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Properties of a Classical Spin Liquid: The Heisenberg Pyrochlore Antiferromagnet
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We study the low-temperature behavior of the classical Heisenberg antiferromagnet with nearest
neighbor interactions on the pyrochlore lattice. Because of geometrical frustration, the ground state
of this model has an extensive number of degrees of freedom. We show, by analyzing the effects of
small fluctuations around the ground-state manifold, and from the results of Monte Carlo and molecular
dynamics simulations, that the system is disordered at all temperaturesT and has a finite relaxation
time, which varies asT21 for small T. [S0031-9007(98)05655-5]

PACS numbers: 75.10.Hk, 75.40.Gb, 75.40.Mg
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In recent years, geometrically frustrated antiferroma
nets have been identified as a distinct class of mate
als, separate both from unfrustrated antiferromagnets a
from conventional spin-glasses [1]. Most characteris
cally, they remain in the paramagnetic phase, down to
freezing temperatureTF , which is small on the scale set
by the interaction strength, as measured via the magnitu
of the Curie-Weiss constantQCW . This behavior appears
to be a consequence of their structures, with magnetic io
arranged in corner-sharing frustrated units—triangles
tetrahedra—favoring high ground-state degeneracy.

Compounds in this class include SrCr8Ga4O19 (SCGO)
[2], in which a proportion of the magnetic ions occupy th
sites of a kagomé lattice, and the oxide [3,4] and fluorid
[5,6] pyrochlores, in which the magnetic ions form
tetrahedra, as illustrated in Fig. 1. Magnetic correlation
in these materials, determined from neutron scatteri
[2,3,5,6] and muon spin relaxation [4,7] measuremen
are short ranged, with fluctuations that slow down asT
is reduced towardsTF [1]. An important step towards
a theory of geometrically frustrated antiferromagnets
to understand the behavior of the classical Heisenbe
model defined with nearest neighbor interactions on t
appropriate lattices. This simplified description may b
sufficient in the paramagnetic phase, and is a natu
starting point for the treatment of various additiona
features of real materials (anisotropy, disorder, dipol
interactions, and quantum fluctuations) that might b
relevant, especially belowTF. For the lattices concerned,
the Heisenberg antiferromagnet has ground states w
extensive numbers of degrees of freedom. Propert
in the temperature rangeT ø jQCW j are controlled
by small amplitude fluctuations around the ground-sta
manifold: the free energy of fluctuations may selec
specific ground states, a phenomenon known asorder by
disorder [8], while the long-time dynamics results from
coupling between these fluctuations and the ground-st
coordinates. Dynamical correlations, in particular, a
potentially one of the most interesting aspects of the
systems, but have so far received only limited atte
tion [9,10].
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In this paper we analyze the low-temperature statis
cal mechanics and dynamics of the classical pyrochlo
Heisenberg antiferromagnet, and place our results in
broader setting. Most importantly, we show that the sy
tem is, as proposed in early work by Villain [11], an
example of a cooperative paramagnet or classical spin
uid. It does not display order by disorder, and at sma
T the spin autocorrelation function (with precessional d
namics) decays in timet as kSis0d ? Sistdl ­ exps2cTtd,
wherec is a constant. This behavior is in striking contra
to that of the kagomé Heisenberg antiferromagnet, pre
ously the best-studied example of geometric frustration,
which fluctuations select coplanar spin configurations
the limit T ! 0 [12]. Additionally, we find, in agreement
with Reimers [9], that the freezing transition observed e
perimentally in most pyrochlore antiferromagnets [13]
absent from the Heisenberg model.

We take, as a general starting point,n-component clas-
sical spins,Si, with jSi j ­ 1, arranged inq site, corner-
sharing units: the kagomé and pyrochlore lattices ha
q ­ 3 and q ­ 4, respectively [14]. An antiferromag-
netic exchange interaction, of strengthJ, couples each

FIG. 1. The pyrochlore lattice.
© 1998 The American Physical Society 2929
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spin with its2sq 2 1d nearest neighbors in the two units
to which it belongs, so that the Hamiltonian is

H ­ J
X
ki,jl

Si ? Sj ;
J
2

X
a

jLaj2 2
J
2

Nq , (1)

where the sum onki, jl runs over all neighboring pairs,
the sum ona runs over theN units making up the system,
andLa is total spin in unita.

