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We compute 3D models of supersonic, sub-Alfvénic, and super-Alfvénic decaying turbulence, with
an isothermal equation of state appropriate for star-forming interstellar clouds of molecular gas.
We find that in 3D the kinetic energy decays as’, with 0.85 < n < 1.2. In 1D magnetized
turbulence actually decays faster than unmagnetized turbulence. We compared different algorithms,
and performed resolution studies reachsg* zones or70° particles. External driving must produce
the observed long lifetimes and supersonic motions in molecular clouds, as undriven turbulence decays
too fast. [S0031-9007(98)05595-1]

PACS numbers: 98.38.Am, 47.27.—i, 47.40.Ki, 95.30.Lz

Star-forming clouds of interstellar gas emit strongly inlow wave-number modes. Dissipation, on the other hand,
molecular emission lines; temperatures derived from theseccurs predominantly from the high wave-number modes.
lines show that the linewidths greatly exceed the thermalherefore, the decay rate does not generally depend on the
sound speeds in these clouds. With densities of or- details of the dissipation process. Rather, it is controlled
dern ~ 10°-10° protons per cry the gas in these clouds by the efficiency of energy transfer from the low to high
can be described by an isothermal equation of state due teave-number modes due to vortex interactions, nonlinear
the efficient radiative cooling allowed by the many low- wave interactions, or other processes. This leads either
lying molecular transitions [1]. Cloud lifetimes are of or- to the Kolmogorov decay ratg = 10/7 for the kinetic
der 3 x 107 yr [2], while free-fall gravitational collapse energy, accompanied by a growth in the external scale
times are onlyr; = (1.4 X 10° yr) (n/10° cm™3)~1/2,  of the turbulenceL o« 27 [10], or to the law n =
In the absence of nonthermal support, these clouds should+ (s — 1)/(s + 3) andL o 2/6*3 depending on the
collapse and form stars in a small fraction of theirinjected energy spectrum in the low wave-number region
observed lifetime. Supersonic hydrodynamical (HD) tur-[P(k) <« k*] and the spatial dimensioP® [11]. Hence,
bulence is suggested as a support mechanism by the olepending ons, values for the decay ratey as low
served broad lines, but was dismissed because it woulas unity are predicted, much lower than Kolmogorov.
decay in times of ordes;. A popular alternative has been However, these results are from studies of spatially free
sub- or trans-Alfvénic magnetohydrodynamical (MHD) turbulence [12]. When turbulence is confined, a much
turbulence, which was thought to decay an order of maghigher rate ofn — 2 is found both experimentally [9]
nitude more slowly [3]. However, analytic estimates andand with a mean field theory [13].
computational models suggest thatompressibleMHD The decay behavior of incompressible MHD turbu-
turbulence decays [4—7] as”, with a decay rat&/3 <  lence, in contrast, is controversial. A two-dimensional
n < 1.0, while incompressible HD turbulence has been(2D) analysis with constant mean square magnetic poten-
experimentally measured [8,9] to decay withh < n <  tial yieldsn = 1, a result indeed backed up by numerical
2. The difference in decay rates between incompressiblstudies in 2D [14]. Studies in 3D have yielded= 2/3
HD and MHD turbulence is clearly not as large as had15] and» = 0.8 [16], although low-resolution numerical
been suggested for compressible astrophysical turbulencesults [5,7] suggesy ~ 1.

In this paper we use high-resolution, three-dimensional Compressibility introduces an alternative type of com-
(3D) simulations to compute the decay rates of compresglexity [17]. Nevertheless, the 3D decay problem has
ible, homogeneous, isothermal, decaying turbulence witlheen modeled numerically [18]. Although the evolution
supersonic, sub-Alfvénic, and super-Alfvénic root-mean-of the spectral development and spatial structures was ex-
square (rms) initial velocities,s, and show that the plored, the decay rate was treated only in passing, and
decay rates in these physical regimes5 < n < 1.2,  definitive results are hard to derive.

strongly resemble the incompressible results. Unlike terrestrial turbulence, astrophysical turbulence

