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Two Scaling Regimes for Rotating Rayleigh-Bénard Convection
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(Received 24 April 1997)

Using a turbulence model, we derive two scaling regimes for rapidly rotating Rayleigh-Bén
turbulent convection. For Rap , Ra , Rapp, where Rap and Rapp are functions ofV, the Nusselt
number Nu is a function only of the scaling variable RayRap; this corresponds to the first regime. Fo
Ra . Rapp, Nu is almost unaffected by rotation and satisfies the nonrotating scaling law Nu, Rag,
g , 1y3. The two scaling laws are confirmed by existing data. [S0031-9007(97)05276-9]
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Turbulent convection under rapid rotation is not onl
of scientific interest but also of importance to geophysic
and astrophysics. The problem is difficult for both theo
rists and experimentalists, and thus a limited numb
of experiments [1–3] and numerical simulations [4–6
are available. As for the theoretical aspects of th
problem, even nonrotating convection is known to be
difficult problem, as is rotating turbulence alone, asprima
facie paradoxes have indicated [7]. The main featu
of rotating turbulence is the effect of rotation on th
energy transfer. The solution of the latter problem [8–1
allowed the paradoxes just mentioned to be solved a
the scaling laws governing the case of free decay to
derived. As for nonrotating convection, the main feature
exhibited by experiments and numerical simulations ha
recently been derived from a turbulence model [11–14
The same model [8–9,11–14] is applied here to stu
the case of rotating Rayleigh-Bénard convection. Spec
cally, we study the Nusselt number dependence

Nu ­ NusRa, Ta, Pr, Ad , (1a)

where Nu­ FT LsDTxd21, Ra ­ gaDTL3snxd21,
Ta ­ 4V2L4n22, Pr ­ nx21: FT is the total heat
flux, L is the extent of the convective region,DT is the
temperature difference between the two plates,n and x

are the molecular viscosity and conductivity,a is the
thermal expansion coefficient, andA is the aspect ratio.
As in the V ­ 0 case, the full dynamical equations
of the turbulence model can be solved numerically b
here we present the analytic solutions correspondi
to the limiting case of Ra, Ta,A ! `, for both Pr! 0
and Pr! `. The main features of the solutions can b
summarized as follows:

(1) Convection occurs for Ra. Rap; in the case of
rigid plates andA ! `, Rap coincides with the critical
Rac first derived in [15] from stability analysis, namely,

Rac ­ 8.7Ta2y3 sPr . 1d,

Rac ­ 17.4Ta2y3 Pr4y3 sPr , 1d . (1b)
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In the case of a finite aspect ratioA, as it was shown in
the Rossby experiment [1], Rap , Rac, a finding that was
confirmed by more recent data [2] and that was explain
in [16,17] as due to surface waves propagating along
side walls of the cell.

(2) Beginning at Ra­ Rap, the function (1a) increases
sharply with increasing Ra at fixed Ta so that the slope
much larger than Nu, Ra1y3 corresponding to the no-
rotation case. The prominent feature is a scaling la
which can be formulated as follows:

NusRa, Ta, Pr, Ad ­ Nusx, Pr, Ad , (2a)

where

x ­
Ra
Rap

, Rap ­ fsTa, Pr, Ad . (2b)

We show that asA ! ` and for Pr¿ 1, we predict

Nu ­
1

256
x3s1 1 3x21d4. (3a)

In the other regime of Pr, 1, we derive

Nu ­ x3, (3b)

provided

Rap , 3 3 104Pr21. (3c)

In other regimes, the solution can be found only with
numerical treatment of the basic equations.

(3) The region of sharp increase of Nu vs Ra, which w
refer to as the first scaling regime, stretches until Rapp, a
transitional value of Ra which for Pr. 1 and Pr, 1 is
given by

Rapp ø 3Ta3y4, Rapp ø CPr1y2Ta3y4, (4)

with C ­ sln Pr1y2Ta1y4d3. The sharp increase of Ra v
Ra eventually decreases, and Nu joins the nonrotat
Nu vs Ra curve, Nu, Rag , g ø 1y3; this is the second
© 1998 The American Physical Society 281
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scaling regime in which Nu is almost independent o
Ta. These basic qualitative features are confirmed
experimental data [1,2].