The ground-state degeneracy can be demonstrated
ing a Maxwellian counting argument, as follows [15]
From Eq. (1), a configuration is a ground state provide
La ­ 0 for each unit separately. The system has in tot
F ­ Nsn 2 1dqy2 degrees of freedom, and the require
ment thatLa ­ 0 for all a imposesK ­ Nn constraints.
The ground-state manifold hasD ­ F 2 K dimensions if
these constraints are independent. Of the physically re
izable casessq # 4, n # 3d, it is only for q ­ 4, n ­ 3
thatF 2 K ­ Nfnsq 2 2d 2 qgy2 is positive and exten-
sive (taking the valueF 2 K ­ N), and it is partly for
this reason that the pyrochlore Heisenberg antiferromag
is particularly interesting. In other systems, an extensi
ground-state dimension can arise only if the constraints a
not all independent, as happens starting from coplanar s
configurations of the kagomé Heisenberg model.

The ground-state manifold has two simple propertie
which should have direct physical consequences. Fir
the same counting argument shows, for a system
which F 2 K is positive and extensive, that there exis
degrees of freedom within the ground state which a
strictly local. That is, for a region of the system which
is sufficiently large, the ground state remains degener
even if spins at the surface of the region are held fixe
sinceF 2 K, proportional to volume, is larger than the
number of additional constraints, proportional to surfac
area. It seems likely that such local modes will caus
rapid relaxation of spin correlations. Second, restrictin
attention to the pyrochlore lattice withn ­ 2 or 3 and
open boundary conditions, we have been able to pro
that the manifold is connected. The central idea is th
any ground state can be deformed continuously into
reference state, without leaving the manifold; details w
be given elsewhere [16]. An implication is that the syste
does not have internal energy barriers: if it were to freez
it could do so only because of dynamical bottlenecks
free-energy barriers.

At low but nonzero temperature,0 , T ø J, all acces-
sible configurations lie close to the ground-state manifol
and thermal fluctuations generate a probability distributio
for the system on this manifold. The question of wheth
the system shows order by disorder is a question abo
the limiting form of this distribution asT ! 0. To spec-
ify the problem more precisely, letx denote coordinates
on the ground-state manifold, and lety be (locally de-
fined) coordinates in the remaining orthogonal direction
in configuration space. The leading term in the energ
sufficient for T ø J, is quadratic iny. Choosing axes
2930
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that diagonalize this quadratic form, we have

H ø H2 ­
X

l

elsxdy2
l . (2)

Retaining only quadratic terms inH and integrating over
y, the (unnormalized) ground-state probability distribu-
tion is

Zsxd ­
Z

dh y1j e2bH2 ~
Y

l

fkBTyelsxdg1y2. (3)

If Z(x), calculated in this way, is normalizable, the
system does not show order by disorder; instead,
explores all ground states in the limitT ! 0, with a
probability density proportional toZ(x). Alternatively,
for a particular ground state,x0, some of theelsx0d
may vanish. ThenZ(x) will diverge asx approachesx0.
If any such divergences are nonintegrable, one shou
keep higher order terms from Eq. (2) when calculating
Z(x). The result of doing so will be, in the limitT ! 0,
a distribution concentrated exclusively on the subset o
ground states for whichZ(x) is divergent: these are the
configurations selected by thermal fluctuations.

To decide whether there is, in fact, order by disorder, i
is necessary to know the numberM of el that vanish, and
the dimensionS of the subspace on which this happens
Close to this subspace, we separatex ; su, vd into anS-
dimensional componentu, lying within it, and a (D 2 S)-
dimensional componentv, locally orthogonal to it. Then,
transformingv into radial and angular variables,y andV,
we have, at smally, the behaviorelsxd ~ y2 for M of the
el ’s. Hence,Z(x) diverges asy2M for small y, at fixed
V andu, and the potentially divergent contribution to its
normalization isZ

Zsu, vd dv ~
Z

yD2S2M21 dy . (4)

The integral is actually divergent at smally, and the sys-
tem has order asT ! 0, if D 2 S 2 M # 0; otherwise,
the subspace is not selected.

