VOLUME 80, NUMBER 13 PHYSICAL REVIEW LETTERS 30 MRrcH 1998

4/3 Law of Granular Particles Flowing through a Vertical Pipe

Osamu Moriyama, Naoya Kuroiwa, and Mitsugu Matsushita
Department of Physics, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

Hisao Hayakawa

Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
(Received 16 June 1997

Density waves of granular material (sand) flowing through a vertical pipe have been investigated.
Clear density waves emerge when the cock attached to the bottom end of the pipe is closed. The FFT
power spectra were found to show a stable power-law fBii) ~ f~*. The value of the exponent
was evaluated as = 4/3. We also introduce a simple one-dimensional model which reproduces
a = 4/3 from both simulation and theoretical analysis. [S0031-9007(98)05707-X]

PACS numbers: 46.10.+z, 05.20.Dd, 05.70.Jk, 81.05.Rm

Recently much attention has been paid to the dynamics Our experimental setup is shown in Fig. 1. We used a
and statistics of granular materials because of theiglass pipe of 1500 mm length and 3 mm inner diameter,
ubiquity in nature and the application to technology.i.e., the same one used in Refs. [11,12]. A flask is
Unlike usual solids, liquids, or gases, granular material€onnected to the bottom end of the vertical pipe, and
are known to show complex dynamical behaviors [1],a flow meter is attached to an outlet stuck out of the
such as convection [2], size segregation [3], bubbling [4]flask. We used rough sand; i.e., our granular particles are
standing waves and localized excitations under verticgbolydisperse, and their average diameter is about 0.3 mm.
vibration [5,6], and a fluidized bed due to air injected Thus the inner diameter of the pipe is about 10 times
inside a box containing granules [7,8]. larger than the average diameter of sand. We pored

Pattern formation of grains flowing through a vertical rough sand into a hopper connected to the top end of
pipe which can be regarded as a one-dimensional realizéhe pipe, which flows through the pipe due to gravity.
tion of a fluidized bed is also a typical example of unusualSand finally falls into the flask, while air can exit out of it
features of granular motion [9—13]. Emergence of densityhrough the flow meter, which can control the rate of air
waves (e.g., slugging) has been investigated by molecudischarge. Meanwhile, we measured density fluctuations
lar dynamics (MD) and lattice-gas automata (LGA) simu-as the transmission light intensity across the pipe at a
lations [9,10] and by the experiments using sand in aifixed location midway up the pipe by using laser light and
[11,12] and metallic spheres in liquids [13]. The power-detecting system (KEYENCE, LX2-02). The laser light
law form of the power spectruf(f) ~ f~ %, wheref is  has a rectangular cross section of 10 mm wide and 1 mm
frequency, of density fluctuations was also found in bothhigh and is emitted with a pulse frequency of 4096 Hz.
numerical simulations [9] and experiments [11,12]. Al-The detecting system has linear response between the
though their interpretations on the origin of the emergenceutput voltage and the density of particles in the range
of density waves are different, estimated values of the exef output voltage between 1 and 5 V.
ponenta are close to each othet.8 < o < 1.5).

Although the previous experiment [11,12] reported
a = 1.5, some of their experimental procedures seem a Hopper
little ambiguous: Since they merely plugged up the bot-
tom hole of a pipe by half in order to induce density SLaser L

. ensor aser
waves, the rate of air flow out of the bottom end of the H
pipe was not well controlled. Besides, the power spectra
they obtained were still noisy. In this Letter we will first Glass Pipe
present better-controlled air flow out of the pipe and more Outflow
. - of Air
accurate experimental results than the previous ones by

increasing the number of trials. One of our results is the ég’nvener H Flow

precise estimation of the scaling exponent of the power Meter
spectrumP(f) ~ f~%. Theresultise = 4/3. We also
propose a one-dimensional model supplemented by the ] X
white noise which reproduces = 4/3 near the neutral Cock
curve of the linear stability analysis of uniform states. In Personal Flask

