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Nonequilibrium Transport for Crossed Luttinger Liquids
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Transport through two one-dimensional interacting metals (Luttinger liquids) coupled together at a
single point is analyzed. The dominant coupling mechanism is shown to be of electrostatic nature.
Describing the voltage sources by boundary conditions then allows for the full solution of the transport
problem. For weak Coulomb interactions, transport is unperturbed by the coupling. In contrast, for
strong interactions, unusual nonlinear conductance laws characteristic for the correlated system can be
observed. [S0031-9007(98)05709-3]

PACS numbers: 71.10.Pm, 72.10.—d, 73.40.Gk

The physics of one-dimensional (1D) conductors hasinscreened?/|x — x’| interaction potential and therefore
received much attention lately, chiefly due to fabricationvery strong correlations. Strictly speaking, this interaction
advances and the discovery of novel 1D materials sucleads tog — 0 in an infinite system, but the finite length
as carbon nanotubes [1]. From the theoretical point obf the nanotube in Ref. [6] implieg = 0.2. A natural
view, these systems are of interest since Coulomb intermand quite simple description of Luttinger liquids is offered
actions invalidate the ubiquitous Fermi liquid description.by the standard bosonization method [3]. External reser-
The resulting state is often of Luttinger liquid (LL) [2,3] voirs (voltage sources) can be incorporated by imposing
type characterized by, e.g., spin-charge separation, supeundary conditions [10] for the phase fields employed in
pression of the tunneling density of states, and interactiorthe bosonization scheme. This approach offers a general
dependent power laws in the transport behavior. Howevegnd powerful route to studying multiterminal Landauer-
so far the unambiguous experimental observation of LL beBttiker geometries [11] for strongly correlated electrons.
havior has been difficult to achieve. The crossed Luttinger liquids depicted in Fig. 1 may be the

In this paper, we study two correlated 1D metals cousimplest example for such a problem.
pled in a pointlike manner (“crossed Luttinger liquids”). We start by expressing the right- and left-moving
For the standard two-chain problem, where two Luttinger(p = *) component of the electron operatgt,;(x) in
liquids are connected all along the conductors, the coueonductori = 1 or 2 in terms of the dual bosonic phase
pling normally destroys the LL phase [4]. In the case offields ;(x) and ¢;(x) obeying the algebra
a pointlike coupling, however, the LL characteristics can
survive and lead to the unusual transport features reported [#i(x),0;(y)]- = —(i/2)8;;sgrx — y). Q)
below. The most promising candidates for their experi-
mental observation are carbon nanotubes. At not exceed-
ingly low temperatures, metallic single-wall nanotubes
exhibit LL behavior (with an additional flavor index) [5].

In a remarkable recent experiment, Tagtsal. [6] were

able to attach leads to a single nanotube. So far, transport
measurements have been dominated by Coulomb charging
effects due to rather large contact resistances between the
leads and the nanotube, thereby masking any possible de-
viation from Fermi liquid theory. In the near future this
problem might be overcome, and non-Fermi liquid laws
should indeed emerge. Other realizations of crossed Lut-
tinger liquids could be based on, e.g., 1D quantum wires
in semiconductor heterostructures [7], or edge states in a
fractional quantum Hall bar [8].

The geometry of our system is shown in Fig. 1. We
shall consider two spinless Luttinger liquids character-

|zed_ tt)y thte_ samelz mt_eraitlcl)n CO(TStag:t[Q]' I Here the d FIG. 1. Two Luttinger liquids coupled together at one point
noninteracting value 1z = 1, and externally SCreened (, — () and adiabatically connected to external reservoirs held

Coulomb interactions imply) < ¢ <1 [2,3]. For the at constant voltagesU,/2 and +=U,/2. In the absence of
nanotube experiment of Ref. [6], one has an externallgingle-particle tunneling, the currents obgy= I;.

~U,/2
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The bosonization formula then reads [3] 1/2. In contrast, a static potential scatterer in one of the
Npi . ) conductors would be relevant already for< 1 [13]. In
hpilx) = Nz exfl— ipkrpx — ip/mg 0;(x) our case, electrons in conductor 1 experiencefitieuat-
. ing potential scattering/; due to electrons in conductor 2,
— ivw/g ¢i(x)], (2) implying a doubled scaling dimension.

where the same average densly/w is assumed for  The second potentially important process sisgle-
both conductors. The short-distance cutoff (lattice Spanartide hoppingfrom one conductor into the other. It
ing) in Eq. (2) is taken as = 1/kr. To ensure anti- s helpful to distinguish processes that do (do not) pre-
commutation relations among different branchesi), we  serve thep = R,L = = index, yielding the two pertur-

use (real) Majorana fermions,; fulfilling [n,:, n,i]+ = bationsV, = 1,5, !!/;1(0)%2(0) + H.c. (preserving the

26,,6;. In the following, only products of Majorana . B +
fermions will appear. A valid choice for these products” mqlex) and‘@ = A3 ZP Up10)Y—pa(0) + H.'C' (not pre-
serving thep index). They have the bosonized form

employs the standard Pauli matrices [5],

_ . . 2
Np17Mp2 10y, Np1MN-p2 Ipay, (3) V2 = - 77_—; Oy COS{\/W_g[el(O) - 02(0)]}
Np1MN—-p1 = ipo, Np2MN—p2 = —ipo;. .