In principle, one should calculate the value ofD 2

S 2 M for all possible ordering patterns. In fact, we ex-
amine only the simplest candidates, and obtain for thes
only the extensive part ofD 2 S 2 M, checking our
conclusions using Monte Carlo simulations. Specifically
we test for collinear spin order in tetrahedra, and copla
nar order in triangles. We find [16] thatD 2 S 2 M in-
creases withn, passing through the marginal value, zero
at n ­ 3 in the first case, andn ­ 4 in the second case.
Simulations of both marginal systems—the Heisenber
model on the pyrochlore lattice (Refs. [9,17] and as de
scribed below), and four-component spins on the kagom
lattice [18]—indicate that they are disordered. We con
clude that the only models of this kind which display
order by disorder are theXY-pyrochlore and Heisenberg
kagomé antiferromagnets.
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We next present the results of Monte Carlo simulatio
of pyrochlore antiferromagnets with two- and three
component spins, which extend pioneering calculatio
by Reimers [9] and Zinkin [17], and confirm the abov
conclusions. We treat systems of size varying fro
2N ­ 4 to 2N ­ 19 652 spins, over a temperature rang
extending down toTyJ ­ 5 3 1025. We use run lengths
of order106 Monte Carlo steps per spin and check that th
same results are obtained from both random and orde
initial configurations.

If order by disorder occurs, it leaves a signature
the heat capacity per spinC of the classical model at
low temperature, which can be identified without advan
knowledge of the ordering pattern [12]. The value o
C reflects the nature of fluctuations in the system: ea
coordinateyl for which el is nonzero contributeskBy2
to the total heat capacity, while coordinates for whic
el ­ 0, so that the associated energy varies asy4

l ,
make contributions ofkBy4. Since there are in total
ny2 coordinatesh y1j per spin, and since collinear orde
introduces one such quartic mode per tetrahedron, or h
a mode per spin, we expect values ofC, in units ofkB, of
ny4 without order, andsny4 2 1y8d with collinear order.
At TyJ , 1024, we find C ­ 0.376 6 0.002 for the
XY model, andC ­ 0.747 6 0.002 for the Heisenberg
model. For XY spins, this confirms that there is one
quartic mode per tetrahedron, and hence ordering. F
Heisenberg spins, it sets an upper limit of 0.04 quar
modes per tetrahedron: there is no order by disorder.

To show explicitly that ordering in theXY model is
collinear and that there is no such order in the Heisenbe
model, we introduce a measure of collinearity

Psrijd ;
n

n 2 1

µ
ksSi ? Sjd2l 2

1
n

∂
, (5)

defined so thatP ­ 1 for collinear spins andP ­ 0 in
the high-temperature limit. As illustrated in Fig. 2, fo
the Heisenberg model the associated correlation len
is very short even at low temperature. By contrast, f
the XY model, P approaches 1 asT ! 0 (Fig. 2, inset),
providing unequivocal evidence of order. Deviations va
as1 2 P ~ sTyJd1y2, behavior that can be understood o
the basis of the analysis of Ref. [12].

Finally, we turn to the low-temperature dynamics of th
Heisenberg pyrochlore antiferromagnet. Since differe
ground states are separated neither by energy barriers
ground-state manifold is connected) nor by large fre
energy barriers (the system does not display order
disorder), one might expect correlations to relax rapid
even at low temperature. We find that they indeed d
in the sense that the relaxation time increases at l
temperature only asT 21 and not exponentially. The
equation of motion is

dSi

dt
­ Si 3 Histd ; 2JSi 3 sLa 1 Lbd , (6)
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FIG. 2. Dependence of the collinearity parameter,P(r), on
separation,r, in units of the nearest neighbor distance, fo
the Heisenberg model at low temperaturefTyJ ­ 5 3 1024g.
Inset: temperature dependence ofPsr ­ 1d in the Heisenberg
model (lower points) and theXY model (upper points).

