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Off-Equilibrium, Static Fields in Dielectric Ferrofluids
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The usual, frequency dependent permittivitigsand e yield only an incomplete account of electric
and magnetic dissipation when they are both important. Especially, a certain type of static field is
ignored: Transverse, coupled, and dissipative. They vary exponentially in space, with a decay length
that is macroscopic in select systems. [S0031-9007(98)05678-6]

PACS numbers: 75.50.Mm, 41.20.—q

Linear response theory applies impeccable logic to debulk, defining a surface region. Although this distance is
rive the properties of the permittivities and . With-  frequently tiny, and very ignorable, it turns macroscopic
out explicit reference, atomic scale distribution of chargesn magnetic systems such as some dielectric ferrofluids
and currents—both present and in the past—are account§®], where it is around 30 m. Clearly, one is hard pressed
for. The real parts ok and u are even functions of the to find any bulk region here.
frequencyw, they express the reactive response, such as An equivalent statement is that spatial dispersion (i.e.,
the oscillatory motion of the microscopic charges in thespatial nonlocality and the wave vector dependence of
presence of a periodic field. The imaginary parts are odeénd ) must not be neglected in these systems. This
functions of w, they parametrize dissipation and absorp-is plausible because the presence of a boundary makes
tion [1]. There is no doubt that a great deal of physics idgtself felt over macroscopic distances, and because these
captured by measuring(w) andu(w), and by calculating stationary fields depend sensitively on the properties of
them for various systems. However, the diagonal structhe substance forming the boundary.
ture of the constitutive relations, the fact that the electric Take a slab of a dielectric ferrofluid, = 1 cm wide.
field plays no role in the magnetic constitutive relation, andExpose this liquid to an oscillating electric or magnetic
vice versa, the magnetic field does not partake in the eledield, tangential to the slab, of a frequenay < ¢/L,
tric one, is really an assumption that is hard to justify onand measure the internal field. Conventional wisdom
general grounds, and as we shall see, is even in isotrophwolds that the result is a uniform internal field, or H,
media not always correct. that oscillates in phase with the external one and has

When questioning whether these constitutive relationshe same magnitude, sb and B display a phase lag
are (within their linear range of validity) general enoughproportional to the imaginary part of the permeabili¢y/,
to cover all conceivable circumstances and any materiand . The hydrodynamic consideration includes the
als of interest, one must employ an independent macrcsurface region mentioned above and depends on the type
scopic framework of at least equal rigor and standingof the containing plates: If they are nonconducting, the
This is provided by the thermo- and hydrodynamic theoryphase lag has the same magnitude but an opposite sign.
Presuming local equilibrium, the hydrodynamic theory isConsequently, irrespective of the experimental outcome,
valid for any field strength but confined to low frequen- one of two theories feigns a negati¥€ and w”. If the
cies. The linear response theory, on the other hand, iglates are conducting, the prediction is even more striking,
valid for arbitrary frequencies as long as the field is suf-as the internal electric field should then be drastically
ficiently weak. A comparison must therefore take placereduced. These effects result directly from the existence
in the double limit of low frequencies and weak fields, of the dissipative, exponential fields, and probing them
where both ranges of validity overlap. Here, agreement irtuts both ways: If the hydrodynamic predictions are
every detail must be expected, but is not found. And thevindicated, the usual linear response theory is shown to
discrepancy can be traced to the assumed diagonal struge incomplete; if not, some basic considerations of the
ture of the constitutive relations, which contradicts basidhermo- and hydrodynamic theory need scrutinizing.
thermo- and hydrodynamic considerations. In what follows—after a brief introduction to the per-

