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We investigate the low-lying spectra of many-body systems with random two-body interactio
specifying that the ensemble be invariant under particle-hole conjugation. Surprisingly we find patt
reminiscent of more orderly interactions, such as a predominance ofJ ­ 0 ground states separated
by a gap from the excited states, and evidence of phonon vibrations in the low-lying spec
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In the spectra of molecules, atomic nuclei, and oth
many-body systems, the low-lying excitations often dis
play a pattern suggestive of group symmetries, such
rotational or vibrational bands, even though the man
body spectrum is in principle complex and the interac
tions themselves have no trace of the symmetry grou
displayed. This raises the question: To what extent do
the low-lying spectrum acquire order simply from the
most basic properties of the Hamiltonian? These pro
erties include rotational invariance, possibly other sym
metries such as isospin, and the fundamental nature
the interaction, which is predominantly two body in char
acter. Given an ensemble of Hamiltonians of this form
some properties might occur often, while others would o
cur rarely and would depend sensitively upon the detail
form of the two-body interactions. An example migh
be a rotational spectrum: one could imagine that a typ
cal ground state might behave as a solid. Then ma
members of the ensemble would have a rotational ba
built on the ground state. Stated another way, many-bo
calculations often rely upon model interactions, such
pseudopotentials in atomic and molecular physics, and
Skyrme, quadrupole-quadrupole, and other interactions
nuclear physics, that despite being drastic simplificatio
reproduce many key properties. We ask the logical e
tension: What properties remain as the Hamiltonian ge
more and more arbitrary?
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In this Letter, we begin exploratory studies of the
questions, choosing ensembles of two-body rand
Hamiltonians and computing their many-body spect
Although our own reference point is nuclear physic
we believe these issues may be relevant to gen
many-body systems, such as molecules, atomic clust
etc., and so our explorations should be considered
as broad an arena as possible. Obviously the choice
ensemble is crucial. In standard random matrix theo
[1], a powerful principle for specifying the ensemble
to require that it be invariant under a change of bas
We shall use this principle at the level of the two-bod
Hamiltonian to construct our ensembles. We first choo
a single-particle basis labeled by angular momentumj
and two-particle states of good total angular moment
J ­ f j ≠ j0g. States of the same angular momentu
can be transformed into each other, so the ensem
is specified by the average of the matrix elements a
their fluctuations for eachJ. For the symmetric matrix
ensemble, invariant under orthogonal transformations,
mean square variance in matrix elementsVa,a0 isD

V 2
a,a0 l ­ cJs1 1 daa0d ,≠

Va,a0 Vb,b0 l ­ 0, sa, a0d fi sb, b0d .
(1)

Herea anda0 label two-body statesj j ≠ j0 ­ Jl. Note
that the variance depends only onJ, and that there is the
© 1998 The American Physical Society 2749
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usual factor of 2 difference between diagonal and o
diagonal matrix elements. The dependence ofcJ on J
will be relevant to determining the overall behavior of th
ensemble. Obviously, pairing properties will dominat
if J ­ 0 is enhanced. If the interaction is converte
to a particle-hole representation, mean-field physics w
become dominant if the diagonalJ ­ 0 interaction is
enhanced in that representation. For our study he
we follow the idea that the physics should be th
of interacting quasiparticles, favoring neither a particl
particle nor a particle-hole representation. We therefo
demand that the ensemble be invariant under the Pan
transformation [2],

kij21; LjV jkl21; Ll ­
X

J

s2J 1 1d
Ω

ji jl J
jk jj L

æ
3 kil; JjV jkj; Jl .

The ensemble (1) is invariant under this transformatio
if and only if

cJ ­
ȳ2

2J 1 1
. (2)

Hereȳ sets the energy scale for the ensemble, and our
results will be quoted in units of̄y. Equations (1) and (2)
define the ensemble to be studied in this Letter, which w
term therandom quasiparticle ensemble(RQE).

