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Why the Naive Quark Model Can Yield a Good Account of the Baryon Magnetic Moments
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The chiral quark model suggests that the baryon quark sea is negatively polarized. This modifies
the spin structure as given by the naive quark model and agrees with experimental data. However,
for the magnetic moments, there is significant cancellation between the contributions from this sea spin
polarization and the orbital angular momentum so that effectively the moments are given by the valence
constituent quarks alone, as in the naive quark model. [S0031-9007(98)05726-3]

PACS numbers: 12.39.Jh, 13.40.Em, 13.60.Hb, 14.20.—c

Ever since the discovery [1] that the proton spin content This reduction of the quark polarization also implies
is very different from that given by the naive quark modela significant decrease of the quark-spin contribution to
(NQM), one of the puzzles has been: why is the saméaryon magnetic moments. It is then puzzling why the
naive quark spin structure capable of giving such a goodriginal quark model (without a polarized quark sea) can
account of the baryon magnetic moments? In this papeyield such a good description of the magnetic moments.
we shall suggest, in the context of the chiral quark modeDur yQM explanation is that the quark sea must also
(xQM), a qualitative explanation. carry a significant amount of orbital angular momentum.

The basic idea ofy QM [2] is that the nonperturbative In fact, angular momentum conservation implies that the
QCD phenomenon of chiral symmetry breakingSB) final state quark;’ and(g’q) in the GB emission process
takes place at distance scale significantly smaller thafl) must be in a relativeP-wave state. This orbital
that of color confinement. Thus in the interior of a angular momentum, which is parallel to the baryon spin,
hadron, but not so small a distance that perturbativenakes a positive contribution to the baryon magnetic
QCD is applicable, the effective degrees of freedom arenoment and thus compensates the quark-spin’s reduction.
the constituent quarks and theSB Goldstone bosons  When we separate the spin and the orbital angular
(GBs). Prior chiral quark model study has indicatedmomentum contributions, we are using the nonrelativistic
that the various nucleon flavor and spin puzzles can bapproximation, which can provide us with an intuitive
understood by the presence of a quark sea which iphysical picture of the hadron structure. As we shall
perturbatively generated by valence quark’s emissions afomment on at the end of the paper, existent chiral quark
internal GBs [3—6]. This model can naturally account forfield theory calculations also support our explanation.
the ii-d asymmetry as measured by the deviation from From the SU(6) wave function of NQM we can
the Gottfried sum rule [7] and by the Drell-Yan processesalculate the number of valence quarks with polarization
[8], as well as a strange quark content consistent with the-; = *1 (denoted by particle names with subscrip}.
various phenomenological determinations [9]. The axialn the case of the proton with valence quatkad), we
coupling of GBs and constituent quarks can modify thehave

spin content because the GB emission by a valence quark 5 1 1
flips the quark spin direction: v+ = 70 o= = dy+ = 3 dy- = 3
g+ — g% + GB — g% + (7'q)o. 1) (2)

The subscripts denote the helicity states. We shall call € quark contribution to the baryon spin being the sum
the three quarks (ir§-wave state) of the NQM as the Of the quark and antiquark polarizationsg = A, +
valence quarksnd all the other quarks (and antiquarks)®z = (¢+ — ¢-) + (§+ — g-), and because there are
broadly as thequark sea The processes in (1) lead NO antiquarks and strange valence quarks, we have

to a quark sedq’g’'q) which is polarized (as given by _ 4 _ 1 _

g~) in the opposite direction to the baryon spin. (At Ay 3’ Ad, Asy =0, ()

3
the leading perturbative order, the antiquajk and ¢ which makes up the total proton spidy, = Au, +
in the sea are not polarized because they are produceédd, + As, = 1. When it comes to the quark spin
through the spin-zero GB channels [10,11].) In thiscontribution to the baryon magnetic momeni(B) =
way, we find that the quark contribution to the baryon ,(Ag)su, with Ag = A, — A; (as antiquarks have
spin is substantially reduced from that of the NQM, inopposite charges). In the NQM with, = g- = 0 (thus
agreement with the phenomenological result obtained b}g, = Ag,), we have, from Eg. (3):
several generations of deep inelastic polarized lepton- 4 1 < e )