In the linear response theory, if electric and magnetichaps less familiar hydrodynamic theory of electromag-
fields are static in a dielectric medium, they are alsonetism—we shall first evaluate when, why, and how the
in equilibrium, and decoupled from each other. Thelinear response and the hydrodynamic theory differ, then
hydrodynamic theory, on the other hand, allows them taliscuss this experiment in appropriate details.
be both time independent and dissipating—similar to a The hydrodynamic theory accounts for the complete
constant temperature gradient, or a constant electric fieldw frequency behavior of systems that are polarizable,
in a conductor. These stationary electric and magnetimmagnetizable, or charged [3]. It has been obtained by
fields are coupled and transverse; they start off fronthe time proven “standard procedure” to set up the hy-
the boundary and extend over a certain distance into thérodynamic equations [4]. Though seemingly unorthodox
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at times, it is rather elementary in its essence, and espeeversal thanD and B, respectively, they account for
cially easy to comprehend by analogy. Consider a typidissipation in the Maxwell equations, and contribute to
cal hydrodynamic equation, that of Navier-Stokés,+  the entropy production at the rate af(cV X E)?> and
Vi(m; + 77,-?) = 0. The momentum densitg; = pv;  B(cV X H)2. The coefficients are estimated [3] to be

is a thermodynamic variable, odd under time inversion. o = 1y(@ - 1)/E B =1pE— /e, ()
The stress tensorr; + 7] is the corresponding flux, Mk He P ’
with two parts: The reactive one is (if linearized) given while v, probably smallish, may arise from the ordering
by the pressures;; = pé8;;, a thermodynamic deriva- of permanent dipoles along the heat current. JAgs in

tive. It is even under time reversal, same @s The general a function of pressurgVT does not necessarily
dissipative part of the flux is oddyrfj’ = —nu;; + ... have zero curl. And it may become a linear term via
with v;; = 3(V;v; + V,v;). It breaks the time inversion Doundary conditions; cf. Egs. (14) below.

symmetry of the Navier-Stokes equation and thereby ac- This ends the review of the hydrodynamic Maxwell
counts for dissipation and irreversibility. Generally, quan-theory, and we turn to a comparison between the hydro-
tities such aw;; or V, T are referred to as thermodynamic dynamic and the linear response theory. Considering con-
forces. Every thermodynamic variable has its thermodyStant temperature, we may rewrite Egs. (3) as

namic force, the vanishing of which ensures equilibrium EP = BD + A2V XV XE,
with respect to this variable. For instanag;, = 0 en- b : ) 5)
sures maximal entropy with respect to variations of the H”=aB + A'VXVXH,

momentum density; for a given total momentum (i.e., wherex = ¢ /aB. If either @ or B is very small, both
v;; = Ois the respective Euler-Lagrange equation)v;}f  |ast terms may be neglected. Then, takiig= B/%,

is finite, the entropy is not maximal, and the system not ing = D /€, and9, — —iw, these two equations reduce
equilibrium. There is then a dissipative momentum fluxto D = e(w)E™ andB = w(w)HM, with

~v;; that redistributeg;, and an entropy production of _ o . o

the rate~v;;. The coefficient in both cases is the vis- €(w) =€/(1 —iwpe), plw)=%/(1-ivagn). (6)
cosity . Dissipative fluxes may also be proportional to And the hydrodynamic and linear response theory are
other thermodynamic forces, and the constants are usuallemonstrated as equivalent to linear order in field and

referred to as Onsager cross coefficients. Every statemefrequency. However, there are also cases in which

in this paragraph has its analog in the next. cannot be neglected: Being essentially the relaxation time
The Maxwell equations [Sy - D =0,V - B = 0, of magnetization and polarization, and 8 vary greatly,
. . ~ 1015 ; ; ~
D = ¢V x HY, B = —cV x EM 1 from B = 107> s for transparent dielectrics, te

. . . . 1073 s for colloidal magnetic liquids; while water, with
(of a stationary, dielectric substance), impose the analogy permanent molecular dipole moment, is in the middle