Assuming that the conductors do not contain impurities, X sinfy/m/g[¢1(0) — ¢2(0)]}, (8)

the Hamiltonia;n of the uncoupledzsystem is2 vy = % o, siyTE[0:10) + 6001
Ho= — [ dx ) {(0:¢:)" + (3:0:)7}, (4
2 f ig:Z ¢ @ X cogvm/g¢1(0) — ¢2(0)]} ©)

where we have puti = 1 and the sound velocity =  £qr the standard two-chain problem, a (bulk) coupling

vp/g = 1. Adiabatically connected voltage sources cangry, formally identical to Eq. (8) has been discussed in
then be taken into account by Sommerfeld-like boundary; ¢ [14]. BothV, andV; have scaling dimension, —

conditions. Applying the voltagé&/; along conductor 1, m = (¢ + 1/g)/2 > 1, from which one might naively

andU; along conductor 2, see Fig. 1, they read [10]  ¢onclude that they are irrelevant [15]. However, this con-
(prsix — Foo)) = + eUi 5) clusion is premature becau$g and V3 have conformal
Pr==i TArmg’ spin S = 1 [16]. For an operator with nonzero confor-
where p-; is the density of right-movindeft-moving mal spin, th(_e standard criterion for .relevan¢e< 1 does
particles injected into conducter Outgoing particles are ot apply, since relevant perturbations may be generated
assumed to enter the reservoirs without reflection. in higher orders of the renormalization group (RG). This
Let us now consider a pointlike coupling of both 1D phenomenon indeed occurs in the standard two-chain prob-
conductors at, says = 0. For example, in a nanotube lem [17], where the (bulk) coupling term corresponding
setup, two nanotubes could be stacked on top of each othd®, Ed. (8) generates relevant particle-hole and/or particle-
Such a contact causes (at least) two different coupling@rticle excitation operators. Similarly, we find thatand
mechanisms [12]. 3 together generate the electrostatic coupligyiven in
First, there arises a (density-densigj¢ctrostatic inter-  Ed. (7), but no other relevant terms. Omitting irrelevant
actionof the formV, = A,p,(0)p»(0). Using Egs. (2)and Operators, the resulting RG equations take the closed form
(3), and omitting the mean density-/7 which is sup- dA

posedly neutralized by positive background charges, the a0 [1—2¢Ir + [g — 1/g],
bosonized representation of the density operator is J (20)
t
i) = £ 00,00 = L siriakex + JAmg 0,001, g¢ U~ &+ /02
o ma

(6) whereA, = A; = ¢ is the hopping amplitude amd, = A
the electrostatic coupling. The standard flow parameter is
defined byd¢ = —dIn w., Wherew. is a high-frequency
cutoff that is reduced under the RG transformation.

Let us first discuss the cage= 1. The electrostatic
coupling is irrelevant, i.e., we may effectively put= 0,
but the hopping term stays marginal. By refermioniz-
ing the HamiltonianH, + V, + V3, and employing the

where the first (“slow”) term is due to the sum of right- and
left-moving densitiespg; + pri, and the second (“fast”)
term arises from mixing right and left movers. Thesigns
correspond ta = 1,2, respectively. One checks easily
that most contributions td/; are irrelevant forg = 1,
i.e., they have scaling dimension> 1. Keeping the fast

tin Eq. (6) yields th ly i tant t .\ . o
component in Eq. (6) yields the only important term, boundary conditions (5), one arrives at the familiar re-

Al > sin [amg 6,(0)]sin\/4mg 6,(0)], (7) sults for uncorrelated electrons in the geometry of Fig. 1;
(ma) see Ref. [11]. We therefore recover the usual Landauer-

with scaling dimensionp; = 2g. Clearly, this coupling Buttiker formalism. Second, fog < 1, the hopping am-
becomes relevant for sufficiently strong interactionsy.  plitudes(€) always scales to zero &s— o, and the effects