Previous work—The decay of the kinetic energxy  usually involves full MHD compressible flow. Numerical
of incompressible HD turbulence has been explored iimmodels of one-dimensional (1D), isothermal, compress-
some detail. The energy is predominantly held withinible, strongly magnetized, decaying, and forced turbulence
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have been performed by [19], who found decay ratesandom field fully determined by its power spectrum in
rather lower than those discussed above. A recent 3Bourier space following the standard procedure: For each
study [20] broke new ground by examining both weaklywave numberk we randomly select an amplitude from
and strongly magnetized isothermal, compressible turbua Gaussian distribution centered on zero and with width
lence; however, the rather low energy decay rates showA(k) = Pok® with k = |k|, and a phase between zero
were almost entirely dependent on the initial conditionsand 27. We then transform the field back into real
chosen, as explained in [21]. space to obtain the velocity in each zone. This is done
Numerical techniques-For our HD models of strongly independently for each velocity component. For the SPH
supersonic turbulence we use two entirely different HDcalculation the velocities defined on the grid are assigned
methods—a second-order, Eulerian, finite-differenceonto individual particles using the “cloud-in-cell” scheme
code, and a smoothed particle hydrodynamics (SPH|R7]. In all of our models we take, = 0.1, initial density
code—while for our MHD models we use only the po = 1, and we use a periodic grid with sidds= 2
finite-difference code. centered on the origin. These parameter choices define our
This finite-difference code is the well-tested MHD codeunit system. Our choice of periodic boundary conditions
ZEUS [22], which uses second-order [23] advection, and &orresponds to the case of free turbulence discussed above,
consistent transport algorithm for the magnetic fields [24]at least initially. Thereafter, the appropriate treatment is
It resolves shocks using a standard von Neumann artificidéss clear.
viscosity, but otherwise includes no explicit viscosity, re- One-dimensional resuksTo verify our numerical
lying on numerical viscosity to provide dissipation at smallmethods, we reproduced the 1D, MHD results of Gammie
scales. This should certainly be a reasonable approximand Ostriker [19]. Figure 1(a) shows the results of a reso-
tion for shock-dominated flows, as most dissipation occurution study comparable to their Fig. 1, withh = 5, initial
in the shock fronts, where the artificial viscosity dominatesuniform field parallel to ther axis, and initial rms Alfvén
in any case. The relative simplicity of this Eulerian for- numberA = v,ns/vs = 1, wherevi = B2/4mp,. Note
mulation allows us to perform resolution studies showingthat + = 20 in our units corresponds to= 1 in theirs.
that our major results are, in fact, independent of the rescAside from a rather faster convergence rate in our study,
lution, and thus of the strength of numerical viscosity.  attributable to the details of our choice of initial condi-
SPH is a particle-based approach to solving the HOions, we reproduce excellently their result: a decrease
equations [25], in which the system is represented by an
ensemble of particles, each carrying mass, momentum, and
fluid properties such as pressure, temperature, and intern
energy. We used a special-purpose processor GRAP _
to accelerate computation of nearest-neighbor lists [26}§
allowing models with as many as 350 000 particles.
Initial conditions—We chose initial conditions for our
models inspired by the popular idea that setting up velocit
perturbations with an initial power spectruptk) o« k% in 011 . . 01l ‘ .
Fourier space similar to that of developed turbulence woulc ot 10 100 0.1 1.0 100
be in some way equivalent to starting with developed tur-
bulence [18,20]. Observing the development of our mod
els, it became clear to us that, especially in the superson
regime, the loss of phase information in the power specg
trum allows extremely different gas distributions to have&
the same power spectrum. For example, supersonic, Hu® c d
turbulence has been found in simulations [18] to have
power spectrune = —2. However, any single, discon- 4| , , o1l ‘
tinuous shock wave will also have such a power spectrurr 0.1 10 10.0 0.1 1o 100
as that is simply the Fourier transform of a step function, )
and taking the Fourier transform of many shocks will notF!G: 1. Isothermal M =5 models with ZEUS. (a) Wave

change this power law. Nevertheless, most distributiongg%ig% dffg%y g; I\t/IoH[l)lognGOdzecl)snev;/!th:h: 125%nd20r§20|rl:]tc')%r§| is

with @ = —2 do not contain shocks. highlighted. (b) Comparison of the same 256 zone 1D MHD
After experimentation, we decided that the quickestmodel (upper line) t0256° zone 3D MHD modelQ (lower
way to generate fully developed turbulence was withline). (c) Kinetic energy decay of HD models with resolutions

; ; ; ranging from 32 (lowest) to 4096 (highest) zones; the 256 zone
perubations having  fat power speciam- 0 with s 13000 10 52 (1o tes () ores e 20 o
max ’ g 9 p 1D HD model (upper thick line) to the56® zone HD modelD

(that is, the low wave-number power indeis undefined).  (lower thick line), and to the@s6® zone MHD modelQ (thin
We set up velocity perturbations drawn from a Gaussiatine).
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inwave energyzy... = Ex + (B} + B?)/8m by afactor 1.00

1.00
of 5 in one sound-crossing tine/c;. "

