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A complete self-controlmechanism is proposed in the dynamics of neural networks throu
the introduction of a time-dependent threshold, determined in function of both the noise and
pattern activity in the network. Especially for sparsely coded models this mechanism is sh
to considerably improve the storage capacity, the basins of attraction, and the mutual inform
content. [S0031-9007(98)05698-1]

PACS numbers: 87.10.+e, 02.50.–r, 64.60.Cn, 89.70.+c
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In the past years, neural network models which ca
execute complex computations have been proposed usi
e.g., statistical mechanics and probabilistic methods. O
the one hand, it is suggested that these models mig
mimic computations by the cerebral cortex and, on th
other hand, it is believed that they have a power simila
to big assemblies of simple processors or devices [1
In this development, both from the device oriented an
biologically oriented point of view, sparsely coded model
[2,3] are of particular interest since it is well known
that they have a large storage capacity, which behav
as 1ysa ln ad for a small wherea is the pattern activity.
However, it is clear that the basins of attraction, e.g
should not become too small because then sparse cod
is, in fact, useless.

In this context the necessity of an activity control system
has been emphasized, which tries to keep the activity
the network in the retrieval process the same as the o
for the memorized patterns [4–6]. This has led to sever
discussions imposing external constraints on the dynam
(see the references in [3]). Clearly, the enforcement
such a constraint at every time step destroys part of t
autonomous functioning of the network.

An important question is then whether the capacit
of storage and retrieval with non-negligible basins o
attraction can be improved and even be optimized witho
imposing these external constraints, keeping at the sa
time the simplicity of the architecture of the network.

In this Letter we answer this question by proposin
a complete self-controlmechanism in the dynamics of
neural networks. This is done through the introductio
of a time-dependent threshold in the transfer functio
This threshold is chosen as a function of the noise
the system and the pattern activity, and adapts itself
the course of the time evolution. The difference with
existing results in the literature ( [3–6]) precisely lies in
this adaptivity property. This immediately solves, e.g
the difficult problem of finding the mostly narrow interval
for an optimal threshold such that the basins of attractio
of the memorized patterns do not shrink to zero.

We have worked out the case of sparsely coded, dilut
models. We find that the storage capacity, the basi
0031-9007y98y80(13)y2961(4)$15.00
n
ng,
n
ht
e
r
].
d
s

es

.,
ing

of
ne
al
ics
of
he

y
f
ut
me

g

n
n.
in
in

.,

n

ed
ns

of attraction, as well as the mutual information conte
are improved. These results are shown to be va
also for not so sparse models. Indeed, a similar se
control mechanism should even work in more complicat
architectures, e.g., layered and fully connected on
Furthermore, this idea of self-control might be releva
for dynamical systems in general, when trying to improv
the basins of attraction and the convergence times.

Consider a network ofN binary neurons. At time
t and zero temperature the neuronshsi,tj [ h0, 1j, i ­
1, . . . , N are updated in parallel according to the rule

si,t11 ­ Fut shi,td, hi,t ­
NX

jsfiid
Jijssj,t 2 ad . (1)

In general, the input-output relationFut can be a mono-
tonic function withut a time-dependent threshold. In th
sequel we restrict ourselves to the step functionFut

sxd ­
Qsx 2 utd. The quantityhi,t is the local field of neuron
i at time t and a is the activity of the stored patterns
j

m
i [ h0, 1j m ­ 1, . . . , p. The latter are independen

identically distributed random variables (IIDRV) with re
spect toi andm determined by the probability distribution
psjm

i d ­ adsjm
i 2 1d 1 s1 2 addsjm

i d. At this point we
remark that the activity can be written asa ­ s1 2 bdy2
with 21 , b , 1 the bias of the patterns as defined
e.g., in [4]. In fact,kjm

i l ­ a but no correlations occur,
i.e., kjm

i j
n
i l 2 kjm

i l kjn
i l ­ 0. We now consider an ex-

tremely diluted asymmetric version of this model in whic
each neuron is connected, on average, withC other neu-
rons. In that case the synaptic couplingsJij are deter-
mined by the covariance rule

Jij ­
Cij

Cã

pX
m­1

sjm
i 2 ad sjm

j 2 ad, ã ; as1 2 ad .

(2)
Here the Cij [ h0, 1j are IIDRV with probability
PrhCij ­ 1j ­ CyN ø 1, C . 0. For a ­ 1y2 and
ut ­ 0 we recover the diluted Hopfield model.

The relevant order parameters measuring the quality
retrieval are the overlap of the microscopic state of th
network and themth pattern, and the neural activity

m
m
N ,t ;

1
Na

X
i

j
m
i si,t , qN ,t ;

1
N

X
i

si,t . (3)
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The m
m
N ,t are normalized within the intervalf0, 1g. They

have to be considered over the diluted structure such t
the loadinga is defined byp ­ aC. The Hamming
distance between the state of the neuron and the pat
jm can be written asd

m
t ­ a 2 2am

m
N ,t 1 qN ,t .