D M M.
g — D.Bandz + 77 — HY, E": The thermody- range,8 = 107° s. So a water-based ferrofluid should
namic variables arP andB, being even and odd, respec- ,5ve a colossal = 3 X 103 cm. Inserting Egs. (5) into

tively. Equations (1) are their equations of motion, WhiIeEqS (2), the three terms each are of order: unifge
the two nontemporal Maxwell equations are constrains,, a;aﬁ' and (gA)2—where the last one Witiq the
. M M 1 1
The fieldsH™ andE™ appear only where fluxes do, they \yaye vector, is by no means always the smallest. If

therefore split into reactive and dissipative parts, spatial dispersion quantified by cannot be neglected,
HY = H + H, EM = E + E”. (2) it is sensible to return to the simpler hydrodynamic

The reactive ones are (like the pressure) thermodynamfdaxwell equations, with the off-dlagonal structure of

derivatives,H = du/oB andE = au/oD, u being the Ed. (3), whereH™ is given byE, andE” by H.

energy density. They contain only equilibrium informa- N the conventional linear response theory, as in Eq. (5)

tion and are functions of all the thermodynamic variablesWith A = 0, if a field configuration is stationaryX, B =

For weak fields, they reduce # = B/ andE = D/e, 0). it is also in equilibrium ¥ X E,V X H = 0). Not

wherez and € depend on temperature and density, butSO for the hydrodynamic theory: Taking (sa) and

not the frequency. The thermodynamic forcesbofand 1y ~ expligz — iw1) as the variables, Egs. (1)—(3) re-

B arecV X E andcV x H, respectively, the vanishing duce to a system of homogeneous, linear equations, and

of which ensures maximal entropy with respect to vari-the solutions are obtained by setting the corresponding

ations inD and B—under the constraints 6f - D = 0 determinant to zero,

andV - B =0 [1,3]. So the dissipative fieldf” and (/) — ¢X(1 — 2iwT) — g*A

EP are proportional to these two forces, and possibly also

to v;; or V;T. For the isotropic case, symmetry consider- ¢t =c*/me, 1=(am+ BE/2, I =aBc’ (8)

ations allow only The roots areg+ = =(1 + iw7T)w/c, g- = *i(l —
H” = —acVXE, E’=BcVXH+yVT, () jwr)/A for wr < 1; and gt = iwap/A?, ¢* =

wherea, B, andy are Onsager coefficients. AscV X iwBe/N* for T > 1. The first is clearly the electro-

E and BcV X H are of opposite parity under time magnetic wave, the last two a pair of diffusive modes;
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the second survives the — 0 limit, g— = *i/A, itis the total energy flux (that contains both material and field
a stationary mode in whicW X E, V X H, and hence contributions [3]).

the entropy production, are finite. As announced, these We study two kinds of interfaces, vacuum-ferrofluid
stationary fields are coupled, dissipative, and transvers¢vri) and conductor-ferrofluid gF1). Both “vacuum”
One way to find the ratio of amplitudes of the associatedand “conductor” stand for an electromagnetically inert
fields is by setting the time derivative to zero in themedium that is only weakly dissipative, with and B

second of Egs. (1), leading to so small thatA is microscopic, andE”, HP negligible
_ +2/A _ for the given frequency. It behaves vacuumlike if non-
Er = Exe ’ Hy/Ex = Tya/B. (9) conducting, and possesses béthand H as independent

If o # 0 (yet wr < 1), the fieldsE, and H, retain  variables. If itis conductingg > w, only the magnetic
their spatial dependence, but the amplitudes oscillate ifield is retained as an independent variable, with the
time, ~exp(—iwt = z/A). The characteristic polyno- electric one given byE = ¢V X H/o. (Since all sub-
mial, Eq. (7), is rather typical of the hydrodynamic the- stances have finite conductivities, the conditor> w
ory and accounts (with different definitions ©f 7, and can always be satisfied by lowering the frequency. So
A) for collective modes in such diverse broken symmetryconductor may be taken to stand for the low frequency
systems as superfluitHe and liquid crystals [6]. In anal- limit.) Finally, “ferrofluid” stands for any strongly
ogy to these systems, we shall refeigto = +i/A as the dissipative system that is nonconducting, dielectric, and
(electromagnetic) sq-mode. magnetic, in which botiE? and H? are important. The

