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Self-Control in Sparsely Coded Networks
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A complete self-controlmechanism is proposed in the dynamics of neural networks through
the introduction of a time-dependent threshold, determined in function of both the noise and the
pattern activity in the network. Especially for sparsely coded models this mechanism is shown
to considerably improve the storage capacity, the basins of attraction, and the mutual information
content. [S0031-9007(98)05698-1]

PACS numbers: 87.10.+e, 02.50.-r, 64.60.Cn, 89.70.+c

In the past years, neural network models which carof attraction, as well as the mutual information content
execute complex computations have been proposed usingre improved. These results are shown to be valid
e.g., statistical mechanics and probabilistic methods. Oalso for not so sparse models. Indeed, a similar self-
the one hand, it is suggested that these models migltiontrol mechanism should even work in more complicated
mimic computations by the cerebral cortex and, on therchitectures, e.g., layered and fully connected ones.
other hand, it is believed that they have a power similafFurthermore, this idea of self-control might be relevant
to big assemblies of simple processors or devices [1for dynamical systems in general, when trying to improve
In this development, both from the device oriented andhe basins of attraction and the convergence times.
biologically oriented point of view, sparsely coded models Consider a network ofV binary neurons. At time
[2,3] are of particular interest since it is well known 7 and zero temperature the neurdps;} € {0,1}, i =
that they have a large storage capacity, which behavek..., N are updated in parallel e}vccording to the rule
as1/(alna) for a small wherea is the pattern activity.

However, it is clear that the basins of attraction, e.g., Z*! ™ Fo.(hiv).  his = ]_;)J"J'(Uf” —a). (1)
should not become too small because then sparse coding general, the input-output relatiaF,, can be a mono-

IS’IIr?tLailgté(;jr?til)?tsti’e necessity of an activity control s stemtoniC function witho, a time-dependent threshold. In the
y y quel we restrict ourselves to the step functifrix) =

. . . . e
has been empha5|zed,. which tries to keep the activity o%(x ~8,). The quantityh;, is the local field of neuron
the network in the retrieval process the same as the one, .. "' i LE

. : at time ¢ and a is the activity of the stored patterns,
for the memorized patterns [4—6]. This has led to several »

discussions imposing external constraints on the dynamicg €1{0.1} p =1,...,p. The latter are independent
posing y entically distributed random variables (IIDRV) with re-
(see the references in [3]). Clearly, the enforcement o

. . spect toi andu determined by the probability distribution
such a constraint at every time step destroys part of the(gg) — a5 — 1) + (1 — a)8(£"). At this point we
autonomous functioning of the network. Pisi ! e P

An important question is then whether the capacit remark that the activity can be written as= (1 — )/2

; : L . yWith —1 < b <1 the bias of the patterns as defined,
of storage and retrieval with non-negligible basins of . By _ ;

: . - . .g., in [4]. Infact(£;") = a but no correlations occur,
attraction can be improved and even be optimized withou By By ey :
; . : . 1Le., (& &Y — (£7)Y(&7) = 0. We now consider an ex-
imposing these external constraints, keeping at the sami,

time the simplicity of the architecture of the network. mely diluted asymmetric version of this model in which

; i . .__each neuron is connected, on average, Witbther neu-
In this Letter we answer this question by proposing ..\ that case the synaptic couplings are deter-

a complete self-contromechanism in the dynamics of . .
neural networks. This is done through the introductionmmed bY,th}? covariance rule
of a time-dependent threshold in the transfer function.s; = =2 > (¢ — a) (&) — a), a
This threshold is chosen as a function of the noise in Ca ;=
the system and the pattern activity, and adapts itself in (2)
the course of the time evolution. The difference withHere the C;; € {0,1} are I1IDRV with probability
existing results in the literature ( [3—6]) precisely lies in PACi;j = 1} = C/N < 1,C >0. For a =1/2 and
this adaptivity property. This immediately solves, e.g.,0: = 0 we recover the diluted Hopfield model.
the difficult problem of finding the mostly narrow interval ~ The relevant order parameters measuring the quality of
for an optimal threshold such that the basins of attractiofietrieval are the overlap of the microscopic state of the
of the memorized patterns do not shrink to zero. network andl theuth pattern, and the nfof:" activity

We have worked out the case of sparsely coded, diluted » _ 1 o — L ,
models. We find that the storage capacity, the basins = '  Na Z § i N = Z i (3)

a(l — a).
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The my , are normalized within the intervd0, 1]. They 6, we obtain that2n ~ M,[«Q,]"'/?. This leads to
have to be considered over the diluted structure such tha{a) ~ n(1 — 2a). Here we remark that itself depends
the loading«a is defined byp = «C. The Hamming on « in the sense that for increasingit gets more diffi-

distance between the state of the neuron and the pattecuolt to have good retrieval such thatdecreases. But it
&R can be written ag;’ = a — 2ampy, + qu.. can still be chosea priori.

