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Distribution of Eigenvalues in Non-Hermitian Anderson Models
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We develop a theory which describes the behavior of eigenvalues of a class of one-dimensional
random non-Hermitian operators introduced recently by Hatano and Nelson. We prove that the
eigenvalues are distributed along a curve in the complex plane. An equation for the curve is
derived, and the density of complex eigenvalues is found in terms of spectral characteristics of a
“reference” Hermitian disordered system. The generic properties of the eigenvalue distribution are
discussed. [S0031-9007(98)05635-X]

PACS numbers: 72.15.Rn, 05.40. +]

Complex eigenvalues of non-Hermitian random Hamil-|go|)), (&o), {no) are finite. The angle brackets denote
tonians have recently attracted much interest across seaveraging over the disorder. The relevance of this non-
eral areas of physics [1-5]. However, the actual progresklermitian Anderson model to physics of vortex lines in
in understanding the statistics of such eigenvalues isuperconductors is explained in [1].
mostly limited to the so-called “zero-dimensional” case, Potential theory approach—We start our analysis with
i.e., to random matrices with no spatial structure. Ina standard transformation which is often used in the
this case a number of models can be treated analyticallheory of differential and difference equations. Let us put
and their basic features are relatively well understood, aly;, = wy ¢ in Eq. (1) and choose the weight, so that
though on different levels of rigor (see, e.g., [4—6], andto make the resulting equation symmetric. For instance,
references therein). In contrast, little is known about specif we set

tra of non-Hermitian Hamiltonians in one or more dimen- lzk_ &=y :

sions. One of the challenging problems here involves an wo = Lwg = e 7 ifk=1, (3)

unusual localization-delocalization transition predicted bywhis transformation reduces the eigenvalue problem (1),(2)

Hatano and Nelson [1]. to the following one (where, = exd(éc + 1x)/2)):
Motivated by the studies of statistical mechanics of the

magnetic flux lines in superconductors with columnar de- TCk-1Pk-1 T CkPrtl T qkPk = 1Pk (4)

fects, Hatano and Nelson considered a model described by _ o _ o 5
a random Schrédinger operator with a constant imaginary Pl = Wyt W11, @n = Wy 0. )
vector potential. Appealing to a qualitative reasoning theyrrom now on, we will deal with Egs. (4)—(5). [Obvi-
argued that already in dimension one some localized statesisly, the eigenvalues of (1),(2) and (4),(5) coincide.]
undergo a delocalization transition when the magnitude Let us introduce a “reference” symmetric eigenvalue
of the vector potential increases. The eigenvalues corrgagroblem which will be used in our analysis and which is
sponding to the localized states are real and those correpecified by Eq. (4) and by the boundary conditions
sponding to the extended states are complex. The results —0 —0 6)
of numerical calculations presented in [1] support these s ’ 0 '
conclusions. They also show a surprising feature of théne can rewrite the eigenvalue problems (4),(5) and
eigenvalue distribution in the model: the eigenvalues aré4).(6) in the matrix form#H ¢ = z¢ and He = zo,
attracted to a curve in the complex plane. respectively. H is a symmetrictridiagonaln X n matrix
The aim of our Letter is to explain this feature. with the {g;} on the main diagonal and tHe-c;} on the

Most of our discussion involves the lattice case whichsubdiagonals Asymmetric#{ is “almost” tridiagonal: the

is technically simpler. Following [1], we consider a only nonzero elements of the differenée= H — H
one-dimensional non-Hermitian Anderson model whos@reVi, = —w; 'w,e andV,; = —wiw, !
eigenvalue equation reads as follows: Our first approach to the eigenvalue problem (4),(5) is

—e5 Y — ey + Qe = 2 based on the calculation of the electrostatic potential (we

’ assign a unit charge to each eigenvaluef H):
l=k=n (1

1 & 1
F,(z) = — » Inlz — z;| = — In|de{H - zI)|,
‘r//() = {r//ns ‘rlfl = ‘rlfn+1~ (2) ‘ n JZI ¢ ¢ n ¢

