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We consider proximity effect coupling in superconducting-antiferromagnetic-superconducting san
wiches using the recently developed SOs5d effective theory of high temperature superconductivity. We
find that, for narrow junctions, theA region acts like a strong superconductor, and that there is a critica
junction thickness which depends on the effective SOs5d coupling constants and on the phase difference
across the junction, at which theA region undergoes a Freedericksz-like transition to a state which is
intermediate between superconductor and antiferromagnet. For thick junctions, the current-phase r
tion is sinusoidal, as in standard SNS and SIS junctions, but for thin junctions it shows a sharp break
slope at the Freedericksz point. [S0031-9007(98)05603-8]
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Zhang has recently developed a theory [1] which unifi
d-wave superconductivity (S) and antiferromagnetism (A)
on the basis of an underlying SOs5d symmetry. TheS and
A order parameters are combined into a five-dimensio
superspin, and the high energy physics of these supers
is postulated to be rotationally symmetric. At low energie
this SOs5d symmetry is broken by a chemical-potentia
dependent anisotropy which favors theA state form , mc

or theS state form . mc. Herem is the chemical poten-
tial, andmc is the critical value of the chemical potentia
at which the first order transition between the superco
ducting and antiferromagnetic states occurs. This impl
that, at low temperature, there is a “soft direction” for pe
turbations of a stabled-wave superconductor toward an
tiferromagnetism. Similarly, the appropriate perturbatio
applied to a stableA material, will tend to drive it into
the S state. By analogy to the proximity effect in con
ventional superconductors, it is clear that the relevant p
turbing field is provided by proximity of anA material to
anS material. Moreover, in a sandwich superconductin
antiferromagnetic-superconductivityS-A-S configuration,
this proximity effect would be expected to provide a mec
anism for Josephson coupling of the twoS regions. We
also note that one approach to practical high-Tc Joseph-
son junctions involves the use of barriers made from t
cuprates near theSyA transition.

In this paper we present analytic and numerical resu
for the properties of theS-A-S Josephson junction system
shown on Fig. 1, in terms of SOs5d continuum theory in
which the spatial variation of the order parameter is o
dimensional. We obtain analytical results for the critic
current as a function of thickness and numerical resu
for the current-phase relation for different thicknesses.

We find that when theS layers are strongly supercon
ducting, thinA layers are driven completely superconduc
ing by the field of the adjacentS layers, and the SOs5d order
parameter lies completely in the superconducting pla
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Beyond a critical barrier thickness, we find that the orde
parameter in the junction starts to tip back toward the an
tiferromagnetic plane, in a fashion precisely analogous t
the Freedericksz transition in liquid crystals [2]. Twisting
the superconducting phase, which causes a current to flo
through the junction, is analogous to twisting the nemati
director at the walls. A sufficiently large twist will drive
the system through the Freedericksz transition resulting
a distinctive, nonsinusoidal current-phase relation for a
S-A-S junction.

Our results clearly demonstrate that, within SOs5d
theory, the details of Josephson coupling through anA
barrier are qualitatively different from those of proximity
effect junctions with conventional barriers. Hence study
of S-A-S junctions provides a critical test of SOs5d theory.
By the same token our calculations provide a new bas
for the interpretation of real high-Tc Josephson junctions,
currently being fabricated and studied [3–5].

In the spirit of SOs5d we describe the system by a
three-component order parametern ­ hnx , ny , nzj, where
the first two components are the real and imaginary par
of the superconducting order parameter and the thir
component represents the antiferromagnetic Neel vect
(see Fig. 2). For simplicity we treat the Neel vector as
a single component. However, this component may b
viewed as the spatially varying amplitude of a 3D vecto
whose direction is uniform in the sample.

FIG. 1. Geometry of the suggested junction.
© 1998 The American Physical Society 2917
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FIG. 2. SOs5d order parameter.

According to [1] the system is described by a function

L snd ­
Z

dx

Ω
r

2
s≠mnad2 2 gn2

z

æ
(1)

with the constraintn2 ­ 1. As in [6] we assume tha
the gradient term is SOs5d symmetric. The anisotropy
term g is positive in theA region (so that it would be
antiferromagnetic in the absence of proximity effects) a
negative in the superconductor [7].

The superspin constraint is most naturally implemen
in polar coordinatesnx ­ cosu cosf, ny ­ cosu sinf,
andnz ­ sinu.

L su, fd ­
Z

dx

Ω
r

2
fs≠mud2 1 cos2 us≠mfd2g

2 g sin2 u

æ
. (2)

In all of our calculations we will assume rigid supe
conducting boundary conditionsnzj0 ­ 0 and nz jd ­ 0.
Strictly speaking this is true only in the case of “strong” s
perconductors and “weak” antiferromagnets:jgSj ¿ jgAj.
However, analysis of the general case shows that relax
this condition does not change the qualitative picture.