Random matrices were introduced into nuclear phys
by Wigner [3] to model statistical properties of nuclea
spectra. In particular the Gaussian orthogonal ensem
(GOE) of random Hamiltonians describes well the lev
repulsion found in distribution of nearest-neighbor spa
ings of states with the same quantum numbers. For m
global properties, however, the GOE does not match r
nuclei. The GOE gives a semicircle level density, whi
realistic shell-model Hamiltonians tend to give a Gaus
ian level density. But a GOE corresponds to Ham
tonians with interactions of all possible particle rank
whereas shell-model Hamiltonians are only two-body i
teractions. Wong and French [4] investigated thetwo-
body random ensemble,or TBRE (also sometimes termed
the embedded GOE), which is similar to our RQE ex-
cept thatcJ ­ const. With the TBRE one regains Gauss
ian level densities and Mon and French [5] related th
global level density to the moments of the ensemble. A
these studies, however, considered only states with id
tical quantum numbers. In contrast, our work here e
amines the relation between states of different quantu
numbers.

We stress that our Hamiltonians drawn from the RQ
have no symmetries imposed on them beyond that
Eqs. (1) and (2) above. This is in contrast to earli
work [6,7] which studied linear combinations of a random
Hamiltonian and a Hamiltonian containing a specifie
symmetry (e.g., SUs3d in [7]). These papers investigated
the relative strength of the random Hamiltonian necessa
to overwhelm the externally imposed symmetry. Rath
2750
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than considering the interplay of a specified symmetry a
a random Hamiltonian, we look to see what symmetrie
or at least what markers of symmetries, can arise spon
neously in generic Hamiltonians.

We computed the low-lying spectra of random Ham
tonians for several different shell-model spaces. We la
our systems byN , the number of identical particles, andV,
the number of single-particle states. For the latter we co
sider two different single-particle spaces, first a space w
j orbitalsh 1

2 , 3
2 , 5

2 j, with V ­ 12, and also in a space with

j orbitals h 1
2 , 3

2 , 5
2 , 7

2 j, with V ­ 20. In nuclear physics
these correspond to the1s1y2-0d3y2-0d5y2 and1p1y2-1p3y2-
0f5y2-0f7y2 spaces, respectively. We consideredN ­ 6
identical particles for both theV ­ 12 and20 spaces. A
nuclear spectroscopist would identify these as22O and
46Ca, respectively, but because our Hamiltonians ha
been significantly abstracted we prefer the abstract lab
ing scheme ofN ­ 6, V ­ 12 andN ­ 6, V ­ 20.

In nuclear physics there is along with angular m
mentum an additional symmetry, isospin (which w
remind our non-nuclear readers is an SUs2d symmetry be-
tween neutrons and protons and which is a nearly ex
symmetry of the strong nuclear force). Since neutro
proton correlations might allow different statistical be
havior, we enlarge the RQE to include isospinT which
is treated exactly asJ in our previous definition, so
that cJ,T ­ ȳ2ys2J 1 1d s2T 1 1d. For two-body inter-
actions only theT ­ 0, 1 channels are possible. We stud
ied the system with four protons and four neutrons (a
thenceTz ­ 0) in the V ­ 12 space, which corresponds
to 24Mg, but which we label asN ­ 4, Z ­ 4, V ­ 12.

Before giving our results, we review the generic ph
nomenological features of the low-lying spectra of eve
N , evenZ nuclides. In Nature, all even-even nuclei hav
J ­ 0 ground states which are pushed down in ener
relative to the ground states of even-odd and odd-odd
clei. The low-lying spectra display marked regularitie
particularly in the spacing of the firstJ ­ 0, 2, 4, 6, 8, . . .
states. One labels such regularities as “vibrational”
“rotational” bands depending if the excitation energy go
like J or JsJ 1 1d, respectively. Other regularities ar
also observed and associated with various group str
tures [8], but these are the most basic feature.

