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A novel mechanism for dephasing in dielectric glasses is considered. The mechanism is due t
delocalized collective excitations arising in the ensemble of the interacting two-level systems.
spectral diffusion induced by these excitations gives rise to the phonon-independent transverse
ation. The mechanism results in the linear temperature dependence of the dephasing rate and be
predominant at ultralow temperatures. A qualitative agreement with the experimental data is fo
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The investigation of dielectric glasses has reveale
the anomalous temperature behavior of their relaxatio
properties at ultralow temperatures. For example, th
standard temperature-dependent longitudinal relaxati
rate, t

21
12ph , T 3, is well known to be inherent to the

tunneling model [1] and is due to the relaxation drive
by the one-phonon processes [2] in the two-level system
(TLS). However, the measurement of the internal frictio
[3] in amorphous SiO2 and experimental investigations
of the dielectric losses in different amorphous solids [4
has brought out that this dependence crosses over i
t

21
1 , T if the temperature is low enough.
On the other hand, a linear temperature dependence

also been found for the transverse relaxation ratet
21
2 in

the experiments concerning the echo-type investigation
the phase memory timet2 in Suprasil-I at temperatures
T , 30 mK [5,6] and in the orientationally disordered
systemssKBrd12xsKCNdx at T , 50 mK [7,8]. The de-
phasing, induced by the phonon-assisted longitudin
relaxation of the TLS, should result in just the sam
temperature dependenceT 3. Another and more effective
dephasing mechanism, which is governed by the spect
diffusion induced by the phonon-assisted transition
occurring in the surrounding TLS, leads to the dependen
[9,10] t

21
22ph , T2. This mechanism is due to the1yR3

interaction between the TLS. The key role of this in
teraction in understanding the relaxation properties
the dielectric glasses at ultralow temperatures has be
demonstrated in Refs. [11,12]. It is shown in these pape
that a new type of delocalized multiparticle excitation ap
pears in the ensemble of the TLS interacting by the1yR3

law. In addition, it is the relaxation of these excitation
that gives rise to the anomalous relaxation properties
the glasses.

An explanation of the linear temperature dependen
for t

21
1 involving the relaxation of this type of excitations

was given in the paper [12]. The purpose of this Lette
is to show that the dephasing mechanism and the line
temperature dependence for the dephasing ratet

21
2 are

both closely related to the dynamics governed by the
multiparticle excitations.
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An isolated TLS can be described by the standa
pseudospin Hamiltonian

hi ­ 2DiS
z
i 2 D0iS

x
i . (1)

Following Ref. [1], we accept that the distribution func
tion for the asymmetryD and the tunneling amplitudeD0

obeys the universal distribution

PsD, D0d ­
P
D0

. (2)

The interaction between the TLS in the dielectric glass
arises either from the strain field or from the direc
electrical dipole-dipole interaction and can be describe
by the HamiltonianbV ­

1
2

X
i,j

UsRijdSz
i Sz

j , UsRijd ­
U0

R3
ij

, (3)

where Rij is the distance between two TLS, andU0 is
the characteristic coupling constant. The dimensionle
parameterPU0 ø 1023 for all the known glasses [13].
This condition indicates that the interaction between TL
is very weak.

Let us consider relaxation of anexcited TLS with
certain energy splittingE ­ sD2 1 D

2
0d1y2. The simplest

relaxation channel different from the phonon-assisted o
is a hopping of the excitation from the excited TLS to
another TLS which is initially in theground state with
the parametersD0, D

0
0, E0. As a result, the firstTLS

excited before goes over into the ground state, whi
the second TLS proves to be in the excited state. T
inverse process also takes place so that the pair of
TLS under consideration can be detected in one of the tw
states separated by the energy intervaljE 2 E0j. In what
follows, these two states of the TLS pair will be referre
to as aflip-flop configuration. Such a TLS pair can be
considered as anew typeof the two-level system with the
asymmetryDp ­ jE 2 E0j. In addition, as follows from
Eqs. (1) and (3), the tunneling amplitude that couples tw
states of the flip-flop configuration of the TLS pair is
given by the relation [10,12,14].

D0psRd ø U0sRd
D0D

0
0

EE0
. (4)
© 1998 The American Physical Society 2945
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Thus, one should describe the relaxation of the initiall
excited TLS in terms of the transition between the stat
of the flip-flop configuration of the TLS pair.

