
VOLUME 80, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 30 MARCH 1998

t is
ins a

and
se of
Effective Charge of the Higgs Boson

Joannis Papavassiliou1 and Apostolos Pilaftsis2
1Theory Division, CERN, CH-1211 Geneva 23, Switzerland

2Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 Munich, Germany
(Received 16 September 1997)

The Higgs-boson line shape is studied within the pinch technique resummation formalism. I
shown that to one-loop order in perturbation theory any resonant Higgs-boson amplitude conta
universal part which is gauge independent, renormalization-group invariant, satisfies the optical
equivalence theorems, and constitutes the natural extension of the QED effective charge to the ca
the Higgs scalar. [S0031-9007(98)05617-8]
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The production of the standard model (SM) Higgs boso
[1] and the detailed study of its line shape, mass, and wid
are expected to dominate the particle physics scene
the next two decades. A Higgs boson with massMH less
than 100 GeV can be discovered at the CERN Large Ele
tron Positron collider LEP2 through the Bjorken proces
e1e2 ! ZH. If the Higgs boson turns out to be heav
ier, its discovery will again become possible at the CER
Large Hadron Collider through a variety of subprocesse
such asX ! Hp ! X 0, where X, X 0  tt, ZZ, W1W2.
Depending on the value ofMH and the specific kinematic
circumstances, any of the above transitions may be re
nant. The phenomenological importance of the abo
processes makes the need for solving a subtle theoret
problem [2], namely, the self-consistent treatment of th
Higgs-boson resonance in the framework ofS-matrix per-
turbation theory, all the more pressing. In particular,
resummation formalism needs be devised which compli
with a set of very stringent and tightly interlocked physi
cal requirements. To any finite order in perturbation th
ory, physical amplitudes reflect the local gauge symmetr
respect unitarity, are invariant under the renormalizatio
group, and satisfy the equivalence theorem [3,4]. All o
the above properties should also be present after resu
mation; unfortunately, resummation methods often end
violating one or more of them, essentially because sub
cancellations are distorted when certain parts of the a
plitude are resummed to all orders in perturbation theor
whereas, others, carrying important physical informatio
are only considered to a finite order.

Recently, however [5], a formalism based on the pinc
technique (PT) [6] has been developed, which manifes
preserves the crucial physical properties during all inte
mediate steps of the resummation procedure. The
algorithm systematically rearranges a given amplitud
into physically meaningfulsubamplitudes, which have the
same kinematic properties as their conventional count
parts, but none of their individual pathologies. This i
accomplished at thediagrammaticlevel by exploiting the
elementary Ward identities of the theory in order to ex
tract self-energy-like pieces from vertex and box Feynma
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diagrams, which are subsequently appended to the u
self-energy graphs [7]. Even though the generalizat
of the PT beyond one loop is still pending, several im
portant properties have been established by means
detailed diagrammatic analysis [5]; most importantly, t
PT effective self-energies areresummable,and the gauge-
independent pole [8] of a resonant transition amplitu
does not get shifted to all orders in perturbation theory.

In this Letter, the above formalism is extended to t
case of resonant transitions involving the SM Higgs b
son. The main novel results of our study are (i) the P
gives rise to aone-loopHiggs-boson self-energy which is
independentof the gauge fixing parameter (GFP) in ev
ery gauge fixing scheme, isuniversal in the sense that
it is process independent,it may be resummedfollow-
ing the method presented in Ref. [5], it displays on
physical fermionic and bosonic thresholds, and satisfi
individually the optical theorem forboth fermionic as
well as bosonic contributions. (ii) When the resumm
Higgs-boson propagator is multiplied by the univers
quantity g2

wyM2
W , or, equivalently, by the inverse squar

of the vacuum expectation value (VEV) of the Higg
field, it gives rise to arenormalization-group invariant
quantity, in direct analogy to theeffective chargeof the
photon, or theW and Z bosons [9]. This quantity con-
stitutes a common component in every Higgs-boson m
diated process and can be viewed as a physical en
intrinsic to the Higgs boson. It is important to emph
size that an exactly analogous quantity emerges in
context of a scalar theory with a spontaneously brok
global U(1) symmetry, without ever resorting to the P
[10]. In that sense the above construction is the no
Abelian realization of a more general property rather th
an artifact of the resummation method employed. (i
Any amplitude involving longitudinally polarized gaug
bosons satisfies the equivalence theorem, but its indiv
ual s-channel andt-channel contributions do not. Instead
the PT rearrangement of such an amplitude gives r
to two kinematically distinct pieces, a genuines chan-
nel and a genuinet channel, which satisfy the equiva
lence theoremindividually. In particular, the above
© 1998 The American Physical Society 2785



VOLUME 80, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 30 MARCH 1998

by

ate
or

nd
of
property persistseven after the s-channel Higgs-boson
self-energy has been resummed, thus solving a lon
standing problem.

