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Orderly Spectra from Random Interactions
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We investigate the low-lying spectra of many-body systems with random two-body interactions,
specifying that the ensemble be invariant under particle-hole conjugation. Surprisingly we find patterns
reminiscent of more orderly interactions, such as a predominance=ef0 ground states separated
by a gap from the excited states, and evidence of phonon vibrations in the low-lying spectra.
[S0031-9007(98)05710-X]
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In the spectra of molecules, atomic nuclei, and other In this Letter, we begin exploratory studies of these
many-body systems, the low-lying excitations often dis-questions, choosing ensembles of two-body random
play a pattern suggestive of group symmetries, such adamiltonians and computing their many-body spectra.
rotational or vibrational bands, even though the manyAlthough our own reference point is nuclear physics,
body spectrum is in principle complex and the interac-we believe these issues may be relevant to generic
tions themselves have no trace of the symmetry groupmany-body systems, such as molecules, atomic clusters,
displayed. This raises the question: To what extent doestc., and so our explorations should be considered in
the low-lying spectrum acquire order simply from the as broad an arena as possible. Obviously the choice of
most basic properties of the Hamiltonian? These propensemble is crucial. In standard random matrix theory
erties include rotational invariance, possibly other sym{1], a powerful principle for specifying the ensemble is
metries such as isospin, and the fundamental nature o require that it be invariant under a change of basis.
the interaction, which is predominantly two body in char-We shall use this principle at the level of the two-body
acter. Given an ensemble of Hamiltonians of this form,Hamiltonian to construct our ensembles. We first choose
some properties might occur often, while others would oca single-particle basis labeled by angular momentum
cur rarely and would depend sensitively upon the detaileédnd two-particle states of good total angular momentum
form of the two-body interactions. An example mightJ =[j ® j/]. States of the same angular momentum
be a rotational spectrum: one could imagine that a typiean be transformed into each other, so the ensemble
cal ground state might behave as a solid. Then manis specified by the average of the matrix elements and
members of the ensemble would have a rotational bantheir fluctuations for eacli. For the symmetric matrix
built on the ground state. Stated another way, many-bodgnsemble, invariant under orthogonal transformations, the
calculations often rely upon model interactions, such asnean square variance in matrix elemewjs, is
pseudopotentials in atomic and molecular physics, and the 5
Skyrme, quadrupole-quadrupole, and other interactions in <Voz,a’> =c¢/(1 + Sau),
nuclear physics, that despite being drastic simplifications (VawVap) =0, (a,a) # (B.8)).
reproduce many key properties. We ask the logical ex-
tension: What properties remain as the Hamiltonian getslere« anda'’ label two-body state;j ® j' = J). Note
more and more arbitrary? that the variance depends only énand that there is the
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usual factor of 2 difference between diagonal and offthan considering the interplay of a specified symmetry and
diagonal matrix elements. The dependencecpfon J  a random Hamiltonian, we look to see what symmetries,
will be relevant to determining the overall behavior of theor at least what markers of symmetries, can arise sponta-
ensemble. Obviously, pairing properties will dominateneously in generic Hamiltonians.

if J =0 is enhanced. If the interaction is converted We computed the low-lying spectra of random Hamil-
to a particle-hole representation, mean-field physics wiltonians for several different shell-model spaces. We label
become dominant if the diagondl = 0 interaction is our systems by, the number of identical particles, afd
enhanced in that representation. For our study herghe number of single-particle states. For the latter we con-
we follow the idea that the physics should be thatsider two different single-particle spaces, first a space with
of interacting quasiparticles, favoring neither a particle-j orbitals{%, % %}, with Q = 12, and also in a space with
particle nor a particle-hole representation. We thereforg qrpjtals {1.3.3. 73, with Q = 20. In nuclear physics

demand that the ensemble be invariant under the Pandygese correspond to the, 2-0d3/2-0ds/2 and1 py /-1p3a-

transformation [2], 0fs/2-0f7/2 spaces, respectively. We consideméd= 6
- . _ jiog 7 identical particles for both th@ = 12 and20 spaces. A
ij 7S LIVIKT S L) = Z(ZJ + 1){ i i L} nuclear spectroscopist would identify these 2@ and
! ! 46Ca, respectively, but because our Hamiltonians have
X il IV kj; Ty been significantly abstracted we prefer the abstract label-
The ensemble (1) is invariant under this transformatioring scheme oV = 6, = 12 andN = 6, = 20.
if and only if In nuclear physics there is along with angular mo-
72 mentum an additional symmetry, isospin (which we

= . (2)  remind our non-nuclear readers is an(SJsymmetry be-
2J +1 tween neutrons and protons and which is a nearly exact

Herev sets the energy scale for the ensemble, and our alymmetry of the strong nuclear force). Since neutron-

results will be quoted in units af. Equations (1) and (2) proton correlations might allow different statistical be-

define the ensemble to be studied in this Letter, which wéavior, we enlarge the RQE to include isosfinwhich

term therandom quasiparticle ensemb(RQE). is treated exactly ag in our previous definition, so

