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Interacting Individuals Leading to Zipf’s Law
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We present a general approach to explain the Zipf’s law of city distribution. If the simple
interaction (pairwise) is assumed, individuals tend to form cities in agreement with the well-kno
statistics. [S0031-9007(98)05632-4]
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Zipf [1], half a century ago, found that city sizes
obey an astonishingly simple distribution law, which is
attributed to the more genericleast effort principle of
human behavior. Let us denote byqm the number of cities
having the population sizem, then Rsmd ­

R`

m qm0 dm0

defines the rank; i.e., the largest city hasR ­ 1, the
second largestR ­ 2, etc. Zipf found that empirically,
Rsmd , 1ymg , with g ø 1 (see Fig. 1). Remarkably
Zipf showed that the scaling exponentg ­ 1 is very
close to reality for many different societies and during
various time periods. More recent data [2,3] shows som
variations from the pureg ­ 1 result as also shown in
Fig. 1. Countries which have a unique social structure
such as the former USSR or China, do not follow
Zipf’s law. For other developed countries Zipf’s law
remains a rather good approximation. Such a generic la
calls for a generic explanation, since different countrie
(e.g., Germany and the U.S.) have different cultural an
economic structures, and their people have innumerab
reasons to choose whether to live in a big or sma
city. Yet collectively the society self-organizes, withou
express wishes of authorities, to obey Zipf’s law.

Human settlements on the Earth’s surface appear
be clustered, hence cities. This is because individua
interact with each other through social, economic, an
cultural ties. In very primitive times an individual (or
a family) performed all basic activities to survive; there
was no need to form a large cluster beyond the size of
tribe. In modern times, ever refined mutual cooperation
competition brings people to live together. Yet this
tendency does not seem to lead to a single “megacit
in the world: Many of us may prefer to live in a big
city, but equally as many escape it for all its negativ
impacts. Somehow the ensuing compromise results in
robust statistical distribution, Zipf’s law.

All these very general features call for an equally
general approach to model city distribution. Below we
propose a general framework using master equations. L
there beQ cities andmi citizens in theith city. The
model is defined in terms of a master equation, assignin
transition rates for the growthwasmid or decreasewdsmid
of the population of a city of sizemi . In other words
we assume that with a probabilitywasmiddt a new
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citizen arrives in cityi in the time intervalst, t 1 dtd,
so thatmi ! mi 1 1. With a probabilitywdsmiddt one
of the mi citizens departs so thatmi ! mi 2 1. We
also assume that there is a small probabilityp dt that
a new city is created, with a single citizen. Assigning
the transition rateswasmd andwdsmd specifies the model.
Note that birth and death are not explicitly considered
these can be included in the transition probabilities. No
also that once an individual leaves a city, he/she will no
necessarily settle in another city right away; thus the tot
number of city dwellers is not conserved. Thus the whol
system is composed of the city dwellers and a reservoir
unsettled travelers whose number is unregistered.

One can study this problem introducing the averag
numberqm,t of cities of sizem at time t, which satisfies
the master equation:

≠tqm,t ­ wdsm 1 1dqm11,t 2 wdsmdqm,t 1 pdm,1

1 wasm 2 1dqm21,t 2 wasmdqm,t . (1)
The parameters of the equation are the transition rat
wdsmd, p, wasmd.

The total numbernstd ­
P

m mqm,t of persons and the
total numberQ of cities are generally not constant:

≠tQ ­ p 2 wds1dq1,t , (2)

FIG. 1. Zipf plot for cities of population larger than105 in the
U.S. and in India (1994 estimate [2]), and for a simulation o
the master equation withp ­ 1023, W ­ 106, anda ­ 2.
© 1998 The American Physical Society 2741
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X̀

m­1

fwdsmd 2 wasmdgqm,t . (3)

Let us focus on the stationary state solutions≠tqm,t ­
0, for which qm,t is simply denotedqm, independent of
time, andn andQ are constant on average. This leads
to the equation

wdsm 1 1dqm11 2 wdsmdqm 1 pdm,11

wasm 2 1dqm21 2 wasmdqm ­ 0 , (4)

where the ratesw are also independent of time. The
problem can be readily handled with the aid of th
generating functiongssd ­

P
m smqm.