nucleon scattering experiments [1,12]. w(plo = 5 b = 7 e =\ 35, (4)
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where we have used, = —2u, = ¢/3M reflecting the action are to be multiplied by the transition probability of
mass relation oM, = M; = M. The results for octet the reaction Eq. (6) and by the number of initial valence
baryons yield a good account of the measured momentguarks of Eq. (2). To calculate the spin polarization of
with u; = —0.9 n.m. (nucleon magneton) correspondingthe sea, the quantity for an individual process in this con-
to a set of constituent quark mass values close to thosglution involves a count of-1 (in units of % h) for the
used in fitting other hadron properties [13]. two helicity states multiplied by-1 for the creation or
Ever since the publication by EMC of their experimen-destruction of a particular quark flavor, etc. Keeping in
tal result [1], it is known that the proton spin content ismind thatA; = 0 because to this order; = g- in the
quite different from that given by the NQM of Eq. (3), sea, we obtain
Autexpy = 0.82 = 0.06, Adexpr = —0.44 £ 0.06, 2 _ 92
i p Aupy — —21 8 pg, = 22
Asexpr = —0.11 = 0.06, ASepe = 027 £ 0.11, 9 9
() ASgeq = —a. (8)
showing clearly that a good portion of the proton spin
arises from something other than quark spins [14].
Besides the problem of understanding why the va-
lence quarks can give by themselves a good account of
the baryon magnetic moments, we have another relat
puzzle. Suppose we make thé hoc assumptions that the
magnetic structure is still given entirely by the quark spin
and that antiquarks are not polarized, as done in Ref. [15
w(B) = 3, (Ag)ppm,. Even though the baryon spin con-
tent is significantly different from that given by the valence
quarks:Agexp: # Agy, one finds that g., can also lead

Their sum is the total spin polarization of the quark sea:

ASe = ~2 B + P = AcP@A3,.  (9)

eIQamer, it is the product of the helicity change per
reaction regardless of quark flavaro = —2, the total
ransition probability Eq. (7), and the number of initial
alence quarks weighted by the spin directions (hence
effectively the total valence quark polarizatiax,, = 1).

By taking parameters such as= 0.1 and{ = —1 one

1 can then get a fair account [4] of the observed spin
to a good description Oh(B?' Ngmely, somehow, We structure (5g). This includes the[ r]eduction of the nuclerz)n
getzq Aqupq = Zq Adexpptg- ThIS, however, requires axial vector couplinggs from 5/3 to around1.2. All

I . .
aug = 1.4 n.m.—an approximately 50% shift of the ef- {hage changes from the NQM values are interpreted as the
fective quark moments and masses. Thus we have the,rmalization effects due to the quark sea.

puzzle that in some way bolig, andAgey, can yield a The sea quark spin contribution to the proton magnetic
good account of the baryon magnetic moments. But, only,oment is given by

for (the phenomenologically incorred)y, the fit leads to

a set of correct quark masses. m(P)spin = Attseapy + Adseapra + ASsea ps
We now discuss thg QM resolution of these puzzles. 7 + 222 e e
As explained in the introduction, we need to calculate =3 a<ﬁ> = Kspm<ﬁ>. (10)

the spin and magnetic moment contributions by the quark
sea as generated by the internal GB emission processiisis easy to check that for octet baryons in general,
of the type in (1). We shall be working, for simplicity, because of the SU(3) symmetric nature of the calculation,
in a yQM with a flavor-U(3) symmetry broken down We have u(B)sin = Kspin (B),. This explains why

to SU3) X U(1): the quark and GB form degenerate 4(B) = w(B)y + u(B)spin = (1 + Kypin)u(B), can be
multiplets, but with distinctive couplings for the octet GBs fitted with Ag.x,. by a simple rescaling of the effective
and the singlet)’ meson:g,/gs = ¢ # 1. (In fact from  quark moments aAgexpt = Agy + Agsea-

our prior study [4] we expecf = —1 in this symmetric This change of angular momentulisr X % = —1 due
limit.) The transition probability for the process @£ —  to quark spin flip in reaction (1) must be compensated
g% + GB is parametrized to be by a final-state orbital angular momentum. We shall
Pu—d+ 7 )=Pu—s+K)=a de_scribe this orbital mQtion of thQ’QM quark sea as
0 . being due to the rotational motion of the two bodies
Pu—u+m)+Pu—u+mn +Pu—u+mn) g (1). In their center-of-mass frame (i.e., the rest
1 5 frame of the initial valence quark), the orbital angular
=52+ . (6)  momentum is simply given by = r x p, wherer and
For any initial stateg, the total transition probability for P are the relative displacement and mom’%ntum vectors:
(g — all) is simply r=r; —r,p=p =P, Wlth r = 5., 1 etc.
| The hadronic matrix element of this operator can be evalu,
P(q) = 3 8+ ?a. (7) ated, even without the explicit knowledge of the baryon