To fix the ideas and without loss of generality, w
take an initial network configuration correlated with onl
one pattern, saym ­ 1, meaning that onlym1

N ,t is
macroscopic, i.e., of orderO s1d in the thermodynamic
limit C, N ! `. The rest of the patterns cause a residu
noise at each time step of the dynamics. Depending on
architecture of the network this noise might be extreme
difficult to treat [7]. A novel idea is then to let the
network itself autonomously counter this residual nois
at each step of the dynamics, by introducing an adapti
hence time-dependent, threshold. We propose the gen
form utsxd ­ csad fVarsvtdg1y2 with vt this residual
noise. This self-control mechanism of the network
complete if we find a way to determinecsad.

In order to do so we first write down the evolution
equations governing the dynamics. We recall that f
the particular model we are considering the parall
dynamics can be solved exactly following the method
involving a signal-to-noise analysis (see, e.g, [8,9]). Su
an approach leads to the following equations for the ord
parameters in the thermodynamic limitC, N ! `:

m1
t11 ­ kFut fs1 2 adM1

t 1 vtglv , (4)

qt11 ­ am1
t11 1 s1 2 ad kFut s2aM1

t 1 vtdlv , (5)

with M1
t ­ sm1

t 2 qtdys1 2 ad, where we have averaged
over j1 and where the angular brackets indicate that w
still have to average overvt which can be written as
vt ­ faQtg1y2N s0, 1d with Qt ­ s1 2 2adqt 1 a2 and
N s0, 1d a Gaussian random variable with mean zero a
variance unity. Them1

t and qt are the thermodynamic
limits of (3). The quantityM1

t reduces to the overlap
of the Hopfield model, again when takinga ­ 1y2 and
ut ­ 0. From now on we forget about the superscript1.

Equations (4) and (5) give a self-controlled dynamic
if we can completely specify,a priori, the threshold
ut proposed before. For the present model,ut is a
macroscopic parameter, thus no average must be d
over the microscopic random variables at each time s
t. This is different from some existing models, e.g., [10
where a local thresholdui,t is taken (to study periodic
behavior of patterns). Therefore, we have a mapping w
a threshold which changes each time step but no statist
history effects the evolution process. What is left then
to find an optimal form forcsad.

A very intuitive reasoning based on the detailed b
havior of Eqs. (4),(5) goes as follows. To havem ,
1 2 erfcsnd and q , a 1 erfcsnd with n . 0 at a given
t such that good retrieval properties, i.e.,si ­ ji for
most i are realized, we want the following inequali
ties to be satisfied: s1 2 adMt 2 nfaQtg1y2 $ ut and
2aMt 1 nfaQtg1y2 # ut . Using the general form for
2962
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ut we obtain that2n , MtfaQtg21y2. This leads to
csad , ns1 2 2ad. Here we remark thatn itself depends
on a in the sense that for increasinga it gets more diffi-
cult to have good retrieval such thatn decreases. But it
can still be chosena priori.

In the limit of sparse coding meaning thata is very
small and tends to zero forN ! `, we can present a more
refined result forcsad by rewriting the second term on the
right-hand side of Eq. (5) asymptotically as

kfFuf2aM 1 vglv ­
1
2

∑
1 2 erf

µ
aM

p
2aQ

1
csad
p

2

∂∏
!

e2c2y2

c
p

2p
.

This term must vanish faster thana so that we obtain
c ­ f22 lnsadg1y2. Using this and the first inequality
written down above we can evaluate the maximal capac
for which some small errors in the retrieval are allowed
The result isa ­ O sja lnsadj21d, which is of the same
order as the critical capacity found for non-self-controlle
sparsely coded neural networks [3,6,11–13].

Next, it is known that while the Hamming distance is a
good measure for the performance of a uniform netwo
(a , 1y2), it does not give a complete description o
the information content for sparsely coded networks.
cannot distinguish between a situation where most of t
wrong neurons (si fi ji) are turned off and a situation
where these wrong neurons are turned on. This distincti
is extremely critical because the inactive neurons car
less information than the active ones. For example, wh
si ­ 0 for all i, d ­ a and hence vanishes in the sparsel
coded limit, while forsi ­ 1 for all i, d ­ 1 2 a and
hence goes to1. However, in both cases no information
is transmitted. To solve this problem we introduce th
mutual information content of the network.

The mutual information function ([14]) is a concept in
information theory which measures the average amount
information that can be received by the user by observin
the signal at the output of a channel. For the problem
hand, i.e., retrieval dynamics of the patternm ­ 1, where
each time step is regarded as a channel, it can be defin
as (we forget about the time indext)

Issi; jid ­ Sssid 2 kSssi jjidlji , (6)

Sssid ; 2
X
si

pssid lnfpssidg , (7)

Sssi jjid ; 2
X
si

pssi jjid lnfpssi jjidg . (8)

Here Sssid and Sssi jjid are the entropy and the condi-
tional entropy of the output, respectively. We note tha
they are not used, as in thermodynamics, to determi
the number of possible realizations of the network giv
ing good retrieval. They have a dynamical content an
are peculiar to the probability distribution of the output
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FIG. 1. The informationi as a function ofu without self-
control for a ­ 0.1 (top) anda ­ 0.001 (bottom) for several
values ofa.