We then extended our study by examining the equiva- ~.\\
lent HD problem, as shown in Fig. 1(c), only to find that ,0.10 BA\ 1 ,°0.10
the decay rate of HD turbulence in 1D is significantly \\
slowerthan that of MHD turbulence. This appears to be a \

due to the sweeping up of slower shocks by faster ones 0.01
in the HD case, resulting in pure Bergers turbulence, with 0.1 1.0 100 01
linear velocity profiles between widely separated shocks
exactly as predicted [28]. The result is that there are
very few dissipative regions, and energy is only lost very
slowly. In contrast, multiple wave interactions occur in

1.00

N ] X NSNS
the MHD case, producing many dissipative regions and“ 0.10 N ui- 0-10 SN
therefore faster dissipation. . ’~‘.‘\\ e
Finally we compared 1D models with 256 zone reso- 0.01 ¥ 0.01 e
lution to equivalent 3D models with56° zones. The 3D 01 10 10.0 01 10 100
model loses energy far faster than the 1D model in both t t

the HD case shown in the thick lines in Fig. 1(d) andFIG 2. Three-dimensional resolution studies fof =5

the MHD case shown in Fig. :_L(b)' _The increased NUM5s5thermal models. Panels show (a) HD runs with ZEUé, (b)

ber of degregs of frgedom _avallable in 3D pr_oduces MOTr@ID runs with SPH, (C)A = 5 MHD runs with ZEUS, and

shocks and interaction regions, resulting in increased end) A = 1 MHD runs with ZEUS. ZEUS models havg2?

ergy dissipation. (dotteq line),64* (short-dashed line)}28* (long-dashed line),
Three-dimensional resukés We next performed resolu- ©f 256" (solid line) zones, while the SPH models have 7000

tion studies using ZEUS for three different cases with ng(pi(?gg(ésl‘me), 50000 (short-dashed line), or 350 000 (solid line)

field, weak field, and strong field, as described in Fig. '

and summarized in Table I. The weak field models have

an initial ratio of thermal to magnetic pressuge= 2, semble the incompressible results, despite the difference in

while the strong field models hay@ = 0.08. We ran the dissipation mechanisms. In incompressible hydrodynam-

same HD model with the SPH code to demonstrate thd€s, Kinetic energy is dissipated in vortices at the smallest

our results are truly independent of the details of the visscales; in supersonic compressible turbulence, kinetic en-

cous dissipation, and that our lack of an explicit viscosityergy is dissipated in shock waves; and in MHD turbulence,

does not affect our results. We also ran two modRlsS)

with adiabatic indexy = 1.4, and an isothermal model TABLE I. Power law of kinetic energy decay (with formal

(T) with initial M = 0.1 to provide a point of direct com- errors from the least squares fits) for the 3D models discussed.

parison between our results and those for incompressibl&litial rms Mach numbens and Alfvén number and adiabatic
Navier-Stokes turbulence index y are given, along with the resolution (res.) (in zones per

The kinetic energy decay curves for the four resolutior‘.SIOIe or thousands of partices) and code used.

studies are shown in Fig. 2. For each of our runs we perModel  code res. y M A Y

formed a least-squares fit to the power-law portion of the 4 ZEUS 32 1 5 o 1.0 = 0.004
kinetic energy decay curves, and report the corresponding B ZEUS 64 1 5 o 1.1 = 0.003
decay raten in Table . These results appear converged C ZEUS 128 1 5 ® 1.0 = 0.002
at the 5%—10% level; it is very reassuring that the differ- D ZEUS 256 1 5 =« 098 x0.001
ent numerical methods converge to the same result for the £ SPH ’ 15 =« 13x0005
HD case. F SPH 50 1 5 1.2 £ 0.001
We find that highly compressible, isothermal turbulence G SPH %6 1 5 * 1.1 0.004

. H ZEUS 32 1 5 5 0.89 £0.02

(model D) decays somewhat more slowly, with = N

. . . J ZEUS 64 1 5 5 0.80 £0.01

0.98, than less compressible, adiabatic turbulence (model g ZEUS 128 1 5 5 086001
R), with = 1.2, or than incompressible turbulence [, ZEUS 2568 1 5 5 091 + 0.006

(modelT), with n = 1.1 (see also Refs. [9,13]). Adding M ZEUS 32 1 5 1 067 £0.02

magnetic fields (models, Q, andS) decreases the decay N ZEUS 64 1 5 1 0.80 *0.02

rate somewhat further in the isothermal casejte- 0.9, P ZEUS 128 1 5 1 083 *0.02

with very slight dependence on the field strength or € ZEUS 256 1 5 1 087 *0.02
adiabatic index. R ZEUS 256 14 5 o  12%0.006
We can draw conclusions for turbulence theory from 5 ZEUS 256 14 5 1 0940009
ZEUS 256 1 01 = 1.1 £ 0.007

our models that have significant astrophysical implications
What we find remarkable is how closely our results re-®Highest resolution models.
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