Let us first consider the linear casewdsmd ­ Dm and
wasmd ­ Am. This corresponds to independent decision
by the individuals. It is convenient to choose the co
stants to beA ­ s1 2 pdyn, D ­ 1yn, where n counts
the average total number of citizens (constant). In gene
there is a deficit for each existing citywd . wa, since a
departing individual has a finite chance to create a ne
city. The above equation is readily solved with the resu

qm ­
np

1 2 p
s1 2 pdm

m
,

1
m

e2pm. (5)

One can verify that the average number of citizens
indeed

P
mqm ­ n while the average number of cities

is

Q ­
npj ln pj

1 2 p
. (6)

Several remarks are in order: due to the above defi
the odds are always against the existing cities. If t
deficit is small (orp ø 1), fluctuations can still make
a large city arise. The parameterp sets the cutoff size
mp . 1yp of the power law behaviorqm , 1ym. The
condition p ø 1 is equivalent to the statement that th
above deficit is small, or that the creation of a new ci
is a rare event, which seems realistic. The distributio
qm , 1ym is very broad. Inverting the rank function
Rsmd, we find msRd ­ mp exps2R 1 1d, very different
from the observed Zipf’s law.

The linear model implies no interaction among citizen
From an individual’s viewpoint, the chance to leav
(or arrive at) a city is independent of the city’s siz
m; everybody is free to move around. The simple
interaction we may consider is pairwise type; this lea
us to w , m2. In this case we choosewasmd ­ s1 2

pdm2yW andwdsmd ­ m2yW . The calculation is, again,
standard and the result is that

n ­
pW j ln pj

1 2 p
,

Q ­
n

j ln pj

X̀
m­1

s1 2 pdm

m2
.

p2n
6j ln pj

,

and
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qm ­
Wp

1 2 p
s1 2 pdm

m2
. (7)

Note thatqm , 1ym2, for m ø mp . 1yp. Again using
the rank relation, we findRsmd , 1ym, or in the more
familar form of Zipf msRd , 1yR. Therefore we may
draw the conclusion that it is the pairwise interaction tha
is behind Zipf’s law for city distribution, a general ex-
planation indeed. Recently Zanette and Manrubia ha
proposed a city formation model [3]. They use a multi
plication and diffusion process and find that their resul
also reproduce Zipf’s law. A possible motivation for such
a multiplicative process is that citizens of the same ci
are subject to the same aggregate shocks, which tend
increase or decrease the population size. The implicit a
sumption is that the strength of such random shocks do
not depend on the sizemi of city i. Our present approach
is complementary to theirs: since there are more or lessm2

departures and arrivals, the net increase (or decrease)dm
of the population of a city in a unit time interval, islin-
early proportional tom. This leads to a system with mul-
tiplicative noise. This argument shows, on one side th
multiplicative noise results from a pairwise interaction, o
the other that aggregate shocks, i.e., random events wh
affect equally each citizen of a given city, also would lea
to them2 transition rates in our model.

On the other hand, the linear casewi , m is charac-
terized by fluctuationsdm which are proportional to

p
m.

As has been discussed in another reproduction-diffusi
system [4], this is typical of a system of noninteractin
individuals.

These results are confirmed by numerical simulation
We show in Fig. 1 the Zipf plot of a population of cities
obtained forwasmd, wdsmd , m2. This compares well
with actual data [1].

One may argue that, in reality,both linear and square
terms should be present, since an individual’s decisio
must have both his independent as well as interacti
parts. Therefore it is natural to consider the mixed cas
For the ease of presentation we assume the transit
probabilities to be

wasmd ­
m2

m0
1 m, wdsmd ­ e1ymp

√
m2

m0
1 am

!
.