We shall now analyze the above points in the co
text of specific examples. When the center-of-ma
(c.m.) energy

p
s approachesMH , amplitudes contain-

ing an s-channel Higgs boson become singular, an
must be regulated. The naive extension of the sta
dard Breit-Wigner procedure to this case would cons
of replacing the free Higgs-boson propagatorDH ssd 
n
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ss 2 M2
H d21 by a resummed propagator of the form

fs 2 M2
H 1 PHHssdg21, where PHHssd is the one-loop

Higgs-boson self-energy. However, as one can verify
explicit calculations in the renormalizablesRjd gauges,
bosonic radiative corrections induce toPHHssd an addi-
tional dependence on the GFP. Turning to more elabor
gauge fixing schemes does not improve the situation. F
example, within the background field gauges (BFG’s) a
with irrelevant tadpole graphs omitted, the contribution
theZ boson loops reads [10]
P
bHbH
sZZdss, jQd 

aw

32p

s2

M2
W

(√
1 2 4

M2
Z

s
1 12

M4
Z

s2
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B0ss, M2

Z , M2
Zd
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1 1 4jQ

M2
Z

s
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Zd
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B0ss, jQM2
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Zd

)
, (1)
-

n

]

h

pli-
where aw  g2
wys4pd is the weak fine structure con

stant andB0 is the usual Passarino-Veltman functio
The presence of the GFPjQ results in bad high en
ergy behavior and the appearance of unphysical thre
olds, as can be verified directly using ImB0ss, M2, M2d 
uss 2 4M2dps1 2 4M2ysd1y2. Even though to any or-
der in perturbation theory physical amplitudes are G
independent, and display only physical thresholds, res
ming P

ĤĤ
sZZdss, jQd will introduce artifacts to the resonan

amplitude. Even in the unitary gaugesjQ ! `d, where
only physical thresholds survive, thes2 growth in Eq. (1)
grossly contradicts the equivalence theorem.

In the PT framework, however, a modified one-lo
self-energy for the Higgs boson can be constructed, by
pending to the conventional self-energy additional pro
gatorlike contributions concealed inside vertices a
boxes. These contributions can be identified syste
atically, by resorting exclusively to elementary Wa
identities of the formkysy 1 ag5d  sky 1 py 2 md sy 1

ag5d 2 sy 2 ag5d spy 2 md 1 2amg5, triggered by
the longitudinal virtual momentakm. Following this
procedure, we find the PT Higgs-boson self-energy [10

P̂
HH
sZZdssd 

aw

32p

M4
H

M2
W

"
1 1 4

M2
Z

M2
H

2 4
M2

Z

M4
H

s2s 2 3M2
Zd

#
3 B0ss, M2

Z , M2
Zd , (2)

which is GFP independent in any gauge fixing schem
universal [11], grows linearly withs, and displays phys-
ical thresholds only. For illustration, in Fig. 1, we plo
the dependence of the running width, ImP

HH
sZZdssd, on

p
s within the PT resummation formalism, the BFG wi

jQ  0, and the unitary gauge. The difference in the ph
nomenological predictions between the three approac
is rather striking, in accordance with the discussion giv
above.

The PT self-energies satisfy the optical theoremindi-
vidually, as explained in [5,9]. To verify that̂PHH

sZZdssd
.

sh-
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has this property, consider the tree-level transition am
tude T sZZd for the processfsp1dfsp2d ! Zsk1dZsk2d;
it is the sum of ans- and a t-channel contribution, de-
noted byT H

s sZZd and TtsZZd, respectively, given by

T H
smnsZZd  GHZZ

0mn DHssdysp2dGHff
0 usp1d , (3)

TtmnsZZd  ysp2d

√
G

Zff
0n

1
py1 1 ky1 2 mf

G
Zff
0m

1 G
Zff
0m

1
py1 1 ky2 2 mf

G
Zff
0n

!
usp1d .