. . - . Computer as
other words, we will clarify the origin of the power law in
density waves of granular pipe flows. FIG. 1. Schematic illustration of the experimental setup.
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Let us now consider what happens by closing the cock obne, and sometimes one cluster splits into more than one
the flow meter. Granular particles falling in a pipe interactcluster, in a behavior reminiscent of a chain of traffic
with the medium (air) due to the viscosity. When the flowjams on a crowded highway [14—16]. In the following
meter is removed from the apparatus, i.e., the bottom endiscussion of this Letter we restrict ourselves to fully
of the pipe is fully open, granules can fall rather freely as ifclosed. (When the medium air was controlled to flow
the existence of air could be neglected. (Hereafter we wildownward by gradually opening the cock of the flow
refer to this situation akllly open) In fully openthere are meter, the position of the emergence of clear density
no visible density waves, as reported in Refs. [11,12]. Thevaves gradually shifted downward. The details of the
reason is that both granules and air flow together throughesults will be presented elsewhere.)
the pipe. As the cock is gradually closed, however, the Let us pay attention to the power spectrunif) of
pressure in the flask rises, and the effect of the viscoudensity fluctuations of granular flows. Figure 3 shows
force becomes more important. In particular, when theP(f) of recorded signals in fully closed. Each spectrum
cock is fully closed (we refer tdully closed, air in the was obtained by averaging over 640 independent data
pipe must go upward due to approximate conservation ofvith length 8192 discrete points each (2 s in real time)
the total volume (sand plus air) in the flask while sand fallsand was appropriately shifted to avoid the overlap. The
downward. We consider that the increment of interactiorself-organization of the power-law for(f) ~ f~¢ is
between granules and air induces density waves. observed as the measuring positisnincreases: The

Figure 2 shows typical time series signals of granulaispectrum atc = 10 cm is similar to that in fully open.
flows measured at = 100 cm, wherex is defined as Density waves have already emerged at 40 cm where
the distance of measuring point along the pipe from thdéhe scaling regime is covered by the whole frequency
top. In contrast with the white-noise-like signal (top) in range except for the fast decay in higher Then the
fully open, one can see that the density wave for fullysystem falls into the steady state from absut 50 cm
closed (bottom) has intermittent structure. In this figuredownward. The scaling range for the steady state, i.e., for
higher (lower) voltage corresponds to smaller (larger)x = 50 cm is from 10 to 200 Hz, as seen in Fig. 3.
granular density since we measured the light intensity In the frequency range from 15 to 150 Hz, values of
transmitted across the pipe. In particular, the outputhe slope are fitted by the least mean square method as
voltage is about 2.15 V when a pipe is fully packed witha = 1.33 = 0.04,1.31 = 0.05, and1.34 = 0.05 for x =
sand, and about 2.50 V when it is completely empty.80, 90, and 100 cm, respectively. (The dataxat 90
This assures us that our measurements were well in theend 100 cm are not shown in Fig. 3.) These values are
linear range between the voltage and the density. lwery close to 43 suggested by LGA simulation [9].
the case of real flow patterns one can observe that two
clusters sometimes collide with each other and merge into
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FIG. 2. Time series signal of the granular flows folly open  FIG. 3. Log-log plot of power spectr®(f) of time series
(top) andfully closed (bottom). Upper signal is shifted by signals infully closed. The straight line with the slope of4/3
0.4 V to avoid the data overlap. in the figure is a guide for the eyes.
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Let us allocate the rest of this Letter to introduce a onewherecy = U’(a). Thus, foru > 0 the uniform state is
dimensional model which reproduces= 4/3 in a fully  unstable due to the negative diffusion.
closed system. Adopting U(r) = tanir — 2) + tanh2), o(r) =

The important mechanisms for particle dynamics are theech?(r), ¢ =2, N =256, T. = 3.95798..., and
drag between air and particles, and the relaxation process= 2 at r = 0, we simulated (1) by the classical
to an optimal velocity which may be the sedimentation rateRunge-Kutta method untik = 2'' with time interval
of particles. When the/ particles are confined in a quasi- A+ = 1/2* under the periodic boundary condition. We
one-dimensional container, the motion of particles may beised the uniform random number distributed between
described by the following nonlinear equation: —X and X with X = 9/1024 [18] for f,(z). Figure 4

o+ i — WArD] = TEARD) + f2(0), (1) displays the power spectrum(f) = [¢(f)I? obtaingd

from our simulation of (1) afw = 1/64, wherec(f) is

where r, and ¢ are the relative distance between thethe Fourier transform of the discretely sampled data of

nth and(n + 1)th particles, and the drag coefficient, re- . = , :
spectively. The collisional forc@({r,}) = ¢'(rn11) + the densityc(r) = 2., —p With the interval 1. This