Random matrices were introduced into nuclear physic¢hat c; - = 92/(2J + 1) (2T + 1). For two-body inter-
by Wigner [3] to model statistical properties of nuclearactions only thel’ = 0, 1 channels are possible. We stud-
spectra. In particular the Gaussian orthogonal ensembied the system with four protons and four neutrons (and
(GOE) of random Hamiltonians describes well the levelthenceT, = 0) in the ) = 12 space, which corresponds
repulsion found in distribution of nearest-neighbor spacto Mg, but which we label a& = 4,Z = 4,Q = 12.
ings of states with the same quantum numbers. For more Before giving our results, we review the generic phe-
global properties, however, the GOE does not match realomenological features of the low-lying spectra of even
nuclei. The GOE gives a semicircle level density, whileN, evenZ nuclides. In Nature, all even-even nuclei have
realistic shell-model Hamiltonians tend to give a Gaussy = 0 ground states which are pushed down in energy
ian level density. But a GOE corresponds to Hamil-relative to the ground states of even-odd and odd-odd nu-
tonians with interactions of all possible particle ranks,clei. The low-lying spectra display marked regularities,
whereas shell-model Hamiltonians are only two-body in-particularly in the spacing of the first = 0,2,4,6,8, ...
teractions. Wong and French [4] investigated th®-  states. One labels such regularities as “vibrational” or
body random ensembler TBRE (also sometimes termed “rotational” bands depending if the excitation energy goes
the embedded GOJ: which is similar to our RQE ex- like J or J(J + 1), respectively. Other regularities are
cept thatc; = const. With the TBRE one regains Gauss-also observed and associated with various group struc-
ian level densities and Mon and French [5] related theures [8], but these are the most basic feature.
global level density to the moments of the ensemble. All With this in mind, we now group our results under
these studies, however, considered only states with ideseveral major headings. We computed 1000 spectra for
tical quantum numbers. In contrast, our work here exeach system, with the Hamiltonians drawn from the RQE
amines the relation between states of different quanturas defined in Egs. (1) and (2). All single-particle energies
numbers. were set to zero.

We stress that our Hamiltonians drawn from the RQE Predominance af = 0 ground states—For all our en-
have no symmetries imposed on them beyond that ofembles we found a predominance/of 0 ground states.
Egs. (1) and (2) above. This is in contrast to earlierThis is listed in Table | as a percentage. For the case with
work [6,7] which studied linear combinations of a randomisospin,N = 4,Z = 4, = 12, we also required that the
Hamiltonian and a Hamiltonian containing a specifiedground state hav& = 0. (The other two cases with six
symmetry (e.g., SB) in [7]). These papers investigated identical particles automatically have= T, = 3.) We
the relative strength of the random Hamiltonian necessargee that between two-thirds and three-quarters of the spec-
to overwhelm the externally imposed symmetry. Rathetra have the singlet state as the lowest. This is not a trivial

CJy

2750



VOLUME 80, NUMBER 13 PHYSICAL REVIEW LETTERS 30 MRrcH 1998

TABLE I. Percentage of ground states (g.s.) of the RQE that hawe0,7 = T, for our
target nuclides, as compared to the percentage of all states in the model spaces that have these
guantum numbers.

J=0T=T, J=0T=T,
Q Nucleus g.s. Total space
6 12 20 76% 9.8%
6 20 4Ca 75% 3.5%
N=47Z=4 12 Mg 66% 1.1%

