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Off-Equilibrium, Static Fields in Dielectric Ferrofluids
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The usual, frequency dependent permittivitiesm and e yield only an incomplete account of electric
and magnetic dissipation when they are both important. Especially, a certain type of static fi
ignored: Transverse, coupled, and dissipative. They vary exponentially in space, with a decay
that is macroscopic in select systems. [S0031-9007(98)05678-6]
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Linear response theory applies impeccable logic to d
rive the properties of the permittivitiese and m. With-
out explicit reference, atomic scale distribution of charge
and currents—both present and in the past—are accoun
for. The real parts ofe andm are even functions of the
frequencyv, they express the reactive response, such
the oscillatory motion of the microscopic charges in th
presence of a periodic field. The imaginary parts are od
functions ofv, they parametrize dissipation and absorp
tion [1]. There is no doubt that a great deal of physics
captured by measuringesvd andmsvd, and by calculating
them for various systems. However, the diagonal stru
ture of the constitutive relations, the fact that the electri
field plays no role in the magnetic constitutive relation, an
vice versa, the magnetic field does not partake in the ele
tric one, is really an assumption that is hard to justify o
general grounds, and as we shall see, is even in isotro
media not always correct.

When questioning whether these constitutive relation
are (within their linear range of validity) general enough
to cover all conceivable circumstances and any mate
als of interest, one must employ an independent macr
scopic framework of at least equal rigor and standing
This is provided by the thermo- and hydrodynamic theory
Presuming local equilibrium, the hydrodynamic theory i
valid for any field strength but confined to low frequen
cies. The linear response theory, on the other hand,
valid for arbitrary frequencies as long as the field is su
ficiently weak. A comparison must therefore take plac
in the double limit of low frequencies and weak fields
where both ranges of validity overlap. Here, agreement
every detail must be expected, but is not found. And th
discrepancy can be traced to the assumed diagonal str
ture of the constitutive relations, which contradicts bas
thermo- and hydrodynamic considerations.

In the linear response theory, if electric and magnet
fields are static in a dielectric medium, they are als
in equilibrium, and decoupled from each other. Th
hydrodynamic theory, on the other hand, allows them t
be both time independent and dissipating—similar to
constant temperature gradient, or a constant electric fie
in a conductor. These stationary electric and magnet
fields are coupled and transverse; they start off from
the boundary and extend over a certain distance into t
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bulk, defining a surface region. Although this distance is
frequently tiny, and very ignorable, it turns macroscopic
in magnetic systems such as some dielectric ferrofluid
[2], where it is around 30 m. Clearly, one is hard presse
to find any bulk region here.

An equivalent statement is that spatial dispersion (i.e
spatial nonlocality and the wave vector dependence ofe

and m) must not be neglected in these systems. Thi
is plausible because the presence of a boundary mak
itself felt over macroscopic distances, and because the
stationary fields depend sensitively on the properties o
the substance forming the boundary.

Take a slab of a dielectric ferrofluid,L ­ 1 cm wide.
Expose this liquid to an oscillating electric or magnetic
field, tangential to the slab, of a frequencyv ø cyL,
and measure the internal field. Conventional wisdom
holds that the result is a uniform internal field,E or H,
that oscillates in phase with the external one and ha
the same magnitude, soD and B display a phase lag
proportional to the imaginary part of the permeability,e00

and m00. The hydrodynamic consideration includes the
surface region mentioned above and depends on the ty
of the containing plates: If they are nonconducting, the
phase lag has the same magnitude but an opposite sig
Consequently, irrespective of the experimental outcom
one of two theories feigns a negativee00 and m00. If the
plates are conducting, the prediction is even more striking
as the internal electric field should then be drastically
reduced. These effects result directly from the existenc
of the dissipative, exponential fields, and probing them
cuts both ways: If the hydrodynamic predictions are
vindicated, the usual linear response theory is shown
be incomplete; if not, some basic considerations of th
thermo- and hydrodynamic theory need scrutinizing.

In what follows—after a brief introduction to the per-
haps less familiar hydrodynamic theory of electromag
netism—we shall first evaluate when, why, and how th
linear response and the hydrodynamic theory differ, the
discuss this experiment in appropriate details.