whereHistd is the exchange field acting at sitei, which
can be expressed in terms ofLa and Lb, the total spins
of the two tetrahedra to whichSi belongs. Solving this
equation in the harmonic approximation, by linearizing
around a ground state, yields 2N normal modes. If the
ground state is a generic one, in the sense that none of
el of Eq. (2) are zero, then 3y4 of these modes have finite
frequencies and the remaining 1y4 have zero frequency.
The canonical coordinates for the zero modes represe
displacements in phase space that lie within the groun
state manifold. In order to study nontrivial aspects o
the long-time dynamics, it is, of course, necessary to g
beyond the harmonic approximation. At low temperature
anharmonic effects are small, and there is a separati
of time scales: the periods of finite-frequency mode
are temperature independent, and the shortest of the
sets a scale of orderJ21, while the long time scale
for motion around the ground-state manifold increase
as T decreases. For short times, the exchange fiel
Histd consists simply of oscillatory contributions from
each of the finite-frequency modes. Over long times, th
amplitudes of these modes vary, because of anharmo
coupling, andHistd is a randomly fluctuating function. Its
relevant properties on these scales are its mean,kHistdl ­
0, and its low-frequency spectral densityZ `

2`
dt0 kHistd ? Hist0dl ; 2G . (7)

Noting that (i) kjHistdj2l , J2kjLaj2l , JkBT and
(ii) only the lowest frequency modes contribute to the
time integral in Eq. (7), we find [16]G ~ JkBTrs01d,
wherersvd is the density in frequencyv of the finite-
frequency modes. We have checked, by diagonalizing t
linearized equations of motion numerically, thatrs01d is
nonzero; we conclude thatG ­ cT wherec is a constant.
2931
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We can therefore calculate long-time spin correlation
from Eq. (6), by treatingHistd as Gaussian white noise
with the correlator kHistd ? Hist0dl ­ 2Gdst 2 t0d.
Solving the resulting Langevin equation, we obtain

kSis0d ? Sistdl ­ exps2cTtd. (8)

To test these ideas, we have carried out molecular d
namics simulations in which we compute the spin au
tocorrelation functionAstd ; kSst0d ? Sst 1 t0dl. Similar
calculations for the kagomé Heisenberg antiferromagn
have been described by Keren [10]. A Monte Carlo simu
lation is used to generate uncorrelated, thermalized in
tial configurations, from which the equation of motion
Eq. (6), is integrated using a fourth-order Runge-Kutta a
gorithm. The integration time step is chosen so that e
ergy is conserved to at least one part in108. Finite size
effects are suppressed by constraining the total spin of t
entire system to be near zero.

We expect at low temperature, from Eq. (8), thatA(t)
should depend onT andt only through the scaling variable
Tt. A(t) is shown in Fig. 3 as a function of the rescale
time, Tt, at eight different temperatures in the rang
5 3 1024 # TyJ # 0.5, for a system of size 2048 spins.
There are no adjustable parameters in the construction
this plot. Except at the highest temperatures, the da
collapse onto a single curve, which is exponential to th
precision of our calculations. To examine quantitativel
the accuracy of the temperature scaling, we extract
decay timet from A(t) at each temperatureTyJ , 0.15,
and fit the temperature dependence oft to the power law
t ~ T 2z (Fig. 3, inset), obtainingz ­ 0.998 6 0.012.
These results agree with and confirm our predictions.

Some experimental properties of pyrochlore antiferro
magnets are consistent with our findings, although a d

FIG. 3. The autocorrelation function as a function of th
rescaled timet 3 T over one and a half decay times. Inset
the decay timet as a function of temperature.
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tailed comparison is not yet possible. Inelastic neutron
scattering from CsNiCrF6 [6] for T . TF has been fitted
to a Lorentzian in energy, appropriate to the time depen
dence of Eq. (8), with a width that decreases asT is low-
ered belowQCW . Similar behavior has been observed in
SCGO, in the temperature rangeTF , T & QCW [19].
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