If a two-level system with the parametersD andD0 was
initially in the first state, the time-dependent probability to
find the system in the second state is given by the soluti
of the corresponding temporal Shroedinger equation

W2std ­
D

2
0

D2 1 D
2
0

sin2s
q

D2 1 D
2
0 ? td . (5)

This relation applied to the transition between th
levels of the flip-flop configuration of a TLS pair means
that the transition probability is noticeable provided th
parameters of the TLS pair obey the condition

Dp ­ jE 2 E0j , D0psRd . (6)

Hereafter such a TLS pair is referred to as aresonant
pair (RP). In addition, the frequency of the quantum
mechanical oscillations between the states of the flip-flo
configuration

t21 ­
q

sD2
p 1 D

2
0pd ø D0psRd (7)

is completely determined by the parameterD0psRd.
Let us consider an excited TLS with the paramete

D0, E and estimate the minimum size of a resonant pa
RminsD0, Ed involving this TLS. For this purpose, one
should calculate the average numberNfR; D0, Eg of the
TLS in the ground state with the parametersD

0
0, E0 which

compose a resonant pair with the examined excited TL
within the sphere of radiusR. Using Eqs. (2), (6), and
(4), we find

NfR; D0, Eg ­ P
Z

dD0
Z dD

0
0

D
0
0

Z R

a
dr

? QfD0psrd 2 Dpg

ø
D0

E
PU0 ln

µ
R
a

∂
, (8)

where Q is the Heaviside function involving the reso-
nant condition Eq. (6) anda is the minimum permis-
sible distance between two TLS. The minimum siz
of a resonant pairRmin is a radius within which one
can detect a resonant pair with a probability close
unity, i.e., NfR; D0, Eg ø 1. Therefore RminsD0, Ed ø
a exp

≥
E

D0PU0

¥
. The rate of oscillations (7) for the pair of

such size is given by the relation

t21
min ø D0psRmind ø

U0

a3

D0

E
exp

(
2

E

D0PU0

)
. (9)

Let us note that therelaxation rate, at least, is smaller
than the rate of the quantum mechanical frequencyt

21
min.

Bearing in mind the smallness of the parameterPU0 and
the fact thatD0 is always less thanE, we conclude that
the value of the relaxation time obtained, if any, is to
2946
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large to be observed. So, during such a long period,
excited TLS would relax via the standard phonon-assist
mechanism. In addition, one should also pay spec
attention that the estimation (9) allows us to conclude th
any attempt (see Ref. [15]) to link the relaxation in th
glasses with the single-quantum phononless delocalizat
has no real basis.

The scenario of the phononless relaxation mechani
described above is valid only if every RP relaxesindepen-
dentlyand, thus, onlytwo TLS take part in the elementary
relaxation act. This assumption is valid provided one c
neglect the interaction betweendifferent excitedTLS. Be-
low we will show that, because of the availability of th
macroscopicnumber of excited TLS in the system at tem
peratureT . 0 and due to the1

R3 -law interaction between
TLS, this assumption is not valid, and the relaxation
the ensemble of the interacting TLS is of a multipartic
origin. In other words, one should take into account th
simultaneous relaxation oftwo RP and thus thefour TLS
will participate in the elementary act [11,12,14].

Generally speaking, any RP has four energy leve
Two of them correspond to the flip-flop configuratio
mentioned above. The two rest states of the pair cor
spond to the configuration when both TLS are either
the excited or in the ground state. Let us explain wh
a resonant pair[see Eq.(6)] can be considered as a ne
type of TLS. In fact, because of the Gibbs factor one c
restrict the consideration to those TLS for whichE ø T .
Then one should take into account that the larger the va
of the tunneling amplitudeD0psRd, the greater the proba-
bility to form a resonant pair [see Eq. (6)]. Thus it di
rectly follows from Eq. (4) that one can confine onese
to the conditionD0 ø E. Therefore, in what follows, one
can consider only RP composed from the TLS for whic
D0 ø E ø T .

The states of the flip-flop configuration are separat
by the energy intervalDp ­ jE 2 E0j. In spite of
the fact thatE, E0 ø T one can construct an RP for
which Dp , D0p ø T . Then, even if the interactionV sRd
between these TLS is weak, the conditionDp # D0p

can be valid. Therefore the two levels of the flip-flo
configuration are strongly coupled [see Eq. (6)]. On th
other hand, the rest two levels are separated from
flip-flop configuration by the energy interval of the orde
of the magnitude of temperatureT , while the amplitude
which couples them to the flip-flop configuration level
does not exceed at leastD0p ø T . For this reason,
these two levels are very weakly coupled to the flip
flop configuration levels. It is this circumstance tha
in the remainder of this Letter, allows us to conside
only the flip-flop configurations of a RP and therefor
to treat an RP as a kind of two-level system wit
the energy asymmetryDp ­ jE 2 E0j and tunneling
amplitudeD0psRd (4).

