transfer efficiency is essential
100%. We have performed a full 3D integration of th
time dependent GPE (5) in order to make sure that t
1D results are still valid in the presence of the transver
degrees of freedom [12].

For the analytical understanding of these results, w
proceed as explained above. First, we calculate t
bare states: in the limitpa ! 1 one can estimate the
value of D

pa
ab using a square well of length equal to

the size of the Thomas-Fermi solutionFm; that is, we
take asFb the first excited state in the effective po
tential fV s$rd 1 NgjFms$rdj2g; when pa & 1y2 we can
calculateD

pa
ab using a generalized Thomas-Fermi ansa

for the bare states. To this end we write as in Eq. (
2974
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FIG. 2. Generation of a dark soliton. The detuning is varie
linearly from d ­ 21.5v to d ­ 6.5v in a time vt ­
1500. Other parameters:l0 ­ 0.15v, kL ­ 0.5ya0, andNg ­
50h̄va0, wherea2

0 ­ h̄ysmvd. (a) Snapshots of the position
distributions of the wave functions corresponding to atoms i
level jal (solid line) andjbl (dashed line) for different times;
(b) populations of these levels as a function of time.

$Fszd ­ ffaszd, fbszdgFEszd, with FEszd defined in (3).
Near the trap center Eq. (8) becomes∑

2
h̄2

2m
d2

dz2
1 Efjfaszdj2 1 jfbszdj2g 2 ea,b

∏
fa,bszd ­ 0 ,

(11)

with the boundary conditionsjfaszdj ! 0 andjfbszdj !

1 asjzj ! `. We find the solution

$Fszd ­

0BB@A sechs
q

mE
"2 azd

tanhs
q

mE
"2 azd

1CCAFEszd , (12)

with 1 2 A2 ­ a2, eb ­ E, and ea ­ Es1 2 a2y2d
corresponding to the energy of a state localized in th
dip of the effective potential. E is determined via the
normalization condition. The generalized dressed stat
from Eq. (9) finally gived and Ed for a given value of
pa. The analytical solutions agree perfectly with our
numerical results.

A two-soliton solution is obtained by starting from the
ground state ina, and coupling with a laser configuration
that preserves the parity,lszd ­ l0 cosskzd. In order not
to couple to the ground state inb, the initial detuning
has to bed0 . jl0j. We then increase the detuning
adiabatically to a sufficiently large value. In Fig. 3 we
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FIG. 3. Generation of two dark solitons. The detuning i
varied linearly fromd ­ 0.25v to d ­ 5v in a time vt ­
2500. Other parameters:l0 ­ 0.15v, kL ­ 0.5ya0, andNg ­
20h̄va0.

show plots of numerical solutions. At the end of the
process all the particles are in the statejbl with a wave
function that includes two dark solitons.

A 2D situation arises in the limitvz ¿ v' ­ vx ­
vy . In this case we are interested in creating vorte
solutions of the formFsr, wd ­ fsrdeiw, wherer and
w are cylindrical coordinates, andfsrd is a function with
a zero atr ­ 0. In order to provide the required angular
momentum to the atoms that are transferred, we choo
a laser configuration such thatlsx, yd ­ l0fsinskLxd 1

i sinskLydg . l0kLreiw for kLr & 1 [11]. The density
distribution jFsx, ydj2 after an adiabatic switch of the
detuning is plotted in Fig. 4. The inset shows that all th
population is transferred to the vortex state.

One way of observing the shape of the densityns$rd is
by opening of the trap att ­ tf . As in Ref. [13] we have
the relationns$r , t . tfd ­ nf$rygstd, tfgyg2dstd; the scal-
ing factors obeyg̈ ­ v2ygd11 (d is the dimension) and
gstf d ­ 1, Ùgstfd ­ 0. The asymptotic behaviorgstd !p

2vzt for the 1D dark soliton andgstd ! v't for the
vortex solution can be measured.

FIG. 4. Generation of a vortex: position distribution of the
final state. The detuning is varied linearly fromd ­ 20.6v'

to d ­ 5v' in a time v't ­ 2000. The parameters are
Ng ­ 500h̄v'a2

', l ­ 0.15h̄v', andkL ­ 0.5a'. The inset
shows the evolution of the populationsPstd in levels jal and
jbl (solid and dashed lines, respectively).
s

x

se

e

An issue to address is the stability of vortices and da
solitons. In [3] it is shown that states localized nea
the center of the trap will be preferentially occupied b
collisions thereby destabilizing the vortex. However, w
expect the destabilization time to be much longer th
that required for the creation of vortices and solitons. W
have numerically verified that adding a small perturbatio
to the initial condensate function does not change t
conclusions of the present work.

We have demonstrated that one can engineer
macroscopic wave function of a Bose-Einstein condens
sample by coupling the internal atomic levels with a lase
The method is based on adiabatic transfer of populati
along generalized dressed states that include the nonlin
atom-atom interactions.

We thank K. Burnett and Y. Castin for discussion
This work was supported by the TMR ERB-FMRX
CT96-0087 and the Austrian SF.

Note added.—After submission of the present Letter a
article has appeared [14] that proposes to create vorti
using resonant Raman pulses.
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