A dielectric medium is an idealized concept, as the conboundary conditions for theri andcFi are, respectively,
ductivity o is never truly zero. The general spectrum of M _ M _ D _ —pD w 4.
the sqg-modep? = aBc?/(1 + oB), remains unchanged AHZ =0 AES =0 GH7 ==E  x4; (10)

from above ifoc 8 < 1, i.e., if the relaxation timerp of AEﬁ” =0, EM=,LAHXxh, E=F5HP xn;

the polarization is much smaller than the charge relaxation

time 1/ [5]. (11)
In substances in whiclt or € > 1, we should be able in addition to AD,,AB, = 0. (Notations: i is the

to find a frequency window, hydrodynamic yetr > 1. interface normalAA = Ajere — Asigni; A, andA, are the

Here, the two diffusive modes calculated above existnormal and perpendicular componentsAgfA, = A - i
where ¢g— is purely electric andg; magnetic. They with i pointing to the right, say along.) The first
are independent and decoupled, in contrast to the singlwo of Egs. (10) and the first of Eqgs. (11) belong to the
diffusive mode (with the coefficient?/¢) in conductors. ~ first type of boundary conditions and state the continuity
We now proceed to derive the appropriate boundof fluxes. (AHM = 0 is not valid at thecri because
ary conditions for the hydrodynamic Maxwell equations,D, the corresponding variable, is not independent in the
without which no relevant discussions of concrete expericonductor.) The rest are three Onsager relations, with
mental situations is possible. The equations of motion foK, £, {3 > 0 and all quantities referring to the ferrofluid.
D and B, Egs. (1), are an order higher in spatial deriva-The upper sign holds if the ferrofluid is on the right; the
tive and possess additional collective modes; they neeldwer one does if it is on the left. The last of Egs. (10) is
more boundary conditions to uniquely determine any soderived by insertingAHY, AEY = 0 in the expression
lution. These are derived from the hydrodynamic equafor the total energy flux, to obtai\Q, = TAf, *
tions [3], employing a recently developed procedure [7];c[HP - (EP X f)] + ... = 0, with f,, the entropy flux.
see also [6]. The resultant boundary conditions are rathddentifying —TAf, asR;, the positive, singular entropy
general, valid where the hydrodynamic theory is, and deproduction of the surfacdly and+(Ef X i) are shown
pend on the same input as the bulk theory: conservatioto be a thermodynamic force-flux pair, proportional to
laws, broken symmetries, and irreversible thermodynameach other. Isotropy of the interface then allows only the
ics. The microscopic information about the boundary isscalar Onsager coefficiedy. (For the sake of simpler
parametrized in surface Onsager coefficients, the magndisplay, no cross coefficients have been included.) The
tude of which is unknown. As any transport coefficient,two Onsager relations of Eqgs. (11) are derived in a similar
they need to be determined either experimentally, for ananner, the only difference being the lackH = 0.
given pair of substance forming the interface, or in a mi-The entropy productioR; therefore contains two terms
croscopic calculation employing a specific model. Theranstead of one, yielding two Onsager relations. Note that
are two types of boundary conditions: The first states the\H = 0 is retrieved ifEM, a nonequilibrium quantity in
continuity of the normal component of the fluxes, of thoseconductors, vanishes.
variables that are defined and independent on both sidesFinally, we turn to discussing the experiments men-
of the interface. These are obtained by integrating the hytioned in the introduction: A slab of dielectric ferrofluid
drodynamic equations over an infinitesimally narrow slabis placed between two plates and exposed to an oscillat-
around the interface. The second type are Onsager réig external field, electric or magnetic, of quasistationary
lations given by the surface entropy productiBp, the frequencyw < ¢/L. The plates are vacuumlike or con-
expression for which is extracted from the continuity ofducting in the above sense, oriented perpendicularaiod
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located at < 0 andz > L, respectively. The fields inthe
plates aréE = E(1)% andH = H(7)y if they are non-
conducting, Withb;:x, Hexduniforml(andf(, 5}12 denotijng third again determines the sqg-amplitude,