Thus, below we investigate the relaxation of this nov
RP type of the two-level system for which the distributio
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function for the parametersDp andD0p is defined as

Ps2dsDp , D0pd ­

ø
dsDp 2 jE 2 E0jd

3 d

µ
D0p 2

U0

R3

D0D
0
0

EE0

∂¿
, (10)

where the brackets denote the two averaging, namely,
Gibbs averaging and averaging over the distribution
the parameters of the original TLS [see (2)]. In additio
the integration over the distanceR is implied, so the left-
hand side of Eq. (10) can be rewritten asZ

d3R
Z

PsD, D0d dD dD0

Z
PsD0, D0

0d dD0 dD0
0nsEd

3 f1 2 nsE0dgdsDp 2 jE 2 E0jdd
µ

D0p 2
U0

R3

D0D
0
0

EE0

∂
,

(11)

with nsEd ­ f1 1 expsEyT dg21 being the probability to
find a TLS in the excited state. To estimate expressi
(11), it is necessary to take into account that because
the Gibbs factor the integral is determined mainly by th
region ofE ø E0 ø T . Therefore, due toDp ø E ø T
one can omitDp in the argument of the first delta func-
tion. After these comments one can easily estimate
pair distribution function within the logarithmic accuracy
[12]

Ps2dsDp, D0pd ø sP̄T d sP̄U0d
1

D
2
0p

. (12)

One should pay attention that the distribution functio
(12) differs from (2) but also does not depend on th
parameterDp at all. The distribution function (12) has
a stronger singularity at smallD0p than Eq. (2) at small
D0. For this reason, the concentration of the low ener
RP excitations is larger (and correspondingly the avera
distance between them is smaller) than for the initi
TLS. The coupling constantsUsRd for both TLS and RP
being of the same order of magnitude, the low energy R
interact and relax stronger than the TLS.

The ensemble of RP, a new kind of the TLS, i
described by the initial Hamiltonian Eqs. (1) and (3). Th
only, but a key, distinction from the initial model is tha
the distribution function (12) should be used instead
Eq. (2) at temperatureT . 0. Again, let us remember
that we are only interested in the RP for whichDp # D0p .

To reveal the relaxation properties of the introduce
RP model, let us consider an RP stripk with the
transition amplitude lying within an intervalfD0pskd 2

D0pskdy2, D0pskd 1 D0pskdy2g, with D0pskd being equal
to any permissible value ofD0p . One can estimate the
concentration of the RPNk within this strip taking into
account the distribution function (12) as

Nk ø sP̄Td sP̄U0d ­ Np . (13)

An important conclusion should be made. The R
concentration in the chosen strip, marked by the ind
number k, is completely independent of the chose
the
of
n,

on
of
e

the

n
e
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value D0pskd. Picking out the strips corresponding to
all permissible valuesD0p , one can cover completely
the whole ensemble with the RP. Within any strip the
RP concentration is constantNp. Because of the last
circumstance the average distance between the RP wit
any strip does not depend on the kind of the strip an
equalsRp ø N

21y3
p . Since the interaction between the

RP is of the same origin as between the former TLS
the interaction between the RP is given by the expressi
U0yR3 [see Eq. (3)]. Therefore the typical energy of the
interaction between the RP within any of the strip is

UsRpd ø U0yR3
p ø T sP̄U0d2. (14)

Because of this interaction the RP asymmetry energ
Dpskd * UsRpd. Bearing in mind that for any RPDp #

D0p , below one should consider only the RP strips, fo
which D0pskd * UsRpd.