Our basic assumptions about the coefficients in Eq. (1) arehere I is the identity matrix. In the language of
as follows:{(g«, &k, m1)} is a stationary ergodic sequence two-dimensional electrostatics, the charge (eigenvalue)
of random three-dimensional vectors such thlafl +  densityp is determined by the electrostatic potential via

eﬂn_
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Poisson’s equatiod7rp = —AF. We will shortly see
that F(z) = lim,_. F,(z) can be expressed in terms of
the electrostatic potential

The complex part consists of the two arcs

) = iH(Kz —4)(K? — x2)_b}

K2
—xp < x <xp,

lim

n—oe

d(z) %Inldet(H - 2)l

(7)  where the end points x, are determined by the condition
y(xp) = 0. The real eigenvalue@{ are distributed in the
two intervals complementary t6-x;, x;) with a density

equal to the density of eigenvalues of Eq. (4) in these

+oo
f A — 2| dN(A)

of the eigenvalues off (which all are real). Namely,

. intervals. In Fig. 1 we compare these analytical results
F(z) = {‘1’ if ©(z) <a, (8)  With data obtained from a numerical experiment.
D(2), if Dz) = a, We omit the technical details of our derivation of

where a = max({&o),{(no)). N(A) in Eq. (7) is simply EQ. (8) and present only the main idea. One can write
the integrated density of states of an infinite disordered — 2/ = (I + VG)(H — zI), where G = (H —
system associated with the symmetric reference Eq. (4).z1)~' andV = H — H. Therefore

The idea of using potentials to study eigenvalue distri-
butions is not new and goes back to the 1960s at least, to

1
F(z) = ®(2) + lim —Inld,(2)],
studies of Toplitz matrices [7]. In the context of random "

(12)

matrices this idea has been used since works [8,9].
Obviously, @ is harmonic in the complex plane =
x + iy off the supportX of dN(A). In view of the

relationship betwee and ®, the complex eigenvalues

of H are distributed (in the limitz — =) on the line
®(z) = a. The density of their distributioav/ds with
respect to the arc-length measude, is equal to(27) !
times the jump in the normal derivative &f across the
line [10]. Computing the derivative gives

dv _ 1 [”’dzv(/\)
ds 27 |J-w A — 2

(9)

The limit distribution of the real eigenvalues o is
supported exactly by that part &fwhere®(x + i0) = a
and coincides there withiN (A).

It is very important for our further analysis thdi(z)

coincides, up to an additive constant, with the Lyapuno

exponent y(z) of Eq. (4). Namely, the well known
Thouless formula [11,12] states thab(z) = y(z) +

%((f()) + (no)). Therefore ®(z) = a is equivalent to

y() = 5 [Eo) = (o)l (10)

Our main results, Egs. (8)—(10), can be illustrated with

the following example. Let the, be Cauchy distributed,
i.e., Profg, € A} = 77! [,dgb/(g> + b?). Also, let

ér=gandn, = —g, i.e, ¢ =1 1in EQ. (4). In this

case an explicit algebraic expression fpfz) is known

(see, e.g., Ref. [11]):

4coshy(z) = \/(x + 22+ (b + |y])?

e =22 + (b + y)?. (12)

Straightforward computations involving Egs. (10) and

(11) show that the limit spectrum oH in this case has
a complex part only i = 2coshg > K., = V4 + b2.
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whered,,(z) = defl + VG). Expanding this determinant
yields

dn(z) = [1 + VlnGnl][l + anGln] = ViuViiGuGun

where G, denotes the j, k) matrix entry of G. Using
1

Gin = Gn = [[jZ; cx/ de(H — zI) one obtains that
[VinGnil = exp{n[(&) — ®(2) + o(D)]}, (13)
[Vi1Gial = expln[{no) — ®(z) + o(D]} (14)

Applying Egs. (13),(14) one calculates the second term
on the right-hand side in Eqg. (12) and obtains Eq. (8).
It should be mentioned here that the complete rigor-
ous derivation of Eq. (8) requires additional efforts (see
preprint [13] for details).