At this point one can easily specify the analogy betwe
our problem and the problem of a liquid crystal in a sl
with anchoring walls, in an electric field. If the electri
field is perpendicular to the walls, it will try to align th
director of the liquid crystal along the field. At small vol
ages the field is unable to overcome the effect of surf
pinning, and the equilibrium configuration remains un
form. However, with increasing voltage the system w
undergo a Freedericksz transition, in which the direc
begins to align along the field. More interestingly, th
transition is known to depend on the applied bounda
conditions, i.e., on the relative twist of the anchoring d
rections on the two sides of the slab (the twisted nema
transition) [8].

We now show that similar effects arise inS-A-S sand-
wiches within SOs5d theory. The role of the voltage is
played byd

p
gAyr, and the superconducting phase diffe

ence across the junction corresponds to the twist angle
posed by the two anchoring walls. TheS-A-S sandwiches
will undergo a phase transition in which theA region, be-
tween the two superconductors, goes from being pur
superconducting (by virtue of the proximity effect) into
2918
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mixedSyA state. We also show that, sufficiently close to
such a Freedericksz transition, the system possesses n
trivial current-phase characteristics, as a consequence
the transition.

In the A region the Euler-Lagrange equations for the
functional (2) are

r
d2u

dx2
1 r cosu sinu

µ
df

dx

∂2

1 2gA sinu cosu ­ 0 ,

(3)

d
dx

µ
cos2 u

df

dx

∂
­ 0 . (4)

The boundary conditions for these equations are given b

usx ­ 0d ­ 0, fsx ­ 0d ­ 0 , (5)

usx ­ dd ­ 0, fsx ­ dd ­ DF , (6)

whereDF is the phase difference between two supercon
ductors.

Equation (4) is nothing but the conservation of current

Is ­ n1≠xn2 2 n2≠xn1 ­ cos2 u
df

dx
.

So we can write (3) as

r
d2u

dx2
1 r sinu

I2
s

cos3 u
1 2gA sinu cosu ­ 0 . (7)

The last equation can be easily integrated once giving

j2
A

µ
du

dx

∂2

­ 2
I2

s j
2
A

cos2 u
2 sin2 u 1

I2
s j

2
A

cos2 u0
1 sin2 u0

(8)

with the characteristic length

jA ­
q

ry2gA . (9)

In writing (8) we expressed the constant of integration
in terms of the maximal valueu0 that will be reached at
x ­ dy2 (whereduydx ­ 0). This immediately results
in an equation foru0

d
2jA

­
Z u0

0

duq
2

v2
s

cos2 u 2 sin2 u 1
v2

s
cos2 u0

1 sin2 u0

­
cosu0p

v2
s 1 cos2 u0

Kskd , (10)

wherevs ­ IsjA, the parameterk is defined by

k2 ­
sin2 u0 cos2 u0

v2
s 1 cos2 u0

, (11)

and K is the complete elliptic integral of the first kind.
Equation (10) should be supplemented by an equation f
the currentvs in terms of the phase difference across th
junction



VOLUME 80, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 30 MARCH 1998
DF ­ 2Is

Z dy2

0

dx
cos2 usxd

­ 2Is

Z u0

0

µ
du

dx

∂21 du

cos2 u

­ 2vs

Z u0

0

du

cos2 u

q
2

v2
s

cos2 u 2 sin2 u 1
v2

s

cos2 u0
1 sin2 u0

­ 2vs
cosu0p

v2
s 1 cos2 u0

P1s2 sin2 u, kd . (12)
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Here P1sn, kd is a complete elliptic integral of the
third kind.

One can easily see that Eq. (10) has a solution o
when dyjA $ py

p
1 1 v2

s . For smaller d the only
solution will be u0 ­ 0, which means that theA re-
gion remains uniformly superconducting. Even thoug
antiferromagnetism would be favored in a bulk mat
rial of this kind, proximity to a “strong” superconduc
tor forces it to be uniformly superconducting. Whe
dc ­ pjAy

p
1 1 v2

s , a second-order transition occurs a
which for d . dc u0 starts to increase as

p
d 2 dc, so

that theA region exhibits both kinds of order: supercon
ductivity and antiferromagnetism. It is interesting to no
that a nonzerovs decreases the critical width of theA
region. This can be understood as the result of hav
an extra “torque” in thex-y plane. This result raises the
very interesting possibility of choosing a width of theA
region below the critical value at zero currentdc0 ­ pj

and then tuning the system through the transitionby sim-
ply passing a current through the junction.