The hydrodynamic theory accounts for the complet
low frequency behavior of systems that are polarizable
magnetizable, or charged [3]. It has been obtained b
the time proven “standard procedure” to set up the hy
drodynamic equations [4]. Though seemingly unorthodo
© 1998 The American Physical Society 2937
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at times, it is rather elementary in its essence, and es
cially easy to comprehend by analogy. Consider a typ
cal hydrodynamic equation, that of Navier-Stokes,Ùgi 1

=jspij 1 p
D
ij d ­ 0. The momentum densitygi ­ ryi

is a thermodynamic variable, odd under time inversio
The stress tensorpij 1 p

D
ij is the corresponding flux,

with two parts: The reactive one is (if linearized) given
by the pressure,pij ­ pdij, a thermodynamic deriva-
tive. It is even under time reversal, same asÙgi . The
dissipative part of the flux is odd,pD

ij ­ 2hyij 1 . . .
with yij ; 1

2 s=iyj 1 =jyid. It breaks the time inversion
symmetry of the Navier-Stokes equation and thereby a
counts for dissipation and irreversibility. Generally, quan
tities such asyij or =iT are referred to as thermodynamic
forces. Every thermodynamic variable has its thermod
namic force, the vanishing of which ensures equilibrium
with respect to this variable. For instance,yij ­ 0 en-
sures maximal entropy with respect to variations of th
momentum densitygi for a given total momentum (i.e.,
yij ­ 0 is the respective Euler-Lagrange equation). Ifyij

is finite, the entropy is not maximal, and the system not
equilibrium. There is then a dissipative momentum flu
,yij that redistributesgi , and an entropy production of
the rate,y

2
ij . The coefficient in both cases is the vis

cosity h. Dissipative fluxes may also be proportional t
other thermodynamic forces, and the constants are usu
referred to as Onsager cross coefficients. Every statem
in this paragraph has its analog in the next.

The Maxwell equations [5],= ? D ­ 0, = ? B ­ 0,
ÙD ­ c= 3 HM , ÙB ­ 2c= 3 EM (1)

(of a stationary, dielectric substance), impose the analo
g °! D, B and p 1 pD °! HM , EM : The thermody-
namic variables areD andB, being even and odd, respec
tively. Equations (1) are their equations of motion, whil
the two nontemporal Maxwell equations are constrain
The fieldsHM andEM appear only where fluxes do, they
therefore split into reactive and dissipative parts,

HM ­ H 1 HD , EM ­ E 1 ED . (2)
The reactive ones are (like the pressure) thermodynam
derivatives,H ; ≠uy≠B and E ; ≠uy≠D, u being the
energy density. They contain only equilibrium informa
tion and are functions of all the thermodynamic variable
For weak fields, they reduce toH ­ Bym andE ­ Dye,
where m and e depend on temperature and density, b
not the frequency. The thermodynamic forces ofD and
B are c= 3 E and c= 3 H, respectively, the vanishing
of which ensures maximal entropy with respect to var
ations inD and B—under the constraints of= ? D ­ 0
and = ? B ­ 0 [1,3]. So the dissipative fieldsHD and
ED are proportional to these two forces, and possibly al
to yij or =iT . For the isotropic case, symmetry conside
ations allow only

HD ­ 2ac= 3 E, ED ­ bc= 3 H 1 g=T , (3)
wherea, b, andg are Onsager coefficients. Asac= 3

E and bc= 3 H are of opposite parity under time
2938
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reversal than ÙD and ÙB, respectively, they account for
dissipation in the Maxwell equations, and contribute t
the entropy production at the rate ofasc= 3 Ed2 and
bsc= 3 Hd2. The coefficients are estimated [3] to be

a ­ tM sm 2 1dym, b ­ tPse 2 1dye , (4)

while g, probably smallish, may arise from the ordering
of permanent dipoles along the heat current. Asg is in
general a function of pressure,g=T does not necessarily
have zero curl. And it may become a linear term via
boundary conditions; cf. Eqs. (14) below.