To fix the ideas and without loss of generality, we In the limit of sparse coding meaning thatis very
take an initial network configuration correlated with only small and tends to zero fof — <, we can present a more
one pattern, sayu = 1, meaning that onlym}v,, is  refined result for(a) by rewriting the second term on the
macroscopic, i.e., of orde® (1) in the thermodynamic right-hand side of Eq. (5) asymptotically as
limit C, N — . The rest of the patterns cause a residual 1 aM c(a)
noise at each time step of the dynamics. Depending on thé[Fg[—aM + w]), = — [1 - erf( + —_ﬂ
architecture of the network this noise might be extremely 2 V2aQ V2

— 2
difficult to treat [7]. A novel idea is then to let the € /2
network itself autonomously counter this residual noise 27

at each_ step of the dynamics, by introducing an adaptiverhis term must vanish faster than so that we obtain
hence time-dependent, threshold. We propose the genercalz [—2 In(a)]'/2. Using this and the first inequality

— 1/2 i ; i i . .
form 6, %1 C(ﬁ) [Var(al)t)] hW't.h @ fthrlls reS|dua|1(I . written down above we can evaluate the maximal capacity
n0|se.| ¢ .f's S?. —((j:ontro [[neé: tanlsm of the network IS¢ \yhich some small errors in the retrieval are allowed.
complete if we find a way to determinga). The result ise = O(JaIn(a)|™"), which is of the same

In qrder to do S0 we first write down the evolution order as the critical capacity found for non-self-controlled
equations governing the dynamics. We recall that for, parsely coded neural networks [3,6,11—13]

the particular model we are considering the parallels Next, it is known that while the Hamming distance is a
dynamics can be solved exactly following the method ood n%easure for the performance of a uniform network
involving a signal-to-noise analysis (see, e.qg, [8,9]). Suc a ~ 1/2), it does not give a complete description of
an approach leads to the following equations for the ord he inforrr;ation content for sparsely coded networks. It

parameters 1” the thermodynamllc lingit N — oo cannot distinguish between a situation where most of the
myy = (Fol(l = aM; + o], (4)  wrong neurons &; # &;) are turned off and a situation

giv1 = aml, + (1 — a)(Fg,(—aM}! + 0,))0., (5) yvhere these wrong neurons are tumed on. This distinction

is extremely critical because the inactive neurons carry

H 1 — 1 _ —
with M = (m, ¢1)/(1 = a), where we have averaged |oqq information than the active ones. For example, when
over ¢' and where the angular brackets indicate that We_ " nforalli d = a and hence vanishes in the sparsely
still have to average ovewm, which can be written as .’ Y

coded limit, while foro; =1 for all i, d =1 — a and

_ 1/2 - — (] - 2 . ) ,
wj\,[ 0 [lang; NO,1) Wgh O '(t)l Zf[’r)]% taand  ponee goes td. However, in both cases no information
(0, 1) a Gaussian random variable with mean zero an(?s transmitted. To solve this problem we introduce the

; | ] ,
variance unity. Then, and ¢, are the thermodynamic mutual information content of the network.

I .
I'TLLS 0:| (3]2.' | dThe gulantltyMt rﬁduiei. to _th;e ;ver?p The mutual information function ([14]) is a concept in
of the Hopfield model, again when taking= 1/2 an information theory which measures the average amount of

0 E= 0. From;ow 3” ;ve f_orget abl?ut the s”urée(rjscﬂjpt .__information that can be received by the user by observing
quations (4) and (5) give a self-controlie ynamicSy, q signal at the output of a channel. For the problem at

if we can completely specifya priori, the threshold hand, i.e., retrieval dynamics of the pattezrn= 1, where

0 proposgd before. For the present modél, is a each time step is regarded as a channel, it can be defined
macroscopic parameter, thus no average must be dor&es (we forget about the time inde

over the microscopic random variables at each time step

t. This is different from some existing models, e.g., [10] (o &) = S(oi) — (S(ailéi)e, » (6)
where a local threshold;; is taken (to study periodic

behavior of patterns). Therefore, we have a mapping with S(o;) = — ZP(O'i) In[p(a)], @
a threshold which changes each time step but no statistical o

history effects the evolution process. What is left then is

to find an optimal form for(a). S(oilé) = = ploilé) [ p(al€)]. (8)
A very intuitive reasoning based on the detailed be- 7
havior of Egs. (4),(5) goes as follows. To hawe~  Here S(o;) and S(o;|&;) are the entropy and the condi-

