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Two Scaling Regimes for Rotating Rayleigh-Bénard Convection

V.M. Canuto and M. S. Dubovikov

NASA, Goddard Institute for Space Studies, 2880 Broadway, New York, New York 10025
(Received 24 April 1997

Using a turbulence model, we derive two scaling regimes for rapidly rotating Rayleigh-Bénard
turbulent convection. For Ra< Ra < Ra.., where Ra and Ra. are functions of(), the Nusselt
number Nu is a function only of the scaling variable/Ra.; this corresponds to the first regime. For
Ra > Ra.., Nu is almost unaffected by rotation and satisfies the nonrotating scaling law Re”,

v ~ 1/3. The two scaling laws are confirmed by existing data. [S0031-9007(97)05276-9]

PACS numbers: 47.27.Te

Turbulent convection under rapid rotation is not onlyIn the case of a finite aspect ratig as it was shown in
of scientific interest but also of importance to geophysicdhe Rossby experiment [1], Ra< Ra,, a finding that was
and astrophysics. The problem is difficult for both theo-confirmed by more recent data [2] and that was explained
rists and experimentalists, and thus a limited numbem [16,17] as due to surface waves propagating along the
of experiments [1-3] and numerical simulations [4—6]side walls of the cell.
are available. As for the theoretical aspects of the (2) Beginning at Ra= Ra., the function (1a) increases
problem, even nonrotating convection is known to be aharply with increasing Ra at fixed Ta so that the slope is
difficult problem, as is rotating turbulence alonepsisna  much larger than Nu- Ra!/? corresponding to the no-
facie paradoxes have indicated [7]. The main featurerotation case. The prominent feature is a scaling law
of rotating turbulence is the effect of rotation on thewhich can be formulated as follows:
energy transfer. The solution of the latter problem [8—10]
allowed the paradoxes just mentioned to be solved and Nu(Ra Ta, Pr,A) = Nu(x, Pr,A), (2a)
the scaling laws governing the case of free decay to be
derived. As for nonrotating convection, the main featuresVhere
exhibited by experiments and numerical simulations have Ra
recently been derived from a turbulence model [11-14]. x = Ra’
The same model [8-9,11-14] is applied here to study

the case of rotating Rayleigh-Bénard convection. Specifiyye show that ag — « and for Pr>> 1. we predict
cally, we study the Nusselt number dependence ’

Ra. = f(Ta Pr,A). (2b)

I —1\4
Nu = Nu(Ra Ta Pr,A), (1a) Nu = 2567~ (1 +3x7)% (3a)

where Nu= F;L(ATy)"!, Ra= gaATL}(wy)!, In the other regime of P 1, we derive
Ta=40%L*v"%, Pr=vy 1 Fr is the total heat

flux, L is the extent of the convective regioAT is the
temperature difference between the two platesnd y provided
are the molecular viscosity and conductivity, is the

thermal expansion coefficient, amdis the aspect ratio. Ra. < 3 X 10*Pr !, (3c)

As in the ) = 0 case, the full dynamical equations

of the turbulence model can be solved numerically buin other regimes, the solution can be found only with a
here we present the analytic solutions correspondingumerical treatment of the basic equations.

Nu = x, (3b)

to the limiting case of Ra, Td, — o, for both Pr— 0 (3) The region of sharp increase of Nu vs Ra, which we
and Pr— . The main features of the solutions can berefer to as the first scaling regime, stretches until.Ra
summarized as follows: transitional value of Ra which for Pr 1 and Pr< 1 is

(1) Convection occurs for Ra Ra.; in the case of given by
rigid plates andA — o, Ra. coincides with the critical

Ra first derived in [15] from stability analysis, namely, Ra.. =~ 3Ta’4,  Ra. = CPI/?Ta/*,  (4)
Ra = 8.7T&/3 (Pr> 1), with C = (InPr'/2Tal/#)3. The sharp increase of Ra vs
Ra eventually decreases, and Nu joins the nonrotating
Ra = 174Ta*Pr3 (Pr< 1). (1b)  Nuvs Ra curve, Nu- Ra”, y =~ 1/3; this is the second
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scaling regime in which Nu is almost independent of r(k) — ra(k) = r(k)[1 + Q>(k*vy) 2] V%, (7a)
Ta. These basic qualitative features are confirmed by _ 0
experimental data [1,2]. andrq (k) in turn changes, (k) to v, (k),