This ends the review of the hydrodynamic Maxwel
theory, and we turn to a comparison between the hydr
dynamic and the linear response theory. Considering co
stant temperature, we may rewrite Eqs. (3) as

ED ­ b ÙD 1 l2= 3 = 3 E,

HD ­ a ÙB 1 l2= 3 = 3 H ,
(5)

wherel ­ c
p

ab. If either a or b is very small, both
last terms may be neglected. Then, takingH ­ Bym,
E ­ Dye, and ≠t °! 2iv, these two equations reduce
to D ­ esvdEM andB ­ msvdHM, with

esvd ­ eys1 2 ivbed, msvd ­ mys1 2 ivamd . (6)

And the hydrodynamic and linear response theory a
demonstrated as equivalent to linear order in field an
frequency. However, there are also cases in whichl

cannot be neglected: Being essentially the relaxation tim
of magnetization and polarization,a andb vary greatly,
from b ø 10215 s for transparent dielectrics, toa ø
1025 s for colloidal magnetic liquids; while water, with
a permanent molecular dipole moment, is in the middl
range,b . 1029 s. So a water-based ferrofluid should
have a colossall . 3 3 103 cm. Inserting Eqs. (5) into
Eqs. (2), the three terms each are of order: unity,vbe

or vam, and sqld2 —where the last one, withq the
wave vector, is by no means always the smallest.
spatial dispersion quantified byl cannot be neglected,
it is sensible to return to the simpler hydrodynamic
Maxwell equations, with the off-diagonal structure of
Eq. (3), whereHD is given byE, andED by H.

In the conventional linear response theory, as in Eq. (
with l ­ 0, if a field configuration is stationary (ÙD, ÙB ­
0), it is also in equilibrium (= 3 E,= 3 H ­ 0). Not
so for the hydrodynamic theory: Taking (say)Ex and
Hy , expsiqz 2 ivtd as the variables, Eqs. (1)–(3) re-
duce to a system of homogeneous, linear equations, a
the solutions are obtained by setting the correspondin
determinant to zero,

svycd2 2 q2s1 2 2ivtd 2 q4l2 ­ 0 , (7)

c2 ­ c2yme, t ­ sam 1 bedy2, l2 ­ abc2. (8)

The roots areq1 ­ 6s1 1 ivtdvyc, q2 ­ 6is1 2

ivtdyl for vt ø 1; and q2
1 ­ ivamyl2, q2

2 ­
ivbeyl2 for vt ¿ 1. The first is clearly the electro-
magnetic wave, the last two a pair of diffusive modes
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the second survives thev °! 0 limit, q2 ­ 6iyl, it is
a stationary mode in which= 3 E, = 3 H, and hence
the entropy production, are finite. As announced, the
stationary fields are coupled, dissipative, and transver
One way to find the ratio of amplitudes of the associat
fields is by setting the time derivative to zero in th
second of Eqs. (1), leading to

Ex ­ E6e6zyl, HyyEx ­ 6

q
ayb . (9)

If v fi 0 (yet vt ø 1), the fields Ex and Hy retain
their spatial dependence, but the amplitudes oscillate
time, ,exps2ivt 6 zyld. The characteristic polyno-
mial, Eq. (7), is rather typical of the hydrodynamic the
ory and accounts (with different definitions ofc, t, and
l) for collective modes in such diverse broken symmet
systems as superfluid3He and liquid crystals [6]. In anal-
ogy to these systems, we shall refer toq2 ­ 6iyl as the
(electromagnetic) sq-mode.

A dielectric medium is an idealized concept, as the co
ductivity s is never truly zero. The general spectrum o
the sq-mode,l2 ­ abc2ys1 1 sbd, remains unchanged
from above ifsb ø 1, i.e., if the relaxation timetP of
the polarization is much smaller than the charge relaxati
time 1ys [5].

In substances in whichm or e ¿ 1, we should be able
to find a frequency window, hydrodynamic yetvt ¿ 1.
Here, the two diffusive modes calculated above exi
where q2 is purely electric andq1 magnetic. They
are independent and decoupled, in contrast to the sin
diffusive mode (with the coefficientc2ys) in conductors.

We now proceed to derive the appropriate boun
ary conditions for the hydrodynamic Maxwell equation
without which no relevant discussions of concrete expe
mental situations is possible. The equations of motion f
D and B, Eqs. (1), are an order higher in spatial deriva
tive and possess additional collective modes; they ne
more boundary conditions to uniquely determine any s
lution. These are derived from the hydrodynamic equ
tions [3], employing a recently developed procedure [7
see also [6]. The resultant boundary conditions are rat
general, valid where the hydrodynamic theory is, and d
pend on the same input as the bulk theory: conservat
laws, broken symmetries, and irreversible thermodyna
ics. The microscopic information about the boundary
parametrized in surface Onsager coefficients, the mag
tude of which is unknown. As any transport coefficien
they need to be determined either experimentally, for
given pair of substance forming the interface, or in a m
croscopic calculation employing a specific model. The
are two types of boundary conditions: The first states t
continuity of the normal component of the fluxes, of thos
variables that are defined and independent on both si
of the interface. These are obtained by integrating the h
drodynamic equations over an infinitesimally narrow sla
around the interface. The second type are Onsager
lations given by the surface entropy productionRs, the
expression for which is extracted from the continuity o
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the total energy flux (that contains both material and fiel
contributions [3]).