The RP being a kind of TLS, one can introduce
concept of a flip-flop configuration for two RP and deduc
the expression for the transition amplitudeD0 between the
levels of this configuration [which is similar to that of
Eq. (4)]. So for the stripk one obtains that

D0skd ø UsRpd

√
D0pskd
Epskd

!2

. (15)

Let us investigate the relaxation of the RP due to it
interaction with the RP of the same strip. Like the TLS
case the relaxation of the RP, being a kind of TLS
is possible only if the RP within the strip are strongly
coupled [see Eq. (6)], i.e.,

Dskd ­ jEpskd 2 E0
pskdj # D0pskd . (16)

Let us consider the strip for whichD0pskd ø UsRpd.
SinceEpskd ø Dpskd ø D0pskd ø UsRpd in this case, it
proves to be thatDskd # D0skd ø UsRpd. Thus the con-
dition (16) is valid. The rate of the quantum mechani
cal oscillations for the RP [similar to that in Eq. (9)] is
t21

p ø D0skd ø UsRpd. In addition, we simultaneously
arrive at the situation which is responsible for the appea
ance of the infinite cluster of the strongly coupled RP
If one attempts the problem in the spirit of the genera
concept of the delocalization in the disordered media, d
veloped by Anderson, we conclude that the excitations
this cluster should be delocalized and relaxation of the e
citation within the strip takes place at the ratet21

p .
Let D0pskd ¿ UsRpd. ThenEpskd ¿ UsRpd, and con-

sequentlyDskd ¿ UsRpd. On the other hand, as follows
from Eq. (15), at any caseD0skd # UsRpd. Thus the cri-
terion (16) is not fulfilled and relaxation of the RP within
the strip of such kind does not take place.

Thus only the RP within the strip characterized by th
tunneling amplitudeD0pskd ø UsRpd do relax, and the
relaxation rate is equal to

t21
p ø UsRpd ø T sP̄U0d2. (17)

The relaxation of a RP is nothing else but a relaxatio
of two TLS. For this reason, the relaxation of the RP
2947



VOLUME 80, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 30 MARCH 1998

-

e
e
d

n

e
R
-
.

.

,

.

combined with the1yR3 law for the interaction between
the TLS gives rise to the spectral diffusion meaning th
dephasing in the system.

Let us consider the time-dependent fluctuation of th
phase at an arbitrary probed TLSdFstd, induced by the
energy-splitting fluctuationdEstd. The proper dephasing
time t2 should be estimated from the relation

dFst2d ­ t2dEst2d ø 1 . (18)

First, let us calculate the energy-splitting fluctuationdEstd
within the time intervalt ­ tp. The overall number of
the RP and therefore approximately the number of th
TLS undergoing the transition during the intervalt ­ tp

is of the order of the magnitude ofNp. Bearing in mind
the fact that every RP experiencing the transition at th
distancer from the probed TLS contributes a valueUsrd
[see Eq. (3)] into the energy-splitting fluctuation for the
probed TLS, one can estimate

dEstpd ­
X

r
Usrd ø NpU0 ø UsRpd .

Then, taking into account Eq. (17), one can find tha
t21

p dEstpd ø 1. The comparison of this relation with
Eq. (18) allows us to linktp with t2 and therefore

t21
2 ø UsRpd ø

T
h̄

sP̄U0d2, (19)

where Planck’s constant̄h is introduced to restore the
correct dimensionality. This dephasing rate decreas
linearly with the temperature. Compared with the
phonon-induced channel providing aT 2 dependence (see
[9]), the dephasing governed by the mechanism concern
predominates at sufficiently low temperatures.

It was found in [12] that, for Suprasil-I at temperature
T 0 ø 30 mK, the longitudinal relaxation governed by the
mechanism suggested crosses over into that driven by
traditional phonon-induced mechanism. The crossov
point for the transverse relaxation is determined from
the relationt22phsT 00d ø t2sT 00d. The calculation ofT 00

shows that it has the same value asT 0. Thus, the tran-
sition to the relaxation regime driven by the phononles
mechanism occurs fort1sT d andt2sT d simultaneously.

A number of experimental data is available for the d
rect measurement oft2sT d at ultralow temperatures [5,6].
A linear temperature dependence for the dephasing r
t

21
2 sT d at T , 30 mK has been reported in these pa

pers. At higher temperature the phonon-induced spect
diffusion dominates, andt21

2 follows a T2 dependence
(see [16]). In addition, recently the measurement of th
transverse relaxation rate has been made on a quite
2948
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ferent materialsKBrd12xsKCNdx which is known to ex-
hibit glassy properties [8]. Here again the linear tempera
ture dependence fort21

2 was revealed forx ­ 0.08 at
T , 50 mK. These experiments are in agreement with
the result obtained in this Letter.

Thus, our approach for the dephasing rate in th
amorphous systems indicates the decisive role of th
long-range interaction between the tunneling centers an
strongly supports the existence of the novel relaxatio
mechanism in the glasses considered in [11,12].
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