The derivation of the above results is as follows. We 1 P
begin by considering the basic stochastic equations fop,(k) — v$(k) = v + v (k) = v + — k2 — rq(k).
the fluctuating velocity and temperature fields 6 in the 2 ok
Langevin-like form [13,14] (70)

0 ; ) . The transformations (7) are discussed in detail in [8,9]

Eui(k,t) = fi(k, 1) = k*va(k)u;(k, 1) + fi(K,1), where solutions of the resulting equations are checked
(5a) against available data. The functigr’ (k) is obtained

5 t . through the differential equatior = y3, & = v$)

5, 000 = filk, 1) = Kxa(k)o(k, 1) + fik, 1), ir

(5b) qE ?f(f + 7)), (8)

where the first two terms represent the nonlinear inter- . — .
P with the initial condition y3}(v) = y. The external

actions in the NSE (Navier-Stokes equations). As dls_orcing in (5a) and (5b) are derived from the original

cussed in [13,14], different turbulence models beginnin SE. For a buovancy driven flow under rotation. we have
with direct-interaction approximation [18] were also rep- [11 1'2] yancy ’

resented in the Langevin form, but they differ in the way
they repres_,enttt1he dynamic termg x, as well as the tur- Fek) = —ag;P;(k)O(K) — 2[Q X u(k)];, (9a)
bulent forcingf”'s. Here, we follow the turbulence model
discussed in [13,14]. Numerous predictions of the model .
were tested against laboratory, direct numerical simulation ~ f§(k) = Biui(k). (9b)
(DNS) and large eddy simulation (LES), data [11,12,19]. . . )
The model has no free parameters. In the present case yge first term in (9a) represents buoyany, = k~*(k -

: : k andﬁi = —aT/ax,-.
do not solve (5a) and (5b) but the resulting equations fo Th | dure t t up the d . i
the second-order moments which are derived by multiply- € general procedure to set up the dynamic equations

; follows [11,12]. One begins by considering an
ing (5a) and (5b) by:;(k’) and#(k’). The work done by IS as ; T
the turbulent forceg" is computed to be [13,14] homogeneous flow in whicf3; is constant and all second-

order moments are proportional té(k + k'), as in
JIE(k) 5k + K) Egs. (5¢) and (5d). Next, one multiplies Egs. (5a) and
ok ’ (5b) by u;(k’) and#(k’). This leads to a closed system
(5¢) of equations governing the time dependent evolution of
P the k-space densities of kinetic energy, heat flux, etc. [if
(FPK)OK")) = —(4mk®) 'ro(k) — E¢(k)8(k + k'), one further multiplies the latter b4 and integrates over
ok (5d) the directions ofk, one obtains the spectig(k), Eq(k),
etc.]. The equations are linear in the densities but with
where P;; is the standard projection operatd(k) and  nonlinear coefficients, e.gy,f}(k). To extend the system
Ey(k) are the velocity and temperature variance spectrapf equations to the case of inhomogeneous convection,
andr(k) and ry(k) are the “rapidity” of the energy and one must consider that the spectral densities are now
variance flows from large to small eddies. The first isa function of z (distance to the nearest plate), include

(FLRuj(k")) = —8mk?) 1 Pyr(k)

given by [13,14] diffusion terms, and consider thiat can take only discrete
X values for rigid platesk, = wn/2z. The diffusion terms
r(k) = (%) = 2[ pvp)dp. (6a) make the analytic study of the basic equations rather
E(k) difficult. On the other hand, numerical solutions for

the ) = 0 case have shown [11,12] that the effect of
: diffusion is not larger than about 30% and that it decreases
and T'(k) is the energy transfer. The formula foy(k)  \yith increasing Ra, and thus it does not influence the
is analogous withv, — y,. The latter are the turbulent gy mniatic Nu vs Ra relation. On that basis, we shall
components of the dynamical viscosity and xs which,  a55yme that the same holds true wifen= 0. We shall
in the ) = 0 case, are given by [13,14] then study the behavior of the equations without diffusion.
2 [ As numerical solutions [12] show, in tH@ = 0 case the
va(k) = v,(k) + v = (v + gf p 2E(p)dp)'/%. spectraE(k) and Ey(k) have a maximum at the same
k (6b) value of k, say, k.. We assume that the same holds
true whenQ) # 0. Indeed, it is natural to expect that the
Rotation hinders energy transfer as indicated by thenaxima ofE(k) and E4(k) are close to the maximum of
reduction inr (k) [8,9] the spectrum of the heat flukk). This makes the work
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of the turbulent forces, Eqgs. (5¢) and (5d), vanistk.at T, (27
In the stationary case, this makes the equations for the “7 — XZ o <Z
spectral densities homogeneous. A solution exists if th(—i‘_h N it ber is th . b

determinant vanishes, which results in either of the two € Nusselt number is then given by
relations 64 74< T,