Vlz_
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of single-particle tunneling can be captured by a renormalspinless LL [13]. However, this LL now has the doubled
ization of the bare electrostatic coupling see Eqg. (10). interaction strength parametgr= 2¢. The boundary
We shall assume henceforth that this renormalization hasonditions (15) specify the effective voltages = (U; +
been carried out, and only the electrostatic interactipn rU,)/~/2 applied to channelr = +. In analogy to
will be kept. In that case, the currents flowing throughEq. (11), currents in channel= + are defined by, =
conductori = 1 or 2 satisfyl; = I, see Fig. 1, and can e\/g/7 9,9,(0), and from Eq. (13), we then find the cur-
be computed from the bosonized current operator [3]  rentsl; = (I, + I_)/~/2 flowing in conductori = 1,2.
The Hamiltonian (14) has been discussed in detail
I = eVg/md0i(x = 0,1). (11)  pefore; see, e.g., Refs.[13,18-21]. For arbitrary
. ] ~ the exact solution of the transport problem has been
For weak interactions|/2 < ¢ <1, the electrostatic gjyen in Ref. [19]. This solution exploits the integra-
couplingA(f) also flows to zero a6 — <. Inthatcase, at pjlity of Eq. (14) and employs the thermodynamic Bethe
low energy scales, crossed Luttinger liquids are basicallynsatz. Simpler exact solutions are possible by means of
insensitiveto the coupling considered here. At asymp-efermionization techniques far = 1 [see Eq. (12)] and
totically low energy scales, the currents are ther= 5 — | /2. The cases = 1/2 thus corresponds to an un-
(e?/h)U;. The finite-temperature or low-voltage correc- Sorrelated situation in the new basis (13), ane- 1/4
tions due to the irrelevant operatovs can be computed s the Toulouse point [20]. Progress can also be made
by perturbation theory in the respective coupling strength$,, expanding inle| < 1 for g = 1 — € [18] or &z =
A;. Since the fluctuating potential scattering is irrelevantl/z — € [21].
for 1/2 < ¢ <1, the corrections due ¥, ; are governed  Employing the exact results of, e.g., Ref. [19], at zero

by the standard exponent = (g + 8.71 — 2)/4 fortun-  temperature we find the asymptotic low-voltage behavior
neling into a bulk LL [2,3]. This is in contrast to a static

potential scatterer, where tunneling into the end of a LL = e_2 Ap 1/g—1

matters at low energy scales [13]. I = h e {sgnUs + U)[elUr + Ual/As]

Directly at g = 1/2, the operatoV; is marginal, and
straightforward refermionization yields
e? 1
I = 1+ (A/27a)> Ui. (12)  where the= sign corresponds t@ = 1,2, respectively.

o The energy scald g generated by the bare electrostatic
Each conductor exhibits a response only to the voltageoupling A is given by

applied to itself, with the conductance now explicitly
depending on the electrostatic coupling strength A = (cg/a)(A/a)/' %), 17)

For sufficientlystrong interactionsg < 1/2, the elec-
trostatic couplingA(€) flows to strong coupling. To pro-
ceed, we switch to the linear combinations

B+ (x) = {61(x) = 6,(0)}/V2, .

(13) If both voltages approach zero, the linear conduc-
o= (x) = {$1(x) = ho(x)}/V2, tance vanishes in both 1D conductors. We thus find
a pronouncedzero-bias anomaly,with characteristic
Interaction-dependent power laws for small voltages.

Let us now discuss the full current-voltage charac-

+ sgrU; — Us)[elUy — Usl/Ag]87 1Y,
(16)

wherec, is a numerical constant of order unity [19]. The
result (16) holds under the condition

€|U1 * U2| < Ap. (18)

which again obey the algebra (1). Remarkably, the Hamil
tonianHy + V; decouples into the suiy + H_ with

1 5 ) teristics. A particularly simple solution emerges at the
H. = > fdx{(axgoi) + (0:9+)7} Toulouse pointg = 1/4 by refermionization [20] of
Eq. (14) under the boundary conditions (15). At zero tem-
+ 2(7)‘)2 cod/87g 9-(0)], (14)  perature, the result is
ma -
I. = (ez/h) [Us — V4], (19)

and the boundary conditions (5) determining the density
pp.» of p = = movers injected into channel= = take = whereV. is the four-terminal voltage [10] subject to the
the form self-consistency equation

p elU + VUz). eVe = 2gtan Y[2eUs — (3/2)eV=]/Ag},  (20)

(Pp.r(x = —px)) = NG (15)

4mg where Az = A?/4(wa)® in accordance with Eq. (17).
Therefore we are left with two completely decoupledUnder the condition (18), the exact result (19) reproduces
systems = =, each of which is formally identical to the Eq. (16) again. In the absence of a coupling,= 0, one

problem of an elastic potential scatterer embedded into inds the correct unperturbed currefts= (e?/h)U;.
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