.  r—4/3 ; .
©'(rn_1) — 2¢'(r,) comes from a soft core repulsive po- clearly supportsP(f) ~ f~*3 as in our experiment.

tential ¢(r,). The parameter represents the strength of From the examinations of several values,af we have
repulsion. The optimal velocity ({r,}) = U(2=s) — confirmed that the qualitative results are insensitive to
. n 2

U +2rH) Is the linear combination of sedimentation rateLheeCSlljgsr(]e ?cel;rvtvr?: rr]uleﬁtlr;chrvg rt]rllse r't(iarrswléltsfalf??(r)glzgzion
U(x) which is the nonlinear function of the local vol- . . :
ume fraction [17] in general. The most crucial simpli- or growth of fluctuations is much longer than the time
L . T scale induced by the noigg(r). Our result suggests that
. . . ! : e linear relaxation theory of fluctuations can be used to
T o AT oot Incar rlaxation heary o fluctuaions can be used
n .

, OIS : explainP(f) ~ f~4/3.
be noticed that the drag is irrelevant in fully open, be- g .
cause air in the pipe flows away together with particles Let us briefly sketch how to derive the/3 law from

Thus, the motion of particles is almost elastic, and clea;['he behavior of structure factor

density waves cannot be observed in fully open. It _ . B
should be noted that (1) is written for the relative mo- Sk(t) Z<eXp[lk[8r”(t) 8rm(O)1h (4)
tion of particles. Discarding the noise term from (1),

we obtain an equation of motion for the particle at the X . . :
position x, asi, + ¢[iy — U(x,ﬁ,;x,],])] = Tlo'(r,) — where 6r, = r, — a is the fluctuation of relative dis-

tance. The structure factor can be rewrittens: =
gp/(rn_l)] Wherern = Xp+1 — Xp- @(3)

1 k?
Linearizing (1) around the uniform solutioh, =0 ¥ 2nm €XH— 7 dum(r)]  where g (t) = ((ora(r) —
wherea = 7, = N~' Y, r,, we obtain Srm(0)]?). For pu <0, Si(r) can be calculated as in

#e + {[F — iU'sink#] 102,
=2T¢"(cosk — V)it + frt), (2

where the argument di’ and¢” is a. 7 andfi(¢) are,
respectively, the Fourier transform éf, = r, — a and
f.(t). Equation (2) has the solutior(¢) « exdo+1],

n,m

in weakly stable states, i.e.x <0 and |u| <1,

where 104}
o+ — — i c
+ > =
2
+ J(£> — 2T ¢"(1 — cosk) + ilU’sink.
2 10°
(3)

Re[o+] represents the relevant eigenvalue of the linear
problem, which becomes positive fot'(a)? cog(k/2) =
T ¢"(a). Thus the most unstable wave numbek is» 0,
and the neutral curve is given &, = U"?/¢"(a). At

T = T.(1 — u) the expansion ofr; aroundk = 0 is 10 : ' —
given by 10° 10" 102 10® 10°
o (k) = i[cok —~ %1& + } f
5 FIG. 4. Log-log plot of power spectrum(f) obtained from
n C()_Mkz _ Co JERT the numerical integration of (1), where the unit pfis 1/27.
¢ 47 ’ The guide line represens /3. See the text for details.
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the case of polymer dynamics [19]. With the aid of thenoticed that the continuous increase @fin LGA [10]
expansion obr;, (1) is reduced to from « = 0 to 2 with the particle density is consistent
_ 3 _ _[92 _ 44 with the 4/3 law and our picture, because the spectrum
0rr(z,7) = 0rlz,7) = €9y = OLlrlz 1) + £z 1), determined by the noise in the linearly stable uniform
(5)  state far from the neutral curve should be white= 0),
where 7 = €31, z = %E(x + cot), and &(z,7) = and the effective exponent of the_ power .Iaw becomes
3 . N g large when the exponential decay (i.e.= 2) in the off-
€ Bfu(r) with € = == /=& andp = 5. The Solu- ciifical region exists. There is, however, a discrepancy
tion of (5) is given by7i(r) = [;dsexdA«(t — 5)] X petween our results and the one on experiments in liquids
&x(s), wherep, = ik> — ek*(1 + k?). Thus, we obtain [13]. The reason for this difference should be clarified in
the correlation the future.
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