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We consider proximity effect coupling in superconducting-antiferromagnetic-superconducting sand-
wiches using the recently developed SDeffective theory of high temperature superconductivity. We
find that, for narrow junctions, the& region acts like a strong superconductor, and that there is a critical
junction thickness which depends on the effectivd 8@oupling constants and on the phase difference
across the junction, at which the region undergoes a Freedericksz-like transition to a state which is
intermediate between superconductor and antiferromagnet. For thick junctions, the current-phase rela-
tion is sinusoidal, as in standard SNS and SIS junctions, but for thin junctions it shows a sharp break in
slope at the Freedericksz point. [S0031-9007(98)05603-8]

PACS numbers: 74.50.+r, 75.70.—i

Zhang has recently developed a theory [1] which unifieBeyond a critical barrier thickness, we find that the order
d-wave superconductivityS) and antiferromagnetisnd]  parameter in the junction starts to tip back toward the an-
on the basis of an underlying $8) symmetry. Thes and tiferromagnetic plane, in a fashion precisely analogous to
A order parameters are combined into a five-dimensionahe Freedericksz transition in liquid crystals [2]. Twisting
superspin, and the high energy physics of these superspittsee superconducting phase, which causes a current to flow
is postulated to be rotationally symmetric. At low energiesthrough the junction, is analogous to twisting the nematic
this SQ5) symmetry is broken by a chemical-potential- director at the walls. A sufficiently large twist will drive
dependent anisotropy which favors thetate foru < u.  the system through the Freedericksz transition resulting in
or theS state foru > u.. Hereuw is the chemical poten- a distinctive, nonsinusoidal current-phase relation for an
tial, and u. is the critical value of the chemical potential S-A-S junction.
at which the first order transition between the supercon- Our results clearly demonstrate that, within (S0
ducting and antiferromagnetic states occurs. This implietheory, the details of Josephson coupling throughdan
that, at low temperature, there is a “soft direction” for per-barrier are qualitatively different from those of proximity
turbations of a stabl@-wave superconductor toward an- effect junctions with conventional barriers. Hence study
tiferromagnetism. Similarly, the appropriate perturbation,of S-A-§ junctions provides a critical test of $8) theory.
applied to a stablel material, will tend to drive it into By the same token our calculations provide a new basis
the § state. By analogy to the proximity effect in con- for the interpretation of real highiz Josephson junctions,
ventional superconductors, it is clear that the relevant perurrently being fabricated and studied [3—5].
turbing field is provided by proximity of ad material to In the spirit of SA@5) we describe the system by a
ansS material. Moreover, in a sandwich superconducting-three-component order parameter= {n,, ny, n.}, where
antiferromagnetic-superconductivi§tA-S configuration, the first two components are the real and imaginary parts
this proximity effect would be expected to provide a mech-of the superconducting order parameter and the third
anism for Josephson coupling of the t@aregions. We component represents the antiferromagnetic Neel vector
also note that one approach to practical highdoseph- (see Fig. 2). For simplicity we treat the Neel vector as
son junctions involves the use of barriers made from the single component. However, this component may be
cuprates near th&/A transition. viewed as the spatially varying amplitude of a 3D vector

In this paper we present analytic and numerical resultsvhose direction is uniform in the sample.
for the properties of th§-A-S Josephson junction system,
shown on Fig. 1, in terms of S®) continuum theory in
which the spatial variation of the order parameter is one
dimensional. We obtain analytical results for the critical
current as a function of thickness and numerical results S A S
for the current-phase relation for different thicknesses.

We find that when the§ layers are strongly supercon-

ducting, thinA layers are driven completely superconduct- O d =
ing by the field of the adjacesstlayers, and the SG) order X
parameter lies completely in the superconducting plane. FIG. 1. Geometry of the suggested junction.
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mixed S/A state. We also show that, sufficiently close to
such a Freedericksz transition, the system possesses non-
trivial current-phase characteristics, as a consequence of
the transition.