unit vectors). Inthe conducting plates, with<< ¢ and a _ - +
correspondi)ngly large penetrat?o% depth, the magnetic field Ex = Eex/(e L/AA(Z - A(z ))' (19)
acquires a constant gradielf: = (HL — oE.z/c)y for  In the narrow slab limitL < A, and assuming tha is
z<0 and H = [HR — 0En(z — L)/cly for z > L, such tha’rAgi)L//\ < 1, we have

though the dependent electric field remains unifoBTe=

E..X. Inside the ferrofluidp) = z = L, the field can be E = bl /g, Ho — H - L/2 ,g )
taken as Eex 22\NB Eex A B

E =[E) + Erexpg? YA+ F_exp ¥k,  (12) (20)
The E field vanishes in the limitL/A — 0 because
H = [Ho +yJa/B (Eiexgf D/ —F_ eXp_Z/A)})A’- the constant term-(L/A)° in E+ exactly cancel€, in
(13) Eqg. (12). WithL =1 cmandAx = 30 m, the quotienL /A

The task now is to determine the unknown amplituigs is indeed small in the enyisioned experiment. So although
Ho, F., and E_ from the external fieldsE,, and H.,. £ is unknovv_n, unless it has some symmetry reasons to
Conventionally, we expecEy = Eu (1), Ho = HL (1) = diverge (_:on5|stently, we may still cor_chuEe<< Eex._
HR (1), from AE, AH = 0; and E-~ = 0, since the linear A static and uniform flel_d_, electric or magngtlc ar_1d
response theory does not contain the sq-mode. The h lormal to the surface, modifies the above considerations

drodynamic results are obtained employing the boundarif! tWo aspects: (i) If the field is strong enough, the system
conditions, Egs. (10) and (11), fer= 0 andz = L. is no longer isotropic. This leads to many more pos-
First, the case of the vacuumlike plates: The firstSible couplings, with a proliferation of unknown Onsager
two of Eq. (10) yieldEy + yV.T = Ee andHy = Hex coefficients. (ii) More immediately, fields normal to the
while the third determines the sg-amplitude. If the widthinterface give rise to ponderomotive surface fordis~
of the ferrofiuid slab is much larger than the sq-decayB X (V X HP), £ =D X (V X E7), which have been
length, L > A (possible if the magnetic particles are S"OWn to account for the peculiar spin-up behavior of
small, the polarization relaxes quickly, or the substance i€€rrofluids under a rotating external field [3]. Given

macromolecular rather than ferrofluid), then the sq-model’€ Presence of an sq-mode, these forces penetrate into
are well formed, with the amplitudes the bulk and need to be compensated by the viscous
(+)

. N . stress tensor therejv!’ + 2 + f2 = 0. As a result,
Ee = (BD + yViT = L1aB)/A; -, (14 the transverse velocity participates in the exponential
A7 = anfa/p x 1. (15)

excursion of the sg-mode.
Approximatingb ~ €Ee, B =~ ﬁf{ex for y — 0 (be-
causef - /Ey, E+/H, are then of ordemw B€, waw <
1), we conclude that the sg-mode can always be excited
irrespective of the value af;: via He for {; — =, and
via E. if {1 — 0. If y is sufficiently large,E.x can be
substituted by a transverse temperature gradient.

In the opposite limit, fol. < A, the sg-amplitudes are

F. = +2JaB B+ (BD + yV.T)/[2 + A'L/A].

Next we consider the conducting plates. The first two
of Egs. (11) yieldey = E., andHy = %(HeLX — HR), the
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