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Properties of a Classical Spin Liquid: The Heisenberg Pyrochlore Antiferromagnet
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We study the low-temperature behavior of the classical Heisenberg antiferromagnet with nearest
neighbor interactions on the pyrochlore lattice. Because of geometrical frustration, the ground state
of this model has an extensive nhumber of degrees of freedom. We show, by analyzing the effects of
small fluctuations around the ground-state manifold, and from the results of Monte Carlo and molecular
dynamics simulations, that the system is disordered at all temperafuaesl has a finite relaxation
time, which varies ag ! for smallT. [S0031-9007(98)05655-5]

PACS numbers: 75.10.Hk, 75.40.Gb, 75.40.Mg

In recent years, geometrically frustrated antiferromag- In this paper we analyze the low-temperature statisti-
nets have been identified as a distinct class of materical mechanics and dynamics of the classical pyrochlore
als, separate both from unfrustrated antiferromagnets artdeisenberg antiferromagnet, and place our results in a
from conventional spin-glasses [1]. Most characteristi-broader setting. Most importantly, we show that the sys-
cally, they remain in the paramagnetic phase, down to é&em is, as proposed in early work by Villain [11], an
freezing temperatur@r, which is small on the scale set example of a cooperative paramagnet or classical spin lig-
by the interaction strength, as measured via the magnitudgd. It does not display order by disorder, and at small
of the Curie-Weiss constaficw. This behavior appears T the spin autocorrelation function (with precessional dy-
to be a consequence of their structures, with magnetic ionsamics) decays in timeas(S;(0) - S;(¢)) = exp(—cTt),
arranged in corner-sharing frustrated units—triangles owherec is a constant. This behavior is in striking contrast
tetrahedra—favoring high ground-state degeneracy. to that of the kagomé Heisenberg antiferromagnet, previ-

Compounds in this class include SgGia,O,9 (SCGO) ously the best-studied example of geometric frustration, in
[2], in which a proportion of the magnetic ions occupy thewhich fluctuations select coplanar spin configurations in
sites of a kagomé lattice, and the oxide [3,4] and fluoridehe limit 7 — 0 [12]. Additionally, we find, in agreement
[5,6] pyrochlores, in which the magnetic ions form with Reimers [9], that the freezing transition observed ex-
tetrahedra, as illustrated in Fig. 1. Magnetic correlationgperimentally in most pyrochlore antiferromagnets [13] is
in these materials, determined from neutron scatteringbsent from the Heisenberg model.

[2,3,5,6] and muon spin relaxation [4,7] measurements, We take, as a general starting poimgomponent clas-
are short ranged, with fluctuations that slow downTas sical spinsS;, with |S;| = 1, arranged ing site, corner-

is reduced towardd’r [1]. An important step towards sharing units: the kagomé and pyrochlore lattices have
a theory of geometrically frustrated antiferromagnets is; = 3 and g = 4, respectively [14]. An antiferromag-

to understand the behavior of the classical Heisenbergetic exchange interaction, of strengih couples each
model defined with nearest neighbor interactions on the

appropriate lattices. This simplified description may be

sufficient in the paramagnetic phase, and is a natural

starting point for the treatment of various additional o\
features of real materials (anisotropy, disorder, dipolar
interactions, and quantum fluctuations) that might be X
relevant, especially belo®r. For the lattices concerned,
the Heisenberg antiferromagnet has ground states with
extensive numbers of degrees of freedom. Properties
in the temperature rang& < |®cw| are controlled

by small amplitude fluctuations around the ground-state
manifold: the free energy of fluctuations may select
specific ground states, a phenomenon knowordgr by
disorder [8], while the long-time dynamics results from
coupling between these fluctuations and the ground-state /

coordinates. Dynamical correlations, in particular, are
potentially one of the most interesting aspects of these
systems, but have so far received only limited atten-
tion [9,10]. FIG. 1. The pyrochlore lattice.
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spin with its2(¢ — 1) nearest neighbors in the two units that diagonalize this quadratic form, we have
to which it belongs, so that the Hamiltonian is

J J H=H, =) ¢(x)y? (2)
HZJZSi-SjEEZ|La|2—?Nq, 1) 2 ;’ !

(i)
where the sum o, j) runs over all neighboring pairs,
the sum onx runs over theN units making up the system
andL, is total spin in unita.