The derivation of the above results is as follows. W
begin by considering the basic stochastic equations
the fluctuating velocity and temperature fieldsui , u in the
Langevin-like form [13,14]

≠

≠t
uisk, td ­ ft

i sk, td 2 k2ndskduisk, td 1 fe
i sk, td ,

(5a)

≠

≠t
usk, td ­ ft

usk, td 2 k2xdskdusk, td 1 fe
u sk, td ,

(5b)

where the first two terms represent the nonlinear inte
actions in the NSE (Navier-Stokes equations). As d
cussed in [13,14], different turbulence models beginnin
with direct-interaction approximation [18] were also rep
resented in the Langevin form, but they differ in the wa
they represent the dynamic termsnd , xd as well as the tur-
bulent forcingft ’s. Here, we follow the turbulence mode
discussed in [13,14]. Numerous predictions of the mod
were tested against laboratory, direct numerical simulati
(DNS) and large eddy simulation (LES), data [11,12,19
The model has no free parameters. In the present case
do not solve (5a) and (5b) but the resulting equations f
the second-order moments which are derived by multip
ing (5a) and (5b) byujsk0d andusk0d. The work done by
the turbulent forcesft is computed to be [13,14]

k ft
i skdujsk0dl ­ 2s8pk2d21Pijrskd

≠Eskd
≠k

dsk 1 k0d ,

(5c)

k fuskdusk0dl ­ 2s4pk2d21ruskd
≠

≠k
Euskddsk 1 k0d ,

(5d)

where Pij is the standard projection operator,Eskd and
Euskd are the velocity and temperature variance spect
and rskd and ruskd are the “rapidity” of the energy and
variance flows from large to small eddies. The first
given by [13,14]

rskd ;
Pskd
Eskd

­ 2
Z k

0
p2ntspd dp . (6a)

Here, Pskd ­ 2≠T skdy≠k is the energy flux ink space
and T skd is the energy transfer. The formula forruskd
is analogous withnt ! xt . The latter are the turbulent
components of the dynamical viscositynd andxd which,
in theV ­ 0 case, are given by [13,14]

ndskd ; ntskd 1 n ­ sn2 1
2
5

Z `

k
p22Espd dpd1y2.

(6b)

Rotation hinders energy transfer as indicated by t
reduction inrskd [8,9]
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rskd °! rVskd ­ rskd f1 1 V2sk2ndd22g21y2, (7a)

andrVskd in turn changesndskd to n
V
d skd,

ndskd °! nV
d skd ­ n 1 nV

t skd ­ n 1
1
2

k22 ≠

≠k
rVskd .

(7b)

The transformations (7) are discussed in detail in [8,9
where solutions of the resulting equations are check
against available data. The functionx

V
d skd is obtained

through the differential equationst ; x
V
d , j ; n

V
d d

dt

dj
­

10
3

jsj 1 td21, (8)

with the initial condition x
V
d snd ­ x. The external

forcing in (5a) and (5b) are derived from the origina
NSE. For a buoyancy driven flow under rotation, we hav
[11,12]

fe
i skd ­ 2agjPijskduskd 2 2fVk 3 uskdgi , (9a)

fe
u skd ­ biuiskd . (9b)

The first term in (9a) represents buoyancy,Vk ­ k22sk ?