The termSssijjid is the equivocation term in the retrieva
process. In (8)pssi jjid is the conditional probability that
the ith neuron is in a statesi at timet, given that theith
site of the pattern being retrieved isji:

pssjjd ­ fg0 1 sm 2 g0djgds21

1 f1 2 g0 2 sm 2 g0djgds

g0 ­ sq 2 amdys1 2 ad , (9)

where we have assumed that this formula holds for eve
site indexi, and where them andq are precisely the order
parameters (3) forN ! `. We have also used the
normalizations

P
s pssj1d ­

P
s pssj0d ­ 1. Using the

probability distribution of the patterns, we obtain

pssd ;
X
j

psjdpssjjd ­ qdss 2 1d 1 s1 2 qddssd .

(10)

FIG. 2. The evolution of the overlapmt for several initial
valuesm0, with q0 ­ 0.01 ­ a anda ­ 4 for the self-control
model (right) and the optimal threshold model (left).
l

ry

FIG. 3. The basin of attraction as a function ofa for a ­
0.01 and initial q0 ­ a for the self-control model (full line)
and the optimal threshold model (dashed line).

The expressions for the entropies defined above becom

Sssd ­ 2q ln q 2 s1 2 qd lns1 2 qd , (11)

kSssjjdlj ­ 2afm lnsmd 1 s1 2 md lns1 2 mdg

2 s1 2 ad

3 fg0 ln g0 1 s1 2 g0d lns1 2 g0dg . (12)

Recalling Eq. (6) this completes the calculation of th
mutual information content of the present model.

We have solved this self-controlled dynamics for th
sparsely coded network numerically and compared i
retrieval properties with non-self-controlled models. W
are interested only in the retrieval solutions leading t
M . 0 and carrying a nonzero informationI.

In Fig. 1 we have plotted the information contenti ;
pNIy#J ­ aI as a function ofu for a ­ 0.1 and a ­
0.001 and different values ofa, withoutself-control. This
illustrates that it is difficult, especially for sparse coding
to choose a threshold interval such thati is nonzero.

In Fig. 2 we compare the time evolution of the retrieva
overlap,mt , starting from several initial values,m0, for

FIG. 4. The informationi as a function ofM0 for a ­
0.3, a ­ 0.4, t ­ 8 with (c ­ 1) and without self-control.
Left: analytic results. Right: simulations forN ­ 47.000, C ­
50, p ­ 20 averaged over ten samples.
2963
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FIG. 5. The informationi as a function ofa for the self-
control model with several values ofa.

the self-control model with an initial neural activityq0 ­
0.01 ­ a and usc ­ f22sln adaQtg1y2, with the model
where the threshold is chosen by hand in an optim
way in the sense that we took the one with the greate
information contenti, by looking at the corresponding
results of Fig. 1 fora ­ 0.01. We see that the self-
control forces more of the overlap trajectories to go t
the retrieval attractor. It does improve substantially th
basin of attraction. This is further illustrated in Fig. 3
where the basin of attraction for the whole retrieval pha
R is shown for the model with auopt selected for every
loadinga and the model with self-controlusc. We remark
that even near the border of critical storage the results a
still improved. Hence the storage capacity itself is als
larger. These results are not strongly dependent upon
initial value ofq0 as long asq0 ­ O sad.

Furthermore, we find that self-control gives a compa
rable improvement for not so sparse models, e.g.,a ,
0.3. This is illustrated in Fig. 4 where we show som
analytic results together with a first set of simulation
for the basins of attraction. This type of simulation fo
extremely diluted models is known to be difficult be
cause of the theoretical limitsC, N ! ` and lnC ø ln N .
Nevertheless, it is clear that concerning the self-contr
aspect, qualitative agreement with the analytic results
obtained. For these values ofa, M0 is the relevant quan-
tity. The quantitative difference is mostly due to the fac
thatManal

0 , Msimul
0 1 O s1y

p
Cad.

Figure 5 displays the informationi as a function of
a for the self-controlled model with several values o
a. We observe thatimax ; isamaxd is reached somewhat
before the critical capacity and that it slowly increase
with increasinga.

Finally, in Fig. 6 we have plottedimaxy lns2d and
amaxaj lnsadj as a function of the activity on a logarithmic
2964
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FIG. 6. The maximal information imaxy lns2d and
amaxaj lnsadj as a function ofj lnsadj.

scale. It shows thatimax increases withj lnsadj until
it starts to saturate. The saturation is rather slow,
agreement with results found in the literature [12,13].

In conclusion, we have found a novel way to let a
diluted network autonomously control its dynamics suc
that the basins of attraction and the mutual informatio
content are maximal.
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