(4)

Here, s  sp1 1 p2d2  sk1 1 k2d2 is the c.m.

energy squared, G
HZZ
0mn  igwM2

ZyMW gmn, G
Hff
0 

2igwmfys2MW d and G
Zff
0m  2igwys2cwdgmfT f

z s1 2

g5d 2 2Qfs2
wg, with cw 

p
1 2 s2

w  MW yMZ , are

FIG. 1. Dependence of ImPHH
sZZdssdyIm P

HH
sZZdsM

2
H d on s1y2 in

the PT, the BFG withjQ  0, and the unitary gauge.
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the tree-level HZZ, Hff, and Zff couplings, re-
spectively, and Qf is the electric charge of the
fermion f, and T f

z its z component of the weak
isospin. We then calculate the expressionfT H

smnsZZd 1

TtmnsZZdg Qmrsk1d Qnssk2d fT H
srs sZZd 1 Ttrs sZZdgp,

where Qmnskd  2gmn 1 kmknyM2
Z denotes the usual

polarization tensor, and isolate its Higgs-boson mediat
part. To accomplish this, one must first use the long
tudinal momenta coming fromQmrsk1d and Qnssk2d in
order to extract the Higgs-boson part ofT

mn
t sZZd, i.e.,

k
m
1 kn

2

M2
Z

TtmnsZZd  T H
P 1 . . .  2

igw

2MW
ysp2dGHff

0 usp1d

1 . . . , (5)

where the ellipses denote genuinet-channel (not Higgs-
boson related) contributions. Then, one must appe
the pieceT

H
P T

Hp

P to the “naive” Higgs-dependent part
T H

smnsZZdQmr sk1d Qnssk2dT Hp
srssZZd. Integrating the

expression obtained over the two-body phase space,
finally arrive at the imaginary part of Eq. (2), which is
the announced result.

The gauge invariance of theS matrix imposes tree-
level Ward identities on the unrenormalized one-loop P
Green’s functions [6,12]. The requirement that the sam
Ward identities should be maintained after renormaliz
tion leads to important QED-type relations for the reno
malization constants of the theory. Specifically, we find

ẐW  Ẑ22
gw

, ẐZ  ẐW Ẑ2
cw

,

ẐH  ẐW s1 1 dM2
W yM2

W d ,
(6)

where ẐW , ẐZ , and ẐH are the wave-function renor-
malizations of theW, Z, and H fields, respectively,
Ẑgw

is the coupling renormalization, and̂Zcw
 s1 1

dM2
W yM2

W d1y2 s1 1 dM2
ZyM2

Zd21y2. The renormalization
of the bare resummed Higgs-boson propagatorD̂H,0ssd
proceeds as follows:

D̂H,0ssd  fs 2 sM0
Hd2 1 P̂HH,0ssdg21

 ẐHfs 2 M2
H 1 P̂HHssdg21  ẐHD̂H ssd , (7)

with sM0
Hd2  M2

H 1 dM2
H . The renormalized Higgs-

boson massM2
H may be defined as the real part of the

complex pole position of̂DHssd. Notice that within the
PT resummation formalism theHZ mixing is absent up to
two loops [13]. Employing the relations in Eq. (6), we
observe that the universal quantity

R̂H,0ssd 
sg0

wd2

sM0
W d2

D̂H,0ssd


g2

w

M2
W

D̂Hssd  R̂H ssd (8)

is invariant under the renormalization group. Evidentl
R̂H ssd provides the natural one-loop extension of th
notion of the QED effective charge to the case of th
SM Higgs boson, i.e.,H couples universally to matter
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with an effective “charge” inversely proportional to its
VEV. In the high energy limit,s ¿ M2

H , the disper-
sive part of Higgs self-energy behaves as ReP̂HHssd ,
2aws lnssyM2

H d s3m2
t 2 4M2

W 2 2M2
Zdy8pM2

W . If the
heavy top quark were assumed to be absent, the coe
cient accompanying the leading logarithm in ReP̂HHssd
would be positive. This feature is reminiscent of the P
self-energy in pure Yang-Mills theories [5,6,9], whos
leading logarithm is proportional tob1  11cAy3 . 0
(with cA the Casimir eigenvalue of the adjoint represent
tion), reflecting the asymptotic freedom of the theory. O
similar theoretical grounds, Im̂PHH

sZZdssd turns negative for
c.m. energies much higher thanMH , viz., the Higgs self-
energy cannot be spectrally represented.