We study two kinds of interfaces, vacuum-ferrofluid
(VFI) and conductor-ferrofluid (CFI). Both “vacuum”
and “conductor” stand for an electromagnetically iner
medium that is only weakly dissipative, witha and b

so small thatl is microscopic, andED , HD negligible
for the given frequency. It behaves vacuumlike if non-
conducting, and possesses bothE and H as independent
variables. If it is conducting,s ¿ v, only the magnetic
field is retained as an independent variable, with th
electric one given byE ­ c= 3 Hys. (Since all sub-
stances have finite conductivities, the conditions ¿ v

can always be satisfied by lowering the frequency. S
conductor may be taken to stand for the low frequenc
limit.) Finally, “ferrofluid” stands for any strongly
dissipative system that is nonconducting, dielectric, an
magnetic, in which bothED andHD are important. The
boundary conditions for theVFI andCFI are, respectively,

nHM
t ­ 0, nEM

t ­ 0, z1HD
t ­ 7ED

t 3 n̂ ; (10)

nEM
t ­ 0, EM ­ z2nH 3 n̂, E ­ 7z3HD 3 n̂ ;

(11)

in addition to nDn, nBn ­ 0. (Notations: n̂ is the
interface normal;nA ; Aleft 2 Aright; An andAt are the
normal and perpendicular components ofA, An ; A ? n̂
with n̂ pointing to the right, say alonĝz.) The first
two of Eqs. (10) and the first of Eqs. (11) belong to the
first type of boundary conditions and state the continuit
of fluxes. (nHM

t ­ 0 is not valid at theCFI because
D, the corresponding variable, is not independent in th
conductor.) The rest are three Onsager relations, wi
z1, z2, z3 . 0 and all quantities referring to the ferrofluid.
The upper sign holds if the ferrofluid is on the right; the
lower one does if it is on the left. The last of Eqs. (10) is
derived by insertingnHM

t , nEM
t ­ 0 in the expression

for the total energy flux, to obtainnQn ­ Tnfn 7

cfHD ? sED 3 n̂dg 1 . . . ­ 0, with fn the entropy flux.
Identifying 2Tnfn as Rs, the positive, singular entropy
production of the surface,HD

t and7sED
t 3 n̂d are shown

to be a thermodynamic force-flux pair, proportional to
each other. Isotropy of the interface then allows only th
scalar Onsager coefficientz1. (For the sake of simpler
display, no cross coefficients have been included.) Th
two Onsager relations of Eqs. (11) are derived in a simila
manner, the only difference being the lack ofnHM

t ­ 0.
The entropy productionRs therefore contains two terms
instead of one, yielding two Onsager relations. Note tha
nH ­ 0 is retrieved ifEM , a nonequilibrium quantity in
conductors, vanishes.

Finally, we turn to discussing the experiments men
tioned in the introduction: A slab of dielectric ferrofluid
is placed between two plates and exposed to an oscilla
ing external field, electric or magnetic, of quasistationar
frequencyv ø cyL. The plates are vacuumlike or con-
ducting in the above sense, oriented perpendicular toẑ and
2939
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located atz , 0 andz . L, respectively. The fields in the
plates areE ­ Eexstdx̂ andH ­ Hexstdŷ if they are non-
conducting, withEex, Hex uniform (andx̂, ŷ, ẑ denoting
unit vectors). In the conducting plates, withv ø s and a
correspondingly large penetration depth, the magnetic fie
acquires a constant gradient:H ­ sHL

ex 2 sEexzycdŷ for
z , 0 and H ­ fHR

ex 2 sEexsz 2 Ldycgŷ for z . L,
though the dependent electric field remains uniform,E ­
Eexx̂. Inside the ferrofluid,0 # z # L, the field can be
taken as

E ­ fE0 1 E1 expsz2Ldyl 1E2 exp2zylgx̂ , (12)

H ­
h
H0 1

q
ayb sE1 expsz2Ldyl 2E2 exp2zyld

i
ŷ .