1 — erfdn) andg ~ a + erfc(n) with n > 0 at a given  tional entropy of the output, respectively. We note that
¢t such that good retrieval properties, i.er; = ¢ for  they are not used, as in thermodynamics, to determine
most i are realized, we want the following inequali- the number of possible realizations of the network giv-
ties to be satisfied: (1 — a)M, — n[aQ,]"/> = 6, and  ing good retrieval. They have a dynamical content and
—aM, + n[aQ,]"* = 6,. Using the general form for are peculiar to the probability distribution of the output.
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FIG. 1. The informationi as a function off without self- . . '
control fora = 0.1 (top) anda = 0.001 (bottom) for several |he expressions for the entropies defined above become

values ofe. S(o) = —qing — (1 = @In(1 — g).  (11)
The termS(o;|£;) is the equivocation term in the retrieval _ B .
process. In (8p(co;|é&;) is the conditional probability that (Sl almin(m) + (1= m)In(l = m)]
the ith neuron is in a state; at timez, given that theth -1 -a)
site of thi e [bemf Eetr'eveo;ﬁﬁja X [yolnyo + (1 = yo)In(l = yo)l. (12)
rlald) = 1o m = Y0)é100 Recalling Eq. (6) this completes the calculation of the
+[1 = yo — (m — y0)€]8, mutual information content of the present model.
— We have solved this self-controlled dynamics for the
= (q — 1 - 9
vo = (g = am/( @), © sparsely coded network numerically and compared its

where we have assumed that this formula holds for everyetrieval properties with non-self-controlled models. We
site indexi, and where the: andq are precisely the order 4.6 interested only in the retrieval solutions leading to
parameters (3) forN — «. We have also used the ,; - (and carrying a nonzero informatidn

normalization., p(e|1) = >, p(c|0) = 1. Using the In Fig. 1 we have plotted the information content
probability distribution of the patterns, we obtain pNI/#J = al as a function ofg for @ = 0.1 anda =
_ _ _ _ 0.001 and different values of, withoutself-control. This
plo) = %P(f)P(Cﬂf) =qd8(c =D+ (1 =9)8).  justrates that it is difficult, especially for sparse coding,
to choose a threshold interval such thé nonzero.

10
(10) In Fig. 2 we compare the time evolution of the retrieval

overlap, m;, starting from several initial values;,, for

-~ e -
(YT Sad >y d &

0.1

0.0
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t t FIG. 4. The informationi as a function ofM, for a =

FIG. 2. The evolution of the overlap:, for several initial 0.3,a = 04,7 = 8 with (¢ = 1) and without self-control.
valuesmy, with gy = 0.01 = a anda = 4 for the self-control  Left: analytic results. Right: simulations fo¢ = 47.000,C =

model (right) and the optimal threshold model (left). 50, p = 20 averaged over ten samples.
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FIG. 5. The informationi as a function ofa for the self- FIG.6. The maximal information imay/IN(2) and
control model with several values of amaxa| In(a)| as a function of In(a)].
the self-control model with an initial neural activigy =  scale. It shows thaim. increases with|In(a)| until

0.01 = a and 6, = [—2(Ina)aQ,]'/?, with the model it starts to saturate. The saturation is rather slow, in

where the threshold is chosen by hand in an optimagreement with results found in the literature [12,13].

way in the sense that we took the one with the greatest In conclusion, we have found a novel way to let a

information contenti, by looking at the corresponding diluted network autonomously control its dynamics such

results of Fig. 1 fora = 0.01. We see that the self- that the basins of attraction and the mutual information

control forces more of the overlap trajectories to go tocontent are maximal.

the retrieval attractor. It does improve substantially the We thank S. Amari and G. Jongen for useful discus-

basin of attraction. This is further illustrated in Fig. 3 sions. This work has been supported by the Research

where the basin of attraction for the whole retrieval phasé-und of the K. U. Leuven (Grant No. Q94/9). One of

R is shown for the model with &, selected for every us (D. B.) is indebted to the Fund for Scientific Research—

loadinga and the model with self-contrél.. We remark  Flanders (Belgium) for financial support.
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