Nu= 7 \ar

If we representAT = 2T, + AT,, to computeAT. we

7T4>1(ga)3(Pr_1Tb)4Q 4. (15)

>4Ra*Ta2. (16)
72 (ki) ¥ (k) — D(ks)gaB sirtn+

2 —
402 ¥ (k) cosn = 0 (102) notice that for Pr> 1 the main contribution occurs in the
or regions where turbulence is still weak in the sense that
v$ and y& are close tov and y so thatg is given by
25 (k) [7(ke)+ ¢ (k)2 — gaB [P(ks) + ¥(kse)] X Eq. (13) which can be rewritten, using (14), as follows:
sit p + 80%9(k.)cogn =0, (10b) BR) = Ty 2743, (17)

where 7(k) = k2»$ (k) and analogously foy; 7 is the ~ Which in tum leads to
angle between the axis andk. We consider in detail the 1 1/2L s
Pr>> 1 case (for example, Pe 6.6 in water). The main AT, = j B(z)dz = 3Ty[1 — (2z,L7H)'7].

: 2 2
temperature gradient occurs near the pldtes z < z, (18)
where turbulence vanishes. Consider a region slightly _ o _
abovez, where turbulence is still rather weak in the sense'Equa'EIO?2 (18) lacks a contributiod7. from the region
that »$ and & are close tor and y which we use in where y;* is much larger thary. It can be obtained by

Eg. (10a) to obtain first obtainingB(z) from Eq. (10a) with [8,9]
o _ 1/2 1/2
B = (gaPn'sin?n(v?kicos *n + 4Q%cosn). v = gy = <%> (é) ! (19)
(11)

This result yields a multiplicity of solutions fg8 at fixed and then integrating(z). The resultis

z, 8, a, Pr, Q) and for differentn andk,. In practice, only . —3/4
one of them is stable and coincides with the stationary 8T = 0.013 ATRa Ta " In(L/€,), (20)
solution of the time dependent equations for the Seconq/‘vhere€d — (1314 is the dissipation length scale. As
order moments obtained from the basic Egs. (5a) ange giscuss below§T. < AT.. Substituting Eq. (18) into
(5b). As we have shown for th@ = 0 case [12], the 16), we obtain

stable solution of (10a) corresponds to the maximum 01( ’

the convective flux. We assume that the same holds true 10°Nu = 5.9y 3(1 + 26.1y)*, y = Ra 'Ta’’.

for the ) # 0 case. In some form, this requirement is 21)
related to the Malkus hypothesis [20]. We choose
and k, to maximize the convective flux. This occurs Because Nu= 1, we obtain from the last formulas the
when the conductive flux 8 is minimum, which in turn  condition

corresponds to a minimunB8. Minimizing (11) with
respect ton and k. leads, for largeQ)’s, to k, = k,,,
wherek,, = m(2z)" ! is the lowest value of_,

Ra> Ra, Ra = 8.7Ta/?, (22)

where Ra is the critical Ra for which (21) yields Ne- 1.
2/3 Not surprisingly, Ra coincides with the result Reof the
cosy = 2—1/3<1> kf/3, (12) linear stability analysis for an infinite aspect ratio [15].
Q ! In terms of Ra Eq. (21) can be represented in the form
and thus (3a) and (2b). We recall that this result is obtained for
strong rotation when the second term in the parentheses
in (11) is larger than the first one at cgs~ 1. In the
opposite case, rotation produces only a small correction to
the asymptotic formula for th@ = 0 case,

%,8 = 4'3(gaP) ™23 (k, Q)¥3. (13)

Condition (10b) would yield a much larges. At the
boundary,z = z;, the function (13) equals the tempera- Nu = 0.078Ra?, (23)

ture gradient in the boundary layéF, /z,. This leads to o ] )
which is valid for large Rad, and Pr. Using the results

_ 27T 4 3 24 of Sec. VI of [12], one can derive the condition for which
Ly (gaPIT,) 2707, (14) " Nu'is close to the value (23). We have
and thus Ta< 0.23R&">. (24)
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