The ground-state degeneracy can be demonstrated us- Z(x) = [ d{y}e B o l_[[kBT/fl(X)]l/z 3)
1

Retaining only quadratic terms id and integrating over
y, the (unnormalized) ground-state probability distribu-
' tion is

ing a Maxwellian counting argument, as follows [15].
From Eq. (1), a configuration is a ground state provided
L. = 0 for each unit separately. The system has in totalf Z(x), calculated in this way, is normalizable, the
F = N(n — 1)q/2 degrees of freedom, and the require-System does not show order by disorder; instead, it
ment thatl., = 0 for all « imposesk = Nn constraints. explores all ground states in the limit — 0, with a
The ground-state manifold hé#s = F — K dimensionsif probability density proportional t&(x). Alternatively,
these constraints are independent. Of the physically reafor a particular ground statex,, some of thee;(xo)
izable case$g = 4,n = 3), itisonly forg = 4,n =3 may vanish. Therz(x) will diverge asx approachex.
thatF — K = N[n(q — 2) — ¢]/2 is positive and exten- If any such divergences are nonintegrable, one should
sive (taking the valug" — K = N), and it is partly for keep higher order terms from Eq. (2) when calculating
this reason that the pyrochlore Heisenberg antiferromagné(X). The result of doing so will be, in the limit — 0,
is particularly interesting. In other systems, an extensivé@ distribution concentrated exclusively on the subset of
ground-state dimension can arise only if the constraints arground states for whiclz(x) is divergent: these are the
not all independent, as happens starting from coplanar spgpnfigurations selected by thermal fluctuations.
configurations of the kagomé Heisenberg model. To decide whether there is, in fact, order by disorder, it
The ground-state manifold has two simple propertieds necessary to know the numhdrof ¢, that vanish, and
which should have direct physical consequences. Firsthe dimensiorS of the subspace on which this happens.
the same counting argument shows, for a system iflose to this subspace, we sepamate (u,v) into anS
which F — K is positive and extensive, that there existdimensional component, lying withinit, and a O — S)-
degrees of freedom within the ground state which arglimensional component locally orthogonal to it. Then,
strictly local. That is, for a region of the system which transformingv into radial and angular variables,and(},
is sufficiently large, the ground state remains degenerat@e have, at smal, the behaviok, (x) « v for M of the
even if spins at the surface of the region are held fixede:'s. Hence,Z(x) diverges az» ™ for small v, at fixed
since F — K, proportional to volume, is larger than the Q) andu, and the potentially divergent contribution to its
number of additional constraints, proportional to surfacenormalization is
area. It seems likely that such local modes will cause
rapid relaxation of spin correlations. Second, restricting ] Z(u,v)dv = f VPS5 (4)
attention to the pyrochlore lattice with = 2 or 3 and
open boundary conditions, we have been able to prov&he integral is actually divergent at smal] and the sys-
that the manifold is connected. The central idea is thatem has order a8 — 0, if D — § — M = 0; otherwise,
any ground state can be deformed continuously into #&he subspace is not selected.
reference state, without leaving the manifold; details will In principle, one should calculate the value bf —
be given elsewhere [16]. Animplication is that the systemS — M for all possible ordering patterns. In fact, we ex-
does not have internal energy barriers: if it were to freezeamine only the simplest candidates, and obtain for these
it could do so only because of dynamical bottlenecks oonly the extensive part oD — S — M, checking our
free-energy barriers. conclusions using Monte Carlo simulations. Specifically,
At low but nonzero temperatur@,< T < J, all acces- we test for collinear spin order in tetrahedra, and copla-
sible configurations lie close to the ground-state manifoldnar order in triangles. We find [16] th&x — S — M in-
and thermal fluctuations generate a probability distributiorcreases wit, passing through the marginal value, zero,
for the system on this manifold. The question of whethemt n = 3 in the first case, and = 4 in the second case.
the system shows order by disorder is a question abo@imulations of both marginal systems—the Heisenberg
the limiting form of this distribution a§ — 0. To spec- model on the pyrochlore lattice (Refs. [9,17] and as de-
ify the problem more precisely, let denote coordinates scribed below), and four-component spins on the kagomé
on the ground-state manifold, and letbe (locally de- lattice [18]—indicate that they are disordered. We con-
fined) coordinates in the remaining orthogonal directionlude that the only models of this kind which display
in configuration space. The leading term in the energyorder by disorder are thE¥Y-pyrochlore and Heisenberg
sufficient forT <« J, is quadratic iny. Choosing axes kagomé antiferromagnets.
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We next present the results of Monte Carlo simulations 10 e T 7
of pyrochlore antiferromagnets with two- and three- *te
component spins, which extend pioneering calculations 08 . 1
by Reimers [9] and Zinkin [17], and confirm the above )

conclusions. We treat systems of size varying from 06 -
2N = 4 t0o 2N = 19652 spins, over a temperature range

extending down td"/J = 5 X 107°. We use run lengths 04

P(r)

of order10® Monte Carlo steps per spin and check that the XXX xx e
same results are obtained from both random and ordered 0.2 N
initial configurations. 10° 107 10°
If order by disorder occurs, it leaves a signature in 00 g
the heat capacity per spi@ of the classical model at
low temperature, which can be identified without advance 02 29 m m m 00

knowledge of the ordering pattern [12]. The value of r

C reflects the nature of fluctuations in the system: eaclt|g > pependence of the collinearity parametefr), on
coordinatey; for which ¢; is nonzero contributeég/2  separationr, in units of the nearest neighbor distance, for
to the total heat capacity, while coordinates for whichthe Heisenberg model at low temperat{ife/J = 5 X 1074].