In Fig. 3 we present such an example, for the cased ­
0.85dc0. This figure shows that the system undergoes
transition whenDF ­ 1.7. Below the transition,u0 is
identically zero andIs is a linear function ofDF, as one
would expect for a uniform superconductor. Howeve
above the Freedericksz transition,u0 starts to grow and
Is vs DF develops curvature. Eventually, atDF ­ p,
u0 ­ py2 and Is goes to zero. We note that furthe
interesting differences with the conventional proximit

FIG. 3. u0 vs Df and Is vs Df for an S-A-S junction. The
onset ofu0 and the discontinuity in slope ofIs both occur at
the Freedericksz transition.
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effect can be expected in the dynamical state at finit
voltages. In the presence of a finite voltage across th
junction, the full SOs5d order parameter will undergo
periodic motion in SOs5d space, permitting exploration of
the lowq-vector dynamics of SOs5d theory.

Figure 4 shows that the feature,u0 ­ py2 when
DF ­ p , occurs for all widths of theA region. It may be
understood as follows: The energy required to twist th
superconducting order parameter byp without changing
its magnitude is the same as the energy required to rota
the superspin into the antiferromagnetic plane and bac
into the superconducting plane. However, rotating th
superspin into the antiferromagnetic direction allows th
system to lower its energy because of theg term.

This effect is an interesting SOs5d analog of the
result of Krotovet al. [9] that superconductivity between
antiferromagnetic stripes is suppressed for nontopologic
stripes and enhanced for topological stripes.

Figure 5 illustrates the nontrivial current-phase charac
teristics ofS-A-S junctions with increasing width of theA
layer. Whend , dc0 they show a transition from linear
dependence below the transition to sin-like dependen
above it. Some asymmetry persists in the curves ford $

dco, and for d ¿ dc0 they show the usual sinsDFd de-
pendences of superconducting-insulating-superconducti
sS-I-Sd junctions.

It is easy to calculate the critical current of our junctions
For a givend, Eq. (10) does not have any solution for
currents that are too large. The first solution appears
a point that corresponds to the maximum ofk2 in Eq. (11)

FIG. 4. u0 vs DF for junctions with differentdydc0. Notice
that for DF ­ p we always haveu0 ­ py2.
2919
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FIG. 5. Current-phase characteristics of junctions with diffe
ent dydc0.

[10]. This kmax is given by

k2
max ­ 1 2 2vs

µq
1 1 v2

s 2 vs

∂
. 1 2 2vs .

Using the asymptotic forms of the elliptic functions, w
find for Eq. (10)dys2jAd ­ lns4y

p
2vs d which gives the

critical current

Is ø
8

jA
e2dyjA . (13)

So jA represents a new correlation length for superco
ducting proximity effects across antiferromagnets: A
cording to [1]gA ­ 2xsm2

c 2 m2d. Then from Eq. (9) we
see that, whenm is close tomc (and hencegA is small),
jA will be large. This could provide a new and natur
explanation of the long range proximity effect sometim
observed in PrBa2Cu3O7 (PBCO) [3–5]. We note, how-
ever, that asymmetry in thex ’s will generate a cutoff for
jA in Eq. (9). Forxc . xp we findjmax ­

p
ryh where

h ­ 2m2
csxc 2 xpd.

Other effects that we have not considered here m
provide an extra cutoff for Josephson coupling in PBC
materials on length scales shorter than given by Eq.
An example may be thermal decoherence which puts
upper bound on the coherence lengthjA # rsyT . How-
ever, our calculations show that unlike the case of Jose
son coupling across “conventional” insulators, where
correlation length is set byhyFyDins, with Dins being the
energy gap in the insulating material andyF the Fermi ve-
locity in the superconducting material, in superconduct
proximity effects across SO(5) antiferromagnets the
perconducting order does not have to vanish on the ato
length scale [11].

The effects considered in this paper are not neces
ily restricted to the SO(5) nonlinear sigma model. O
may think of a general Ginzburg-Landau theory with an
ferromagnetic and superconducting order parameters
those considered in [12]. The Freedericksz transition is
course, the result of having two states close in energy,
it may be present even within mean field theories that c
2920
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dSC states. The appearance of the long range proximity
fect is more subtle. Even within the SO(5) nonlinear sigm
model, one may have either a first-order transition or a c
existence region bounded by two second-order phase tr
sitions. The subtlety of the isotropic sigma model (her
what matters is not the isotropy ofr, but equality of charge
andp compressibilities; see [1] for details) lies in the fac
that it separates the two sectors. So, it is as much a fir
order line as two coinciding second-order lines. The d
verging length scale is the result of this closeness to t
second-order transition. Therefore, we think that havin
a second order phase transition close by is what is impo
tant for the long correlation length in the antiferromagne
Mean-field theories that have such a transition may al
lead to the long range proximity effect.
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