In the A region the Euler-Lagrange equations for the
functional (2) are

2 _(do\? :
p — + pcoshsing <—> + 2g4sinf cosfd = 0,
dx? dx
3
FIG. 2. S@5) order parameter.
d d¢
According to [1] the system is described by a functional e <C°§ 0 E) = 0. (4)
L(n) = f dx{% (aﬂna)Z — gnf} (1)  The boundary conditions for these equations are given by

f(x =0 =0  ¢x=0) =0, (5)

with the constraintn> = 1. As in [6] we assume that
the gradient term is S@) symmetric. The anisotropy
term g is positive in theA region (so that it would be 0(x = d) =0, ¢(x =d) = AD, (6)

antife_rromagnetic in the absence of proximity effects) a”thereACIJ is the phase difference between two supercon-
negative in the superconductor [7]. uctors

_The superspin constraint is most naturally implemented g ation (4) is nothing but the conservation of current.
in polar coordinates:, = cosf cos¢, n, = cosd sing,
d¢o

andn, = sing. I, = n19,n0 — nrd.n; = cog 6

E .
- L 2 2
L£6.¢) f dx{ 2 [(0,.0)" + coge(a,@) ] So we can write (3) as
- gsit o). @) 26 p | B
P + psing oS 0 + 2gasingcoshd = 0. (7)

In all of our calculations we will assume rigid super-
conducting boundary conditions |y = 0 andn.|; = 0.  The last equation can be easily integrated once giving
Strictly speaking this is true only in the case of “strong” su- 40 \2 1283 1283
perconductors and “weak” antiferromagndisi| > |gal. fﬁ(—) = -5 Gipg 4+ =24
However, analysis of the general case shows that relaxing dx cos cog 0
this condition does not change the qualitative picture. 8
At this point one can easily specify th.e analogy. between, i+ the characteristic length
our problem and the problem of a liquid crystal in a slab
with anchoring walls, in an electric field. If the electric Ex =1/p/284. 9)
field is perpendicular to the walls, it will try to align the . ) i
director of the liquid crystal along the field. At small volt- N Writing (8) we expressed the constant of integration
ages the field is unable to overcome the effect of surfact terms of the maximal valué, that will be reached at
pinning, and the equilibrium configuration remains uni-* = 4/2 (Whered6/dx = 0). This immediately results
form. However, with increasing voltage the system will IN @n equation fof,
undergo a Freedericksz transition, in which the director ;4 6o
begins to align along the field. More interestingly, this 26 j; \/_

+ sir? 0o

dé

w? . w? .
transition is known to depend on the applied boundary osg — SIMO + 030 T S
conditions, i.e., on the relative twist of the anchoring di- _ costo K (k) (10)
rections on the two sides of the slab (the twisted nematic Jw? + cog 6 |

transition) [8]. . .

We now show that similar effects arise $aA-S sand-  Wherew, = I;£,, the paramete is defined by
wiches within S@5) theory. The role of the voltage is , _ sirnt 6, cos 6
played byd+/g./p, and the superconducting phase differ- = o2 on” (11)
ence across the junction corresponds to the twist angle im- N 0
posed by the two anchoring walls. TEeA-S sandwiches and K is the complete elliptic integral of the first kind.
will undergo a phase transition in which theregion, be-  Equation (10) should be supplemented by an equation for
tween the two superconductors, goes from being purelthe currentw, in terms of the phase difference across the
superconducting (by virtue of the proximity effect) into a junction
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/2 gy % rdo\"' de
AD = 2], — =], -
fo cog 4(x) fo <dx> cos 6

ff’o de
= 2wy : :
0 co§0\/—c;‘;§0 — Sit 6 + g + SN 6o
cosb .
= 2wy —————=1II,(—Si? 0,k). 12
@ Jw? + cos 6y 1€ ) (12)

Here II,(n,k) is a complete elliptic integral of the effect can be expected in the dynamical state at finite
third kind. voltages. In the presence of a finite voltage across the