Transfer matrix approach—Now we consider another
Vapproach to the eigenvalue problem (4),(5). This ap-
proach provides more precise information about the finite-
n behavior of the eigenvalues ¢ff and easily extends to
the case of differential equations.
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FIG. 1. Spectrum of the non-Hermitian Anderson model with
Cauchy distributed;;,. The solid line shows the analytically
obtained spectrum ofH for the parameter value$ = 1
and K = 3. This is compared with the numerically obtained
eigenvalues of a sample matrigf of dimensionn = 100
shown by crosses.
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Let us write Eq. (4) in the form(eg+1, @x)! = From now on we assume thatg,, ¢, 1,)} form a
Ar(or, 0r-1)T, where sequence of independent identically distributed random
L (gx — 2z —ci-1 vectors. In this cas&(x) = y(x + i0) is a continuous
Ay = — < c 0 > function of x (see, e.g., Ref. [15]). One can also show
Ck k that for sufficiently largdx|
Then the solution of Eq. (4) with initial datép;, ¢g)”
can be written ase:1, o)’ = Sk(z) (@1, @o)7, Where Inlx| — €1 = y(x) = Inlx| + Cy, (18)

Sk(z) = AgAg----A;. Combining this with Eq. (5) one  \herec, depends only on the distribution Gfo, £o, 7).
reduces the eigenvalue problem (4),(5) to the followingrnerefore, all solutions of Eq. (10) are confined to a

two-dimensional problem: circle of finite radius, i.e., the curve which supports
[B,S,(z) — w, 1 1](¢1,0)" =0, (15) the nonreal eigenvalues ¢k is bounded. To describe
P W B this curve notice that the real partof every solution of
whereB, = diage? e Eq. (10) satisfies the inequality
Itis clear that the analysis of Eq. (15) should rely on the
study of the asymptotic behavior of the eigenvalues of the Y(x) < 1 1(€0) — (no)l. (19)
2 X 2 matrixB,S,. Inturn, this behavior is controlled by 2

that of the norm ofS,. Putw = {(g«, &, nx)} and define  and, vice versa, for each satisfying (19) one can find

the individual Lyapunov exponent by y(x) such thatz = x + iy(x) and z* solve Eg. (10).
1 Because of the continuity af(x) the set ofx where (19)
v(z,w) = ,Izm; In||S,(2)ll. (16)  holds is a union of disjoint intervalga;, aj] with a; <

aj. Therefore £ is a union of disconnected contours
L;. Each L; consists of two smooth arcs,(x) and
—yj(x), formed by the solutions of Eq. (10) whenis
running over[a.,-,a}]. It turns out that for every strictly
positive g, the real eigenvalues lie outside the intervals
[a; + &,a; — ] whenn is sufficiently large.
(17) We notice that it is easy to construct examples with a
prescribed finite number of contours. In general, there is
On the other hand,n 'Inw,+; — (&) — (m0)/2. no obvious reason for the number of contours to be finite
From these facts it is obvious thall nonrealsolutions of ~ for an arbitrary distribution of&o, 70, go). We illustrate
Eq. (15) are asymptotically attracted to the curve (10). our description ofL with Fig. 2.

The above argument is heuristic and actually naive. In- In general, it is difficult to solve Eq. (10) explicitly.
deed, the same reasoning would imply that the real eigerMoreover, we know only one example (mentioned above)
values of H have to satisfy, in the limit — o, Eq. (10) when this can be done. However, using Eq. (10) one can
which is not true. However, for the complex values ofdescribe some generic properties of the eigenvalue distri-
z the above heuristics can be justified. This justificationbution of H . Denote2g = (o) — (&o). First of all, the
is based on the information about the behavioléf, »)  limit spectrum ofH is entirely real ifg = 0. Now con-
as a function of whenw is fixed. This question, in the sider a special case of the model whgn= 0. In this case
general context of products of random matrices depending
on a parameter, was studied in [15]. It was proved there

It is known that for fixedz the limit in Eq. (16) exists for
almost allw and coincides withy(z) = (y(z, ®)).

