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We develop a theory which describes the behavior of eigenvalues of a class of one-dimens
random non-Hermitian operators introduced recently by Hatano and Nelson. We prove that
eigenvalues are distributed along a curve in the complex plane. An equation for the curve
derived, and the density of complex eigenvalues is found in terms of spectral characteristics
“reference” Hermitian disordered system. The generic properties of the eigenvalue distribution
discussed. [S0031-9007(98)05635-X]
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Complex eigenvalues of non-Hermitian random Hami
tonians have recently attracted much interest across s
eral areas of physics [1–5]. However, the actual progre
in understanding the statistics of such eigenvalues
mostly limited to the so-called “zero-dimensional” case
i.e., to random matrices with no spatial structure. I
this case a number of models can be treated analytica
and their basic features are relatively well understood,
though on different levels of rigor (see, e.g., [4–6], an
references therein). In contrast, little is known about spe
tra of non-Hermitian Hamiltonians in one or more dimen
sions. One of the challenging problems here involves
unusual localization-delocalization transition predicted b
Hatano and Nelson [1].

Motivated by the studies of statistical mechanics of th
magnetic flux lines in superconductors with columnar d
fects, Hatano and Nelson considered a model described
a random Schrödinger operator with a constant imagina
vector potential. Appealing to a qualitative reasoning the
argued that already in dimension one some localized sta
undergo a delocalization transition when the magnitud
of the vector potential increases. The eigenvalues cor
sponding to the localized states are real and those co
sponding to the extended states are complex. The res
of numerical calculations presented in [1] support the
conclusions. They also show a surprising feature of t
eigenvalue distribution in the model: the eigenvalues a
attracted to a curve in the complex plane.

The aim of our Letter is to explain this feature
Most of our discussion involves the lattice case whic
is technically simpler. Following [1], we consider a
one-dimensional non-Hermitian Anderson model whos
eigenvalue equation reads as follows:

2ejk21 ck21 2 ehk ck11 1 qkck ­ zck ,

1 # k # n, (1)

c0 ­ cn, c1 ­ cn11 . (2)

Our basic assumptions about the coefficients in Eq. (1) a
as follows:hsqk , jk , hkdj is a stationary ergodic sequence
of random three-dimensional vectors such thatklns1 1
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jq0jdl, kj0l, kh0l are finite. The angle brackets denote
averaging over the disorder. The relevance of this no
Hermitian Anderson model to physics of vortex lines in
superconductors is explained in [1].

Potential theory approach.—We start our analysis with
a standard transformation which is often used in th
theory of differential and difference equations. Let us pu
ck ­ wkwk in Eq. (1) and choose the weightwk so that
to make the resulting equation symmetric. For instanc
if we set

w0 ­ 1, wk ­ e
1

2

Pk21

j­0
sjj2hjd

, if k $ 1 , (3)

this transformation reduces the eigenvalue problem (1),(
to the following one (whereck ; expfsjk 1 hkdy2g):

2ck21wk21 2 ckwk11 1 qkwk ­ zwk , (4)

wn11 ­ w21
n11w1w1, wn ­ w21

n w0 . (5)

From now on, we will deal with Eqs. (4)–(5). [Obvi-
ously, the eigenvalues of (1),(2) and (4),(5) coincide.]

Let us introduce a “reference” symmetric eigenvalu
problem which will be used in our analysis and which is
specified by Eq. (4) and by the boundary conditions

wn11 ­ 0, w0 ­ 0 . (6)

One can rewrite the eigenvalue problems (4),(5) an
(4),(6) in the matrix formH w ­ zw and Hw ­ zw,
respectively. H is a symmetrictridiagonaln 3 n matrix
with the hqkj on the main diagonal and theh2ckj on the
subdiagonals.AsymmetricH is “almost” tridiagonal: the
only nonzero elements of the differenceV ­ H 2 H
areV1n ­ 2w21

1 wnej0 andVn1 ­ 2w1w21
n ehn .

Our first approach to the eigenvalue problem (4),(5) i
based on the calculation of the electrostatic potential (w
assign a unit charge to each eigenvaluezj of H ):

Fnszd ­
1
n

nX
j­1

lnjz 2 zj j ­
1
n

lnjdetsH 2 zIdj ,

where I is the identity matrix. In the language of
two-dimensional electrostatics, the charge (eigenvalu
densityr is determined by the electrostatic potential via
© 1998 The American Physical Society 2897
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Poisson’s equation:4pr ­ 2DF. We will shortly see
that Fszd ; limn!` Fnszd can be expressed in terms o
the electrostatic potential

Fszd ­ lim
n!`

1
n

lnjdetsH 2 zdj

­
Z 1`

2`
lnjl 2 zj dNsld

(7)

of the eigenvalues ofH (which all are real). Namely,

Fszd ­

Ω
a, if Fszd , a ,
Fszd, if Fszd $ a, (8)

where a ­ maxskj0l, kh0ld. Nsld in Eq. (7) is simply
the integrated density of states of an infinite disordere
system associated with the symmetric reference Eq. (4)

The idea of using potentials to study eigenvalue distr
butions is not new and goes back to the 1960s at least,
studies of Töplitz matrices [7]. In the context of random
matrices this idea has been used since works [8,9].