Vdk andbi ­ 2≠Ty≠xi .
The general procedure to set up the dynamic equatio

is as follows [11,12]. One begins by considering a
homogeneous flow in whichbi is constant and all second-
order moments are proportional todsk 1 k0d, as in
Eqs. (5c) and (5d). Next, one multiplies Eqs. (5a) an
(5b) by ujsk0d and usk0d. This leads to a closed system
of equations governing the time dependent evolution
the k-space densities of kinetic energy, heat flux, etc. [
one further multiplies the latter byk2 and integrates over
the directions ofk, one obtains the spectraEskd, Euskd,
etc.]. The equations are linear in the densities but wi
nonlinear coefficients, e.g.,n

V
d skd. To extend the system

of equations to the case of inhomogeneous convectio
one must consider that the spectral densities are n
a function of z (distance to the nearest plate), includ
diffusion terms, and consider thatkz can take only discrete
values for rigid plates,kz ­ pny2z. The diffusion terms
make the analytic study of the basic equations rath
difficult. On the other hand, numerical solutions fo
the V ­ 0 case have shown [11,12] that the effect o
diffusion is not larger than about 30% and that it decreas
with increasing Ra, and thus it does not influence th
asymptotic Nu vs Ra relation. On that basis, we sha
assume that the same holds true whenV fi 0. We shall
then study the behavior of the equations without diffusion
As numerical solutions [12] show, in theV ­ 0 case the
spectraEskd and Euskd have a maximum at the same
value of k, say, kp. We assume that the same hold
true whenV fi 0. Indeed, it is natural to expect that the
maxima ofEskd andEuskd are close to the maximum of
the spectrum of the heat fluxJskd. This makes the work
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of the turbulent forces, Eqs. (5c) and (5d), vanish atkp.
In the stationary case, this makes the equations for t
spectral densities homogeneous. A solution exists if t
determinant vanishes, which results in either of the tw
relations

ñ2skpdx̃skpd 2 ñskpdgab sin2h1

4V2x̃skpd cos2h ­ 0 (10a)

or

2ñskpd fñskpd1x̃skpdg2 2 gab fñskpd 1 x̃skpdg 3

sin2 h 1 8V2ñskpd cos2h ­ 0 , (10b)

where ñskd ­ k2n
V
d skd and analogously forx; h is the

angle between thez axis andk. We consider in detail the
Pr ¿ 1 case (for example, Pr­ 6.6 in water). The main
temperature gradient occurs near the plates0 , z , zb

where turbulence vanishes. Consider a region sligh
abovezb where turbulence is still rather weak in the sens
that n

V
d and x

V
d are close ton and x which we use in

Eq. (10a) to obtain

b ­ sgaPrd21 sin22hsn2k4
z cos24h 1 4V2 cos2hd .

(11)

This result yields a multiplicity of solutions forb at fixed
z, g, a, Pr, V and for differenth andkz . In practice, only
one of them is stable and coincides with the stationa
solution of the time dependent equations for the secon
order moments obtained from the basic Eqs. (5a) a
(5b). As we have shown for theV ­ 0 case [12], the
stable solution of (10a) corresponds to the maximum
the convective flux. We assume that the same holds tr
for the V fi 0 case. In some form, this requirement i
related to the Malkus hypothesis [20]. We chooseh

and kz to maximize the convective flux. This occurs
when the conductive fluxxb is minimum, which in turn
corresponds to a minimumb. Minimizing (11) with
respect toh and kz leads, for largeV’s, to kz ­ kz0 ,
wherekz0 ­ ps2zd21 is the lowest value ofkz ,

cos2h ­ 221y3

µ
n

V

∂2y3

k4y3
z0

, (12)

and thus

1
3

b ­ 41y3sgaPrd21n2y3skz0 Vd4y3. (13)

Condition (10b) would yield a much largerb. At the
boundary,z ­ zb , the function (13) equals the tempera
ture gradient in the boundary layer,Tbyzb. This leads to

zb ­
27
4

p4sgaPrTbd23n2V4 , (14)

and thus
he
he
o

tly
e

ry
d-
nd

of
ue
s

-

FT ­ x
Tb

zb
­

µ
27
4

p4

∂21

sgad3sPr21Tbd4V24. (15)

The Nusselt number is then given by

Nu ­
64
27

p24

µ
Tb

DT

∂4

Ra3Ta22. (16)

If we representDT ­ 2Tb 1 DTc, to computeDTc we
notice that for Pr. 1 the main contribution occurs in the
regions where turbulence is still weak in the sense tha
n

V
d and x

V
d are close ton and x so thatb is given by

Eq. (13) which can be rewritten, using (14), as follows:

bszd ­ Tbz
1y3
b z24y3, (17)

which in turn leads to

1
2

DTc ­
Z 1y2L

zb

bszd dz ø 3Tbf1 2 s2zbL21d1y3g .