With this in mind, we now group our results unde
several major headings. We computed 1000 spectra
each system, with the Hamiltonians drawn from the RQ
as defined in Eqs. (1) and (2). All single-particle energi
were set to zero.

Predominance ofJ ­ 0 ground states.—For all our en-
sembles we found a predominance ofJ ­ 0 ground states.
This is listed in Table I as a percentage. For the case w
isospin,N ­ 4, Z ­ 4, V ­ 12, we also required that the
ground state haveT ­ 0. (The other two cases with six
identical particles automatically haveT ­ Tz ­ 3.) We
see that between two-thirds and three-quarters of the sp
tra have the singlet state as the lowest. This is not a triv
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TABLE I. Percentage of ground states (g.s.) of the RQE that haveJ ­ 0, T ­ Tz for our
target nuclides, as compared to the percentage of all states in the model spaces that have th
quantum numbers.

J ­ 0, T ­ Tz J ­ 0, T ­ Tz

N V Nucleus g.s. Total space

6 12 22O 76% 9.8%
6 20 46Ca 75% 3.5%

N ­ 4, Z ­ 4 12 24Mg 66% 1.1%
r

-
-
t is
c-
tes

ur

of

the
to
re-

the

he
consequence of the dimensionality of our model spac
as may be seen in the last entry of Table I, showing t
percentage of states in the model space that have
required quantum numbers. Furthermore, for theN ­
6, V ­ 20 case, there are considerably moreJ ­ 2 states
thanJ ­ 0, 512 as compared to 137.

Gaps associated withJ ­ 0 ground states.—In ad-
dition to a predominance ofJ ­ 0 ground states, such
ground states are typically separated by a gap from the
cited states. A typical case forN ­ 6, V ­ 20 is shown
in Fig. 1(a). Figure 2 shows the distribution of gaps fo
J ­ 0 ground states. The energy is in units ofȳ, the en-
ergy scale used in Eq. (2). In these units the centro
of the distributions are at,O s1d, although with a broad
width. For those ground states withJ fi 0 the gap is
much smaller, as shown by an example in Fig. 1(b). F
N ­ 6, V ­ 20, the average energy gap between aJ ­ 0
ground state and the first excited state is0.47ȳ and for
N ­ 4, Z ­ 4, V ­ 12 it is 0.79ȳ.

Vibrational/rotational “bands” and yrast structure.—
In addition to the quantum numbers of the ground sta
we investigated the evidence for band structure in t
low-lying spectra. We characterize the low-lyingJ ­
0, 2, 4 yrast states (“yrast” means the lowest state of
given angular momentumJ) with energyEJ by the ratio
r ­ sE4 2 E2dysE2 2 E0d. If an interaction yields a
vibrational spectrum, thenr ­ 1, whereas a rotational

FIG. 1. “Typical” spectra forN ­ 6, V ­ 20 (46Ca) with an
RQE Hamiltonian. Note the different ground state gaps f
(a) ground stateJ ­ 0, (b) J fi 0.
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spectrum givesr ­ 7y3. Shown in Fig. 3 is an analysis
of the J ­ 0, 2, 4 spectrum for those samples in ou
ensemble which had aJ ­ 0 ground state. All of our
cases give broad peaks in the ranger ­ 0 to ,1.

Note also that some interactions give aJ ­ 0-4-2 yrast
character, as indicated by data atr , 0 in the figure.
Of those samples that exhibit aJ ­ 0 ground state,
approximately 10% have aJ ­ 0, 2, 4 spin ordering for
the three lowest states.

Although there is no evidence of rotational collec
tivity among the firstJ ­ 0, 2, 4 states, the yrast spec
trum extended to high angular momentum shows wha
called “noncollective” rotational behavior in nuclear spe
troscopy. This means that the energies of the yrast sta
EJ have an overall quadratic increase withJ, but with
large fluctuations from oneJ to the next. This is shown
in Fig. 4, which displays averaged yrast spectra from o
ensembles. When we fitkEJl as a function ofJsJ 1 1d
the long-range behavior is roughly linear with a slope
s0.0539 6 0.0009dȳ.