Obviously, F is harmonic in the complex planez ­
x 1 iy off the supportS of dNsld. In view of the
relationship betweenF and F, the complex eigenvalues
of H are distributed (in the limitn ! `) on the line
Fszd ­ a. The density of their distributiondnyds with
respect to the arc-length measure,ds, is equal tos2pd21

times the jump in the normal derivative ofF across the
line [10]. Computing the derivative gives

dn

ds
­

1
2p

É Z 1`

2`

dNsld
l 2 z

É
. (9)

The limit distribution of the real eigenvalues ofH is
supported exactly by that part ofS whereFsx 1 i0d $ a
and coincides there withdNsld.

It is very important for our further analysis thatFszd
coincides, up to an additive constant, with the Lyapuno
exponent gszd of Eq. (4). Namely, the well known
Thouless formula [11,12] states thatFszd ­ gszd 1
1
2 skj0l 1 kh0ld. Therefore,Fszd ­ a is equivalent to

gszd ­
1
2

jkj0l 2 kh0lj . (10)

Our main results, Eqs. (8)–(10), can be illustrated wit
the following example. Let theqk be Cauchy distributed,
i.e., Probhqk [ Dj ­ p21

R
D dq bysq2 1 b2d. Also, let

jk ; g and hk ; 2g, i.e., ck ; 1 in Eq. (4). In this
case an explicit algebraic expression forgszd is known
(see, e.g., Ref. [11]):

4 coshgszd ­
q

sx 1 2d2 1 sb 1 jyjd2

1

q
sx 2 2d2 1 sb 1 jyjd2 . (11)

Straightforward computations involving Eqs. (10) an
(11) show that the limit spectrum ofH in this case has
a complex part only ifK ; 2 coshg . Kcr ­

p
4 1 b2.
2898
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The complex part consists of the two arcs

ysxd ­ 6

"s
sK2 2 4d sK2 2 x2d

K2
2b

#
,

2 xb , x , xb ,

where the end points6xb are determined by the condition
ysxbd ­ 0. The real eigenvaluesH are distributed in the
two intervals complementary tos2xb , xbd with a density
equal to the density of eigenvalues of Eq. (4) in thes
intervals. In Fig. 1 we compare these analytical result
with data obtained from a numerical experiment.

We omit the technical details of our derivation of
Eq. (8) and present only the main idea. One can writ
H 2 zI ­ sI 1 VGd sH 2 zId, where G ­ sH 2

zId21 andV ­ H 2 H. Therefore

Fszd ­ Fszd 1 lim
n!`

1
n

lnjdnszdj , (12)

wherednszd ­ detsI 1 VGd. Expanding this determinant
yields

dnszd ­ f1 1 V1nGn1g f1 1 Vn1G1ng 2 V1nVn1G11Gnn ,

where Gjk denotes thesj, kd matrix entry of G. Using
G1n ­ Gn1 ­

Qn21
j­1 cky detsH 2 zId one obtains that

jV1nGn1j ­ exphnfkj0l 2 Fszd 1 os1dgj , (13)

jVn1G1nj ­ exphnfkh0l 2 Fszd 1 os1dgj. (14)

Applying Eqs. (13),(14) one calculates the second term
on the right-hand side in Eq. (12) and obtains Eq. (8
It should be mentioned here that the complete rigor
ous derivation of Eq. (8) requires additional efforts (se
preprint [13] for details).

Transfer matrix approach.—Now we consider another
approach to the eigenvalue problem (4),(5). This ap
proach provides more precise information about the finite
n behavior of the eigenvalues ofH and easily extends to
the case of differential equations.

FIG. 1. Spectrum of the non-Hermitian Anderson model with
Cauchy distributedqk . The solid line shows the analytically
obtained spectrum ofH for the parameter valuesb ­ 1
and K ­ 3. This is compared with the numerically obtained
eigenvalues of a sample matrixH of dimension n ­ 100
shown by crosses.
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Let us write Eq. (4) in the formswk11, wkdT ­
Akswk , wk21dT , where

Ak ­
1
ck

µ
qk 2 z 2ck21

ck 0

∂
.