consequence of the dimensionality of our model spacespectrum givep = 7/3. Shown in Fig. 3 is an analysis
as may be seen in the last entry of Table I, showing thef the J = 0,2,4 spectrum for those samples in our
percentage of states in the model space that have tlesemble which had & = 0 ground state. All of our
required quantum numbers. Furthermore, for ffie=  cases give broad peaks in the range= 0 to ~1.
6, () = 20 case, there are considerably mdre= 2 states Note also that some interactions givd a& 0-4-2 yrast
thanJ = 0, 512 as compared to 137. character, as indicated by data @t< 0 in the figure.
Gaps associated wittf = 0 ground states—In ad- Of those samples that exhibit & =0 ground state,
dition to a predominance af = 0 ground states, such approximately 10% have & = 0,2,4 spin ordering for
ground states are typically separated by a gap from the exhe three lowest states.
cited states. A typical case fof = 6, ) = 20 is shown Although there is no evidence of rotational collec-
in Fig. 1(a). Figure 2 shows the distribution of gaps fortivity among the first/ = 0,2,4 states, the yrast spec-
J = 0 ground states. The energy is in unitsigfthe en-  trum extended to high angular momentum shows what is
ergy scale used in Eq. (2). In these units the centroidsalled “noncollective” rotational behavior in nuclear spec-
of the distributions are at-© (1), although with a broad troscopy. This means that the energies of the yrast states
width. For those ground states with# 0 the gap is E; have an overall quadratic increase with but with
much smaller, as shown by an example in Fig. 1(b). Foftarge fluctuations from ong to the next. This is shown
N = 6,Q = 20, the average energy gap betweeh& 0  in Fig. 4, which displays averaged yrast spectra from our
ground state and the first excited statedi¢7¢ and for ensembles. When we f{£;) as a function of/(J + 1)
N=4,7Z=4,Q = 121itis 0.790. the long-range behavior is roughly linear with a slope of
Vibrational/rotational “bands” and yrast structure—~  (0.0539 = 0.0009)w.
In addition to the quantum numbers of the ground state, Phonon collectivity—In algebraic descriptions of col-
we investigated the evidence for band structure in théective behavior one sees far more than patterns in the
low-lying spectra. We characterize the low-lyifg=  excitation spectra: the low-lying states are connected to
0,2,4 yrast states (“yrast” means the lowest state of seach other by operators that generate the group repre-
given angular momentuni) with energyE; by the ratio sentation, or at least approximately so, depending on the
p = (E4 — Ey)/(E; — Ep). If an interaction yields a
vibrational spectrum, them = 1, whereas a rotational
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FIG. 1. *“Typical’ spectra forN = 6, = 20 (**Ca) with an  FIG. 2. Distribution of ground state gaps, defined as the
RQE Hamiltonian. Note the different ground state gaps forexcitation energy of the first excited state above & 0 ground
(a) ground statd = 0, (b) J # 0. state, in units ofv [the energy scale from Eq. (2)].
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B T T T T T T AT = 2
to fo R —op -
B (J = 0|XXt|J = 0)
o8 r ! ] If £ = 1, then the excited state is completely described as

| a particle-hole excitation of the ground state. f Ifs very
| small then the two states are connected only by many-
B —— N=6,0=12 body operators.

! T N e We studied the fractional collectivity in theV =
R 1 4,7 = 4,Q = 12 system, and considered the particle-
hole phonons betweed = 0 ground states and the
first J = 2 excited state. Averaging over our ensemble,
o — ] we found thatf = 0.52 + 0.27. For comparison, the

| e — fractional collectivity using a realistic nuclear shell-model

00 cj_ . . T interaction [9], which is known to yield strong collectivity

e 20 80 40 50 among these states, 587. For totally random states

p=(E~EME,E) : ) :
(which we studied by computing the phonon between
FIG. 3. Distribution of p = (E4 — E»)/(E; — Ey) for sys-  states generated from different interactiorfsy 10~2;

Lenrgsz ";'/tg { or:rgta?tirgrlnjgldbzfqzﬁg' p = 1 for vibrational bands  nis s what one would expect from the GOE. Therefore
' we find that the low-lying states of the RQE can be to a

large degree related simply by particle-hole excitations.

In conclusion, the low-lying spectra of RQE Hamilto-

goodness of the symmetry. These operators typicalljpians display markers of surprising regularity. Ground

have a large component that is single particle in naStates are predominantly= 0 and are pushed down rela-
ture, i.e., expressible as a phono}ﬂ‘; = Zaﬁ uaﬁala/g, tive to the rest of the spectrum, which are two of the im-
whereat, a are the usual fermion creation and annihila-Portant characteristics of the BCS pairing Hamiltonian.
tion operators, respectively. To see whether this collec]here is also evidence for low-lying vibrational states and
tivity carries over to the RQE we examined the transitionnoncollective rotational when averaged over a large num-
between the ground = 0 states (in the members of the ber of yrast states, although no evidence for strong rota-

ensemble that have such a ground state) and the first efional collectivity. Perhaps we should not be surprised at
citedJ = 2 state. For each member of the ensemble wdhese features of the RQE, as it was constructed with the

define the phonon which maximally connects these twd €rmi liquid concept of quasiparticles in mind. The ac-
states byu,p = (J = 2lalagl] = 0). We then define tual source of these apparent regularities is not evident,
! :

the fractional collectivity f by the ratio of the strength of however.

X7 to the first excited state to the total strength%df off The numerical studies presented here have barely
the ground state, scratched the surface of possible questions that can be

addressed with two-body random ensembles. Although
we have strong evidence for a pair gap, one would like
to understand analytically whether this persists in the
10 ' ‘ ' ' ‘ ' ’ ' ' largeNV limit and its functional dependence on the single-
particle space. The choice of ensemble will also play a
sl 5 | role in the physics. If the ensemble singles out.the 0

e interaction in the particle-hole channel, the Hamiltonian
/ will favor mean-field physics, since the mean field is
ol / | constructed out of the particle-hole density operators.

# (arbitrary units)
o
=Y

<
~

Thus, we would expect predictions of mean-field physics,
yd such as the Bethe level density formula, to emerge as a
al pd 1 limit in this case. Another possibility is to emphasize
o pairing in the particle-hole channel. One would then

~Ned, 24, 0212 expect to see phonons with more stability than in the
« -+ N=6, Q=12
2f 1 RQE, and one could explore the more complex group
= structures that might arise (see Ref. [8]).
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