One can easily see that Eq. (10) has a solution onlyunction, the full S@5) order parameter will undergo
when d/és = 7 /\/1 + w2. For smallerd the only periodic motion in S@) space, permitting exploration of
solution will be 6, = 0, which means that thet re- the lowg-vector dynamics of S3) theory.
gion remains uniformly superconducting. Even though Figure 4 shows that the featurdy, = 7w/2 when
antiferromagnetism would be favored in a bulk mate-A® = 7, occurs for all widths of the region. It may be
rial of this kind, proximity to a “strong” superconduc- understood as follows: The energy required to twist the
tor forces it to be uniformly superconducting. When superconducting order parameter #ywithout changing
d. = wéa/\/1 + w2, a second-order transition occurs atits magnitude is the same as the energy required to rotate
which for d > d. 6, starts to increase agd — d., so  the superspin into the antiferromagnetic plane and back
that theA region exhibits both kinds of order: supercon-into the superconducting plane. However, rotating the
ductivity and antiferromagnetism. It is interesting to notesuperspin into the antiferromagnetic direction allows the
that a nonzeraw; decreases the critical width of theé  system to lower its energy because of theerm.
region. This can be understood as the result of having This effect is an interesting 38 analog of the
an extra “torque” in thec-y plane. This result raises the result of Krotovet al. [9] that superconductivity between
very interesting possibility of choosing a width of the  antiferromagnetic stripes is suppressed for nontopological
region below the critical value at zero currehty = 7w¢&  stripes and enhanced for topological stripes.
and then tuning the system through the transitigrsim- Figure 5 illustrates the nontrivial current-phase charac-
ply passing a current through the junction. teristics ofS-A-S junctions with increasing width of th&

In Fig. 3 we present such an example, for the cdse  layer. Whend < d. they show a transition from linear
0.85d.9. This figure shows that the system undergoes aependence below the transition to sin-like dependence
transition whenA® = 1.7. Below the transitionf, is  above it. Some asymmetry persists in the curvesifer
identically zero and; is a linear function ofA®, as one d.,, and ford > d., they show the usual siA®) de-
would expect for a uniform superconductor. However,pendences of superconducting-insulating-superconducting
above the Freedericksz transitiofy, starts to grow and (S-7-S) junctions.

I, vs A® develops curvature. Eventually, Atb = 7, Itis easy to calculate the critical current of our junctions.

6o = m/2 and I; goes to zero. We note that further For a givend, Eq. (10) does not have any solution for

interesting differences with the conventional proximity currents that are too large. The first solution appears at
a point that corresponds to the maximumkéfin Eq. (11)

/2
/ /2
d/d,,=0.85 y
6 /
B9
%A
!
/
0 .
0 ,t 0
AD 0 T

FIG. 3. 6y vs A¢ andl; vs A¢ for an S-A-S junction. The AD
onset off, and the discontinuity in slope dof both occur at FIG. 4. 6, vs Ad for junctions with differentd/d.,. Notice
the Freedericksz transition. that for A® = 77 we always havedy, = 7 /2.
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2 sider general competition between spin-density wave and

dSC states. The appearance of the long range proximity ef-
fectis more subtle. Even within the SO(5) nonlinear sigma
model, one may have either a first-order transition or a co-
existence region bounded by two second-order phase tran-
sitions. The subtlety of the isotropic sigma model (here
what matters is not the isotropy pf but equality of charge
and s compressibilities; see [1] for details) lies in the fact
that it separates the two sectors. So, it is as much a first-
order line as two coinciding second-order lines. The di-
verging length scale is the result of this closeness to the
second-order transition. Therefore, we think that having

d/dCO=

IsgA

0¥ a second order phase transition close by is what is impor-
0 T tant for the long correlation length in the antiferromagnet.
AD Mean-field theories that have such a transition may also
FIG. 5. Current-phase characteristics of junctions with differ-Iead to the long range proximity effect,
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So &4 represents a new correlation length for supercon-

entd/d..

k2 —

max

8 -ae

I, (13)

ducting proximity effects across antiferromagnets: Ac-
cording to [1]gs = 2x(u2 — u?). Thenfrom Eq. (9) we
see that, whernu is close tou. (and henceg4 is small),

&4 will be large. This could provide a new and natural
explanation of the long range proximity effect sometimes
observed in PrBgCu;0O; (PBCO) [3-5]. We note, how-
ever, that asymmetry in thg’s will generate a cutoff for

E4INEQ. (9). Fory. > x» we findémax = +/p/m Where
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