Then the solution of Eq. (4) with initial datasw1, w0dT

can be written asswk11, wkdT ­ Skszd sw1, w0dT , where
Skszd ­ AkAk21 · · · A1. Combining this with Eq. (5) one
reduces the eigenvalue problem (4),(5) to the followin
two-dimensional problem:

fBnSnszd 2 w21
n11Ig sw1, w0dT ­ 0 , (15)

whereBn ­ diaghe
1

2
sh02j0d, e

1

2
shn2jndj.

It is clear that the analysis of Eq. (15) should rely on th
study of the asymptotic behavior of the eigenvalues of th
2 3 2 matrix BnSn. In turn, this behavior is controlled by
that of the norm ofSn. Putv ; hsqk , jk , hkdj and define
the individual Lyapunov exponent by

gsz, vd ­ lim
n!`

1
n

lnjjSnszdjj . (16)

It is known that for fixedz the limit in Eq. (16) exists for
almost allv and coincides withgszd ­ kgsz, vdl.

It is also intuitively clear that the asymptotic behavio
of the largest by modulus eigenvaluemnsz, vd of BnSn

[14] should be the same as that ofjjSnjj:

lim
n!`

1
n

lnjmnsz, vdj ­ gsz, vd . (17)

On the other hand,n21 ln wn11 ! skj0l 2 kh0ldy2.
From these facts it is obvious thatall nonrealsolutions of
Eq. (15) are asymptotically attracted to the curve (10).

The above argument is heuristic and actually naive. I
deed, the same reasoning would imply that the real eige
values ofH have to satisfy, in the limitn ! `, Eq. (10)
which is not true. However, for the complex values o
z the above heuristics can be justified. This justificatio
is based on the information about the behavior ofgsz, vd
as a function ofz whenv is fixed. This question, in the
general context of products of random matrices depend
on a parameter, was studied in [15]. It was proved the
that with probability 1 the convergence in (16) is uniform
in z on compact sets which do not contain any point from
S. It can be deduced from this fact thatmnsz, vd exhibits
exactly the same behavior: the convergence in (17) is u
form in z in the same domain. And this provides a proo
of Eq. (10) by the transfer matrix approach. On the spe
trum S of H the convergence in Eq. (16) is not uniform
[15] and this is why the real eigenvalues ofH do not
satisfy Eq. (10).

One can prove a uniform version of the central-lim
theorem for lnjjSnszdjj for nonrealz. Using it one can
estimate the rate of convergence in Eqs. (15) and (16) a
prove that the nonreal eigenvalues ofH for large but
finite matrix dimensionn belong to a neighborhood ofL
of width of the order1y

p
n. This approach also helps to

control the behavior of real eigenvalues ofH .
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From now on we assume thathsqn, jn, hndj form a
sequence of independent identically distributed random
vectors. In this casegsxd ; gsx 1 i0d is a continuous
function of x (see, e.g., Ref. [15]). One can also show
that for sufficiently largejxj

lnjxj 2 C1 # gsxd # lnjxj 1 C1 , (18)

whereC1 depends only on the distribution ofsq0, j0, h0d.
Therefore, all solutions of Eq. (10) are confined to a
circle of finite radius, i.e., the curveL which supports
the nonreal eigenvalues ofH is bounded. To describe
this curve notice that the real partx of every solution of
Eq. (10) satisfies the inequality

gsxd #
1
2

jkj0l 2 kh0lj . (19)

and, vice versa, for eachx satisfying (19) one can find
ysxd such that z ­ x 1 iysxd and zp solve Eq. (10).
Because of the continuity ofgsxd the set ofx where (19)
holds is a union of disjoint intervalsfaj , a0

jg with aj ,

a0
j. ThereforeL is a union of disconnected contours

Lj . Each Lj consists of two smooth arcs,yjsxd and
2yjsxd, formed by the solutions of Eq. (10) whenx is
running overfaj , a0

jg. It turns out that for every strictly
positive ´, the real eigenvalues lie outside the intervals
faj 1 ´, a0

j 2 ´g whenn is sufficiently large.
We notice that it is easy to construct examples with a

prescribed finite number of contours. In general, there i
no obvious reason for the number of contours to be finit
for an arbitrary distribution ofsj0, h0, q0d. We illustrate
our description ofL with Fig. 2.