Phonon collectivity.—In algebraic descriptions of col-
lective behavior one sees far more than patterns in
excitation spectra: the low-lying states are connected
each other by operators that generate the group rep
sentation, or at least approximately so, depending on

FIG. 2. Distribution of ground state gaps, defined as t
excitation energy of the first excited state above aJ ­ 0 ground
state, in units of̄y [the energy scale from Eq. (2)].
2751
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FIG. 3. Distribution of r ; sE4 2 E2dysE2 2 E0d for sys-
tems with J ­ 0 ground state. r ­ 1 for vibrational bands
and­ 7y3 for rotational bands.

goodness of the symmetry. These operators typica
have a large component that is single particle in n
ture, i.e., expressible as a phonon:X̂y ­

P
ab uabay

aab ,
whereay, a are the usual fermion creation and annihila
tion operators, respectively. To see whether this colle
tivity carries over to the RQE we examined the transitio
between the groundJ ­ 0 states (in the members of the
ensemble that have such a ground state) and the first
cited J ­ 2 state. For each member of the ensemble w
define the phonon which maximally connects these tw
states byuab ­

≠
J ­ 2jay

aabjJ ­ 0 l. We then define
the fractional collectivityf by the ratio of the strength of
X̂y to the first excited state to the total strength ofX̂y off
the ground state,

FIG. 4. Average excitation energy of yrast states (lowest sta
for a givenJ) as a function ofJsJ 1 1d.
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jkJjX̂yjJ ­ 0lj2

kJ ­ 0jX̂X̂yjJ ­ 0l
. (3)

If f ­ 1, then the excited state is completely described a
a particle-hole excitation of the ground state. Iff is very
small then the two states are connected only by man
body operators.

We studied the fractional collectivity in theN ­
4, Z ­ 4, V ­ 12 system, and considered the particle
hole phonons betweenJ ­ 0 ground states and the
first J ­ 2 excited state. Averaging over our ensemble
we found that f̄ ­ 0.52 6 0.27. For comparison, the
fractional collectivity using a realistic nuclear shell-mode
interaction [9], which is known to yield strong collectivity
among these states, is0.87. For totally random states
(which we studied by computing the phonon betwee
states generated from different interactions)f , 1022;
this is what one would expect from the GOE. Therefor
we find that the low-lying states of the RQE can be to
large degree related simply by particle-hole excitations.

In conclusion, the low-lying spectra of RQE Hamilto-
nians display markers of surprising regularity. Ground
states are predominantlyJ ­ 0 and are pushed down rela-
tive to the rest of the spectrum, which are two of the im
portant characteristics of the BCS pairing Hamiltonian
There is also evidence for low-lying vibrational states an
noncollective rotational when averaged over a large num
ber of yrast states, although no evidence for strong rot
tional collectivity. Perhaps we should not be surprised a
these features of the RQE, as it was constructed with th
Fermi liquid concept of quasiparticles in mind. The ac
tual source of these apparent regularities is not eviden
however.

The numerical studies presented here have bare
scratched the surface of possible questions that can
addressed with two-body random ensembles. Althoug
we have strong evidence for a pair gap, one would lik
to understand analytically whether this persists in th
large-N limit and its functional dependence on the single
particle space. The choice of ensemble will also play
role in the physics. If the ensemble singles out theJ ­ 0
interaction in the particle-hole channel, the Hamiltonian
will favor mean-field physics, since the mean field is
constructed out of the particle-hole density operator
Thus, we would expect predictions of mean-field physics
such as the Bethe level density formula, to emerge as
limit in this case. Another possibility is to emphasize
pairing in the particle-hole channel. One would then
expect to see phonons with more stability than in th
RQE, and one could explore the more complex grou
structures that might arise (see Ref. [8]).
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