(13)
The task now is to determine the unknown amplitudesE0,
H0, E1, and E2 from the external fields,Eex and Hex.
Conventionally, we expectE0 ­ Eexstd, H0 ­ HL

exstd ­
HR

exstd, from DE, DH ­ 0; andE6 ­ 0, since the linear
response theory does not contain the sq-mode. The h
drodynamic results are obtained employing the bounda
conditions, Eqs. (10) and (11), forz ­ 0 andz ­ L.

First, the case of the vacuumlike plates: The firs
two of Eq. (10) yieldE0 1 g=xT ­ Eex andH0 ­ Hex,
while the third determines the sq-amplitude. If the widt
of the ferrofluid slab is much larger than the sq-deca
length, L ¿ l (possible if the magnetic particles are
small, the polarization relaxes quickly, or the substance
macromolecular rather than ferrofluid), then the sq-mod
are well formed, with the amplitudes

E6 ­ sb ÙD 1 g=xT 6 z1a ÙBdyA
s1d
1 , (14)

where

A
s6d
k ­ zk

q
ayb 6 1 . (15)

Approximating ÙD ø e ÙEex, ÙB ø m ÙHex for g °! 0 (be-
causeE6yE0, E6yH0 are then of ordervbe, vam ø

1), we conclude that the sq-mode can always be excite
irrespective of the value ofz1: via ÙHex for z1 °! `, and
via ÙEex if z1 °! 0. If g is sufficiently large,ÙEex can be
substituted by a transverse temperature gradient.

In the opposite limit, forL ø l, the sq-amplitudes are

E6 ­ 6
1
2

p
ab ÙB 1 s b ÙD 1 g=xTdyf2 1 A

s2d
1 Lylg.

(16)

The approximationsÙD ø e ÙEex and ÙB ø m ÙHex (with the
additional, possibly stricter conditionA

s6d
1 Lyl ø 1 for

the electric case), then lead to the phase lags

D ­ eEexstd exps2ivbed , (17)

B ­ mHexstd exps2ivamd . (18)

Compare these to the linear response theory: Inserti
Eqs. (6) intoD ­ esvdEex and B ­ msvdHex, the re-
spective phase lag has the same magnitude, but a differ
sign. Using these formulas to interpret the experiment
outcome would therefore lead to the false conclusion th
a , m00 andb , e00 were negative.
2940
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Next we consider the conducting plates. The first tw
of Eqs. (11) yieldE0 ­ Eex andH0 ­

1
2 sHL

ex 2 HR
exd, the

third again determines the sq-amplitude,

E6 ­ Eexyse2LylA
s2d
2 2 A

s1d
2 d . (19)

In the narrow slab limit,L ø l, and assuming thatz2 is
such thatA

s6d
2 Lyl ø 1, we have

E
Eex

­
z2L
2l

r
a

b
,

H0 2 H
Eex

­
z 2 Ly2

l

r
a

b
.

(20)
The E field vanishes in the limitLyl °! 0 because
the constant term,sLyld0 in E6 exactly cancelsE0 in
Eq. (12). WithL ­1 cm andl ­ 30 m, the quotientLyl

is indeed small in the envisioned experiment. So althou
z2 is unknown, unless it has some symmetry reasons
diverge consistently, we may still concludeE ø Eex.

A static and uniform field, electric or magnetic an
normal to the surface, modifies the above consideratio
in two aspects: (i) If the field is strong enough, the syste
is no longer isotropic. This leads to many more po
sible couplings, with a proliferation of unknown Onsage
coefficients. (ii) More immediately, fields normal to the
interface give rise to ponderomotive surface forces,fD

m ­
B 3 s= 3 HDd, fD

e ­ D 3 s= 3 EDd, which have been
shown to account for the peculiar spin-up behavior
ferrofluids under a rotating external field [3]. Given
the presence of an sq-mode, these forces penetrate
the bulk and need to be compensated by the visco
stress tensor there,hy00

t 1 fD
m 1 fD

e ­ 0. As a result,
the transverse velocity participates in the exponent
excursion of the sq-mode.
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