. . wave function, because angular momentum conservation
All calculations of the various angular momentum andrequires that

magnetic moment contents of the quark sea involve a
“three-part convolution”: the contributions by a single re- (Izy =1, (12)
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so as to compensate the quark spin changes total (1 + kepin + korbit) (537)- The general result for octet
orbital angular momentum of the sea can be calculatebaryon is
in the same way as the total splnlpolanzatlon of Eq. (9): w(B) = (1 + Kepin + Korbit)t(B),y - (19)
(Ly) =)P(9)AS, = — (8 + {Ha. (12) This means that quark sea contributions can be absorbed
_ 3 o . by an overall rescaling of quark magnetic moments.
Thus, according toyQM, the proton spin is built up Because we are performing a flavor SU(3) symmetric
from quark spilA>, = A%, + AZ, and orbital angular calculation, the magnetic momend/F ratio is not

momentum: altered. Consequently, all baryon momenttios are
1 1 unchanged from their SU(6) limit values, e.g.,/u, =
D) A +({Lz) = 9 (13) —3/2, etc. This necessarily requires that the quark sea

modification be proportional to the original NQM values.
. . For the principal enigma of why can the valence quarks
from the valence quarks to the spin and orbital "?‘”9“'%|one yielga gopod acgount of th)elz magnetic momegts, the
momenta .Of the quark seaAZ, and (Lz), which . yQM offers a simple explanation: the contributions from
is constrained by the angular momentum conservatloﬁf1e orbital and spin angular momenta of the quark sea

condition: have opposite signs, Egs. (10) and (18):

7 + 272
Kspin = _Ta’

Namely, the NQM spin sum\3, = 1 is redistributed

%Azsea + <LZ> =0, (14)

as seen in Egs. (9) and (12). ) ) _,
We now perform the three-part calculation of the orbital Korpis — IM* + ({* — Dm 4 (20)
angular momentum contribution to the magnetic moment. oroit 3(M + m)in '

The orbital moment of each proceggg~ — g% + GB)  This, of course, is intimately connected to the fact that the

IS orbital and spin alignments of the sea must be opposite
, eq eq — ey to each other because of angular momentum conservation,
plgr = ql)L = M (lyz) + 7 (lgpz) (15) Eq. (14). In particular, fog in the range of—1,0), we
. . can have
where (1,,lgs) and (M, in) are the orbital angular mo- )
menta and masses of quark and GB, respectively. The Kspin T Korbit = 0 for M = 1.5m. (21)
one unit of angular momentum in (11) is shared by thethe orbital contribution being dominated by the light
two bodies: GB processes, this cancellation should be indicative of
i M the actual situation. This diminution means that even

and (lgpz) = (16) though Ag, is significantly different fromAgex, for a

magnetic moment calculation we can still usg, if at

lyz) = .
) = 3 M+ i

The result (15) is then multiplied by the probability for . ) .
such a process to take place, to yield the magnetic momeme same time the orbital angular momentum contribution

due to all the transitions starting with a given valence' !gnored. This explains why the NQM can give a
quark: satisfactory account of the baryon magnetic moments

even if its spin content prediction has been found to be

incomplete.
We conclude with the following remarks:

2+ 2 () Previous discussions of the orbital angular momen-

+ 3 plq+ — Q—)L}a tum contribution to the baryon magnetic moment [16]

have been concerned with the configuration mixing, be-

_ +9M2 + (£ — Dm? a<e_q> (17) tween theS wave and possible higher orbital states, of the

3m(M + m) 2M ) three valence quarks rather than the contribution by the or-

The last step is to multiply the valence-quark numbers,b'tal angular momentum of the quark sea. Our viewpoint

_ is that valence quark configuration mixing might not be
5?8)(21t :Thiu[s,u (fcc])1r+ i?f]r)f)rﬁﬂ (qicf‘i;]ﬁ W?n r;z\f a major factor because the simple quark model is known
orbi 3 3 )

to yield an adequate account of the baryon magnetic mo-

[a(ge —)] = i[#(fl+ D+ (g — g

ticular,
5 ) _, ments. !n a su!osequent remark, we sh?:lll comment on the
w(Plortin = IM” + ({F — Dm a( e ) issue of improving upon the NQM description.
orott 3(M + m)in 2M (2) Much of the current discussions on the proton spin

B problem [17] has to do with a possible gluonic contribu-
= Korbit<—>. (18) tion, which is studied in terms of the Lagrangian (hence

2M perturbative) degrees of freedom—in contrast to the non-

Adding up the componenig(B) = w(B), + w(B)spin + perturbative QCD quantities of constituent quarks and in-
w(B)orvic Of Egs. (4), (10), and (18), we haye(p) = ternal GBs of the present work. We view these two
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