(18)

Equation (18) lacks a contributiondTc from the region
wherex

V
d is much larger thanx. It can be obtained by

first obtainingbszd from Eq. (10a) with [8,9]

nV
d ­ stx

V
d ­

µ
8
45

∂1y2µ e

V

∂1y2

k21 (19)

and then integratingbszd. The result is

dTc ­ 0.013 DT Ra Ta23y4 lnsLy,dd , (20)

where,d ­ sn3e21d1y4 is the dissipation length scale. As
we discuss below,dTc , DTc. Substituting Eq. (18) into
(16), we obtain

106Nu ­ 5.9y23s1 1 26.1yd4, y ; Ra21Ta2y3.

(21)

Because Nu$ 1, we obtain from the last formulas the
condition

Ra . Rap, Rap ­ 8.7Ta2y3, (22)

where Rap is the critical Ra for which (21) yields Nu­ 1.
Not surprisingly, Rap coincides with the result Rac of the
linear stability analysis for an infinite aspect ratio [15].
In terms of Rap Eq. (21) can be represented in the form
(3a) and (2b). We recall that this result is obtained for
strong rotation when the second term in the parenthese
in (11) is larger than the first one at cosh , 1. In the
opposite case, rotation produces only a small correction t
the asymptotic formula for theV ­ 0 case,

Nu ­ 0.078Ra1y3, (23)

which is valid for large Ra,A, and Pr. Using the results
of Sec. VI of [12], one can derive the condition for which
Nu is close to the value (23). We have

Ta , 0.23Ra4y3. (24)
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This result yields the transitional value of Ra whic
divides the Ra axis into two regions characterized
different scaling laws for the function Nu(Ra, Ta). In th
interval Rap , Ra , Rapp, the scaling law (2) holds true.
For Ra. Rapp, Nu almost does not depend on Ta and
close to (23). These qualitative features are confirmed
existing laboratory data [1,2] for water Pr­ 6.6. The Nu
vs Ra data (Fig. 21 of Ref. [2]) show the existence of tw
regimes: for Ra. Rapp, Nu is close to theV ­ 0 result,
while for Ra, Rapp the curves for different values of Ta
parallel one another. This implies that if plotted again
the ratio RayRap, they would collapse into a single curve

As for the Prø 1 case, Eqs. (3b) and (3c) and th
second of (4) were derived in an analogous manner,
main differences being that the minimum value ofb

is obtained from (10b) rather than from (10a) and th
the major contribution toDT is ø 2Tb which arises
from the near wall region where conduction dominat
and x . xt . At the same time, in most of the region
nt ¿ n so that (3b) depends critically on the form o
transfer which is expressed through Eqs. (6) and (7).
the Prø 1 case, the available experimental data [1] d
not deal with sufficiently large Ra and Ta to allow
quantitatively meaningful comparison. By contrast, in th
Pr ¿ 1 case, as we have seen from the derivation, in m
of the region one hasn . nt and the transfer only enters
through the correction factor (20) while the bulk of (21)
mainly due to the external forcingfe

i .
In conclusion, this work has made two prediction

one, for Pr. 1, is verified by existing data, the secon
one, for Pr, 1, will hopefully stimulate experimental and
numerical simulation work to assess its validity (a pap
with all the detailed derivations is being prepared).

The authors would like to thank Dr. R. E. Ecke fo
useful comments.
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