In general, it is difficult to solve Eq. (10) explicitly.
Moreover, we know only one example (mentioned above
when this can be done. However, using Eq. (10) one ca
describe some generic properties of the eigenvalue distr
bution ofH . Denote2g ; kh0l 2 kj0l. First of all, the
limit spectrum ofH is entirely real ifg ­ 0. Now con-
sider a special case of the model whenqk ; 0. In this case

FIG. 2. Numerically obtained spectra of sample matrices
H of dimension n ­ 100. The qk are drawn from a
mixture of the uniform distribution onf3, 4g and the normal
distribution centered atx ­ 23 with standard deviation0.01.
The off-diagonal elements are constant,jk ; 2hk ; g. The
parameterg takes three values:g ­ 0.75 (eigenvalues are
shown by dots),g ­ 1 (circles), andg ­ 1.25 (crosses).
2899
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e
gs0d ­ 0 (see Ref. [12], p. 347). Hence, ifg fi 0 the so-
lutions to the equationgszd ­ jgj constitute a nontrivial
curve and the limit spectrum ofH has a complex part.
This property does not hold if the distribution ofq0 is non-
degenerate (i.e.,q0 takes at least two different values with
nonzero probabilities). Indeed, in this casegsxd ; gsx 1

i0d is strictly positive (see, e.g., Ref. [12]). The continuity
of gsxd implies thatg1 ; minx[S gsxd . 0. Therefore,
gsx 1 iyd $ gsxd $ g1 for all z ­ x 1 iy and Eq. (10)
has no nonreal solutions if the parameterg controlling the
degree of non-Hermiticity satisfiesjgj # g1. If the coef-
ficients in Eq. (4) are bounded, i.e.,c2

k 1 q2
k # C for all

k, thenS is a bounded set andg2 ; maxx[S gsxd is fi-
nite. Therefore, ifjgj $ g2 the inequality (19) is satisfied
for every point ofS. Hence the limit spectrum is purely
complex for such parameter values. If eitherc0 or q0 takes
arbitrary large values with nonzero probability, thenS is
an unbounded set and, in view of Eq. (18),g2 ­ 1`.

In summary, if jgj # g1 the limit spectrum ofH is
entirely real, if jgj $ g2 the limit spectrum is entirely
complex and ifg1 , jgj , g2 the limit spectrum has real
and complex parts. In the latter case the branching poin
from which the complex branches grow out of the rea
eigenvalues are determined bygsxd ­ jgj.

It should be noticed that the density of the nonrea
eigenvalues given by Eq. (9) is analytic everywhere o
L except the (real) end points of the arcs. (If the limi
spectrum is entirely complex then this density is analyt
everywhere.) The behavior ofdnyds near an end point
of an arc,aj say, depends on the regularity properties o
Nsld at this point. If the density of statesN 0sld of the
reference equation is smooth in a neighborhood ofl ­ aj

thendnyds has a finite limit asz approachesaj along the
arc. Also, in this case the tangent to the arc ataj exists
and is not vertical. In other words, ifN 0sld is smooth in
a neighborhood of a branching pointl ­ aj the complex
branches grow out of this pointlinearly. This may not be
the case ifN 0sld is not smooth.

Since the original problem (1),(2) is non-Hermitian, its
spectrum may depend on the choice of boundary con
tions (b.c.). Indeed, all the eigenvalues of Eq. (1) with th
Dirichlet b.c., i.e., whencn11 ­ c0 ­ 0, are real. It is
remarkable, however, that the boundary conditions of th
form scn11, cndT ­ Bsc1, c0dT , whereB is a fixed real
nondegenerate2 3 2 matrix, lead to the same Eq. (10)
(regardless of the choice ofB) in the limit n ! `. For
diagonalB this fact can be readily seen from our deriva
tion of Eq. (8). For nondiagonalB Eq. (10) can be de-
rived using the above mentioned properties ofSnszd.

The derivation of Eq. (8) given above is based only o
the existence ofNsld which is ensured by the ergodicity
of the coefficients in Eq. (1). Thus one can easil
extend our argument to other classes of coefficients. F
instance, Eq. (8) holds for periodicqk , jk , and hk (in
2900
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this case the angle brackets denote averaging over th
period). The geometry of the limit spectrum ofH in
the periodic case follows two patterns. Ifkjl ­ khl the
limit spectrum is real and coincides withS, the spectrum
of the symmetric reference equation. Ifkjl fi khl the
limit spectrum is purely complex and is described by
Eq. (10). In either case (real or complex spectrum) the
corresponding eigenfunctions are extended.

We conclude the discussion with a remark on the
spectrum of the limit operatorĤ defined by the left-
hand side of Eq. (1) onl2sZd. It turns out that for a
wide class of distributions ofhsjk , hk , qkdj the spectrum
of Ĥ is a two-dimensional subset of the complex plane
and the limit spectrum ofH is embedded into this set.
This phenomenon seems to be surprising becauseH w

converges toĤ w whenn ! ` for everyw [ l2sZd.
After this work was completed we learned about recent

preprints [16] addressing similar problems.
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