An additional highly nontrivial constraint must be
imposed on resummed amplitudes; they have to ob
the (generalized) equivalence theorem (GET), which
known to be satisfied before resummation, order by ord
in perturbation theory. For the specific example of th
amplitudeT sZZd  T H

s 1 Tt , the GET states that

T sZLZLd  2T sG0G0d 2 iT sG0zd

2 iT szG0d 1 T szzd , (9)

whereZL is the longitudinal component of theZ boson,
G0 is its associated would-be Goldstone boson, a
zmskd  ´

m
L skd 2 kmyMW is the energetically suppresse

part of the longitudinal polarization vectoŕ
m
L . It is

crucial to observe, however, that already at the tr
level the conventionals- and t-channel subamplitudes
T H

s and Tt fail to satisfy the GET individually. To
verify that one has to calculateT H

s sZLZLd using explicit
expressions for the longitudinal polarization vectors, a
check if the answer obtained is equal to the Higgs-bos
mediateds-channel part of the left-hand side of Eq. (9)
In particular, in the c.m. system, we havezmsk1d 
´

m
L sk1d 2 k

m
1 yMZ  22MZk

m
2 ys 1 O sM4

Zys2d, and
exactly analogous expressions forzmsk2d. The resid-
ual vector zmskd has the propertieszmkm  2MZ

and z2  0. After a straightforward calculation, we
obtain T H

s sZLZLd  2T H
s sG0G0d 2 iT H

s szG0d 2

iT H
s sG0zd 1 T H

s szzd 2 T
H

P , where

T H
s sG0G0d  GHG0G0

0 DHssdysp2dGHff
0 usp1d ,

T H
s szG0d 1 T H

s sG0zd  fzmsk1dGHZG0

0m 1 znsk2dGHG0Z
0n g

3 DHssdysp2dGHff
0 usp1d , (10)

and T H
s szzd  zmsk1dznsk2dT H

smnsZZd, with G
HG0G0

0 

2igwM2
Hy2MW , and G

HZG0

0m  2gwsk1 1 2k2dmy2cw.
Evidently, the presence of the termT H

P prevents
T H

s sZLZLd from satisfying the GET. This is not
surprising, however, since an important Higgs-boso
mediateds-channel part has been omitted. Specificall
the momentak

m
1 andkn

2 stemming from the leading parts
2787
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of the longitudinal polarization vectorś
m
L sk1d and´

n
Lsk2d

extract such a term fromTtsZLZLd. Just as happens in
Eq. (5), this term is preciselyT H

P , and must be added to
T H

s sZLZLd, in order to form a well-behaved amplitude
at very high energies. In other words, the amplitud
T̂ H

s sZLZLd  T H
s sZLZLd 1 T

H
P satisfies the GET

independently [cf. Eq. (9)]. In fact, this crucial propert
persists after resummation. Indeed, as shown in Fig

the resummed amplitudeT
H
s sZLZLd may be constructed

from T H
s sZLZLd in Eq. (3), if DHssd is replaced by the

resummed Higgs-boson propagatorD̂Hssd, and G
HZZ
0mn

by the expressionGHZZ
0mn 1 ĜHZZ

mn , where ĜHZZ
mn is the

one-loopHZZ vertex calculated within the PT [10]. It
2788
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FIG. 2. Resummation of the Higgs-mediated amplitude pert
nent toff ! ZZ.

is then straightforward to show that the Higgs-mediate

amplitudeT̃ H
s sZLZLd  T

H
s sZLZLd 1 T

H
P respects the

GET individually; to that end we only need to employ the
following tree-level-type PT Ward identities:
kn
2 ĜHZZ

mn sq, k1, k2d 1 iMZĜHZG0

m sq, k1, k2d  2
gw

2cw
P̂ZG0

m sk1d ,

k
m
1 ĜHZG0

m sq, k1, k2d 1 iMZĜHG0G0

sq, k1, k2d  2
gw

2cw
fP̂HHsq2d 1 P̂G0G0

sk2
2dg , (11)

k
m
1 kn

2 ĜHZZ
mn sq, k1, k2d 1 M2

ZĜHG0G0

sq, k1, k2d 
igwMZ

2cw
fP̂HHsq2d 1 P̂G0G0

sk2
1 d 1 P̂G0G0

sk2
2 dg ,
e

at
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n
n
m
l
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re
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,
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j,

,

.

l.
where ĜHZG0

m and ĜHG0G0
are the one-loop PTHZG0

andHG0G0 vertices, respectively. In this derivation, on
should also make use of the PT WI involving theZG0 and
G0G0 self-energies:̂PZG0

m skd  2iMZkmP̂G0G0sk2dyk2.
In conclusion, we have explicitly demonstrated th

within the PT resummation approach, any resonant Hig
mediated amplitude contains a gauge-independent u
versal part, which is invariant under the renormalizatio
group and satisfies the optical and equivalence theore
individually. It would be of great phenomenologica
interest to confront the theoretical predictions for th
universal quantity against data obtained from futu
Higgs-boson experiments.
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