It is also intuitively clear that the asymptotic behavior
of the largest by modulus eigenvalueg,(z, w) of B,S,
[14] should be the same as that|{f,,||:

1
im —Inlp,(z, 0)| = y(z, ).
n—®© n

that with probability 1 the convergence in (16) is uniform 2 ; , ; ‘ ;

in z on compact sets which do not contain any point from 15} 0T X000 1
3. lt can be deduced from this fact that, (z, ») exhibits 1t f .

exactly the same behavior: the convergence in (17) is uni-  osf 1

Y
. .

form in z in the same domain. And this provides a proof TE; o
of Eqg. (10) by the transfer matrix approach. On the spec-  -05f

trum 3 of H the convergence in Eq. (16) is not uniform -r &&XX KX *Xf 1

[15] and this is why the real eigenvalues 8f do not -1sp R SETEL R 1

satisfy Eq. (10). 2 3 2 0 2 3 P
One can prove a uniform version of the central-limit xRz

theorem for I[S,(z)|| for nonrealz. Using it one can FIG. 2. Numerically obtained spectra of sample matrices
estimate the rate of convergence in Egs. (15) and (16) and{ of dimension n = 100. The g, are drawn from a
prove that the nonreal eigenvalues 8f for large but mixture of the uniform distribution on3,4] and the normal
- . . . distribution centered at = —3 with standard deviatioi®.01.
finite matrix dimensiom belong to a neighborhood of

g ) The off-diagonal elements are constafit,= —n, = g. The
of width of the orderl/\/n. This approach also helps to parameterg takes three valuesz = 0.75 (eigenvalues are
control the behavior of real eigenvalues®f. shown by dots)g = 1 (circles), andg = 1.25 (crosses).
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v(0) = 0 (see Ref. [12], p. 347). Hence,gf # 0 the so-
lutions to the equationy(z) = |g| constitute a nontrivial
curve and the limit spectrum of{ has a complex part.
This property does not hold if the distribution gf is non-

this case the angle brackets denote averaging over the
period). The geometry of the limit spectrum & in
the periodic case follows two patterns. (§) = (n) the
limit spectrum is real and coincides witf, the spectrum

degenerate (i.eq takes at least two different values with of the symmetric reference equation. () # (n) the

nonzero probabilities). Indeed, in this cgge) = y(x +

i0) is strictly positive (see, e.g., Ref. [12]). The continuity Eq. (10).

of ¥(x) implies thatg; = min,es y(x) > 0. Therefore,
y(x + iy) = y(x) = g; forall z = x + iy and Eq. (10)
has no nonreal solutions if the paramegezontrolling the
degree of non-Hermiticity satisfidg| = g,. If the coef-
ficients in Eq. (4) are bounded, i.ej; + g; = C for all
k, then is a bounded set angh = max.es y(x) is fi-
nite. Therefore, ifg] = g, the inequality (19) is satisfied
for every point of%. Hence the limit spectrum is purely
complex for such parameter values. If eitagor g takes
arbitrary large values with nonzero probability, thEris
an unbounded set and, in view of Eq. (18),= +o~.

In summary, if|g| = g; the limit spectrum ofH is
entirely real, if |g] = g» the limit spectrum is entirely
complex and ifg; < |g| < g, the limit spectrum has real

limit spectrum is purely complex and is described by
In either case (real or complex spectrum) the
corresponding eigenfunctions are extended.

We conclude the discussion with a remark on the
spectrum of the limit operatof{ defined by the left-
hand side of Eq. (1) oriy(Z). It turns out that for a
wide class of distributions of(¢x, mx, qx)} the spectrum
of H is a two-dimensional subset of the complex plane
and the limit spectrum ofH is embedded into this set.
This phenomenon seems to be surprising becdtse
converges taH ¢ whenn — o for everye € I,(Z).

After this work was completed we learned about recent
preprints [16] addressing similar problems.

and complex parts. In the latter case the branching points

from which the complex branches grow out of the real

eigenvalues are determined Hyx) = |g|.

It should be noticed that the density of the nonreal
eigenvalues given by Eq. (9) is analytic everywhere on
L except the (real) end points of the arcs. (If the limit
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