€, = 0, so that the associated energy varies )ﬁ‘S Inset: temperature dependenceRff- = 1) in the Heisenberg
make contributions ofg/4. Since there are in total Medel (lower points) and th¥Y model (upper points).

n/2 coordinated y,} per spin, and since collinear order
introduces one such quartic mode per tetrahedron, or halfere g

/(1) is the exchange field acting at sitewhich
a mode per spin, we expect values@fin units of kg, of @ g g .

! X . can be expressed in terms bf, andL g, the total spins
n/4 without o[aer, andn/4 — 1/8) with collinear order. ot the o tetrahedra to whicH; belongs. Solving this
At T/J ~ 107, we find Ez 0.376 = 0.002 for the  gquation in the harmonic approximation, by linearizing
XY model, andC’ = 0.747 =+ 0.002 for the Heisenberg ,r0ynd a ground state, yieldNZnormal modes. If the

model. ForXY spins, this confirms that there is one g.6,nq state is a generic one, in the sense that none of the
quartic mode per tetrahedron, and hence ordering. FOl ot g (2) are zero, then/a of these modes have finite
Heisenberg spins, it sets an upper limit of 0.04 quartiGreqyencies and the remaining4Lhave zero frequency.
modes per tetrahedron: there is no order by disorder.  Thg canonical coordinates for the zero modes represent
To show explicitly that ordering in th&Y model is  gisnjacements in phase space that lie within the ground-
collinear aqd that there is no such orde;r in 'ghe Heisenbergiie manifold. In order to study nontrivial aspects of
model, we introduce a measure of collinearity the long-time dynamics, it is, of course, necessary to go
n 1 beyond the harmonic approximation. At low temperature,
P(rij) = — <<(Si - S;)H — —>, (5)  anharmonic effects are small, and there is a separation
" " of time scales: the periods of finite-frequency modes
defined so tha = 1 for collinear spins and® = 0 in  are temperature independent, and the shortest of these
the high-temperature limit. As illustrated in Fig. 2, for Sets a scale of orde/~!, while the long time scale
the Heisenberg model the associated correlation lengt®r motion around the ground-state manifold increases
is very short even at low temperature. By contrast, fords T decreases. For short times, the exchange field,
the XY model, P approaches 1 a& — 0 (Fig. 2, inset), H.:(z) consists simply of oscillatory contributions from
providing unequivocal evidence of order. Deviations varyeach of the finite-frequency modes. Over long times, the
asl — P o« (T/J)'/2, behavior that can be understood onamplitudes of these modes vary, because of anharmonic
the basis of the analysis of Ref. [12)]. coupling, andH;(¢) is a randomly fluctuating function. Its
Finally, we turn to the low-temperature dynamics of ther€levant properties on these scales are its mg#ts)) =
Heisenberg pyrochlore antiferromagnet. Since differenf. and its low-frequency spectral density
ground states are separated neither by energy barriers (the %
ground-state manifold is connected) nor by large free- [ dt' (H;(1) - H;(t")) = 2TI. @)
energy barriers (the system does not display order by o
disorder), one might expect correlations to re!ax rapidlyNoting that (i) (H:(12) ~ JX(|Lal?) ~ JksT and
even at low temperature. We' f|nd' that. they indeed do ii) only the lowest frequency modes contribute to the
in the sense that the relaxation time increases at |0\&

i . ime integral in Eq. (7), we find [16] « JkgT p(0"),
temperature on_Iy ag’ and not exponentially. The where p(w) is the density in frequencw of the finite-
equation of motion is

frequency modes. We have checked, by diagonalizing the
ds; linearized equations of motion numerically, tha0*) is
5 Si X H;(1) = —JS; X (Lo + Lg), (6)  nonzero; we conclude th&t = ¢T wherec is a constant.
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We can therefore calculate long-time spin correlationgailed comparison is not yet possible. Inelastic neutron
from Eq. (6), by treatingd;(¢) as Gaussian white noise scattering from CsNiCr¥[6] for T > T has been fitted
with the correlator (H;(z) - H;(¢')) = 2I'8(r — /).  to a Lorentzian in energy, appropriate to the time depen-
Solving the resulting Langevin equation, we obtain dence of Eqg. (8), with a width that decreasesras low-
) . Q) — _ ered below®cw. Similar behavior has been observed in
8i(0) - 8i(1)) = exp(=cT1). ®) SCGO, in the temperature range < T < Ocw [19].
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