(8)

The simplest way to derive the distribution of city sizes
in this case, is to use detailed balance: The number
cities of sizem becoming of sizem 2 1 is qm,twdsmd. In
the steady state, this has to balance the number of cities
size m 2 1 becoming of sizem, i.e., qm21,twasm 2 1d.
This readily gives

qm ­ C
e2mymp

m
Gsm 1 m0d

Gsm 1 1 1 am0d
,

where the constantC depends on the ratep at which new
cities are created.
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For sizesm ø m0 the distribution is practically the
same as that for the linear case,qm , 1ym. If the
cutoff sizemp ø m0, we conclude that the quadratic term
is not relevant. If, on the other handmp ¿ m0, the
linear behaviorqm , 1ym holds for m ø m0 and then
it crosses over to a power law behavior

qm , m222sa21dm0 , for m0 ø m ø mp.

The Zipf exponent is thereforeg ­ 1yf1 1 sa 2 1dm0g.
Zipf’s law g . 1 obtains only if the pairwise interaction
is dominant, i.e., more precisely ifjm0sa 2 1dj ø 1. In
the original Zipf’s work [1], the scaling law is valid only
for large cities. The above results withja 2 1j ø 1
allow for a scenario where the distribution of city size
crosses over from Zipf’s law withg > 1 for large cities
m ¿ m0 to a noninteracting situationqm , 1ym for
small townsm ø m0. The population dynamics in smal
towns is dominated by the linear term in the transitio
rates, which describes noninteracting individuals. In lar
cities, on the other hand, interaction dominates and it lea
to Zipf’s law. Note that Zipf’s law, with a general value
of g, can also occur if the conditionjm0sa 2 1dj ø 1 is
not met.

It is also interesting to consider a general model wi
wasmd ­ s1 2 pdmayW and wdsmd ­ mayW . This
indeed allows us to investigate the effects of multipers
interactions. For examplea ­ 3 would represent a three
person interaction. Having found that fora ­ 1, 2 the
solution is

qm ­
pW

1 2 p
s1 2 pdm

ma
, (9)

we can try this solution in the equation. Treating sep
rately the casesm ­ 1 andm . 1 we see indeed that this
is the solution. Such a solution is also readily found usi
detailed balance. The numbersn andQ are given by

n ­
pW

Gsa 2 1d

Z `

0

ta22dt
et 2 1 1 p

. (10)

If a . 2 the integral is finite asp ! 0 and one has
simply n , pW . For 1 , a , 2 the integral diverges
as p ! 0 and the leading term isn , pa21W. In the
same way one can calculate the number of cities

Q ­
X̀

m­1

qm ­
pW

Gsad

Z `

0

ta21dt
et 2 1 1 p

. (11)

For a . 1 the integral is finite for p ­ 0, so that
Q , pW .

The interesting point here is that the average size
cities is finite fora . 2, nyQ . z sa 2 1dyz sad, where
z sxd is Riemann’s zeta function. This observation rais
the question of what happens when the population den
r ­ nyQ grows beyond the valuerc ­ z sa 2 1dyz sad.

The answer is that the excess population concentrate
just one city, which therefore has a finite, large fraction
s
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the total population. This effect has been studied recen
[5] in an equilibrium model where a HamiltonianH ­P

i ln mi was considered. The equilibrium distribution
at inverse temperatureb ­ a is clearly given by a
power law distribution. However, fora . 2, there
are two phases: a fluid phase forr , rcsad which
is well described by a power law distribution with
an exponential cutoff, and acondensedphase where a
megacity nucleates, containing a finite fraction of the tot
population. It is easy to understand this transition fro
equilibrium considerations: Let us consider the state
which we assign to each cityi a random number of
citizens mi drawn from a power law distribution with
exponenta . 2. This state minimizes the entropy an
it has a density which is given byr ­ nyQ ­ kmil ­
rcsad. If we want to find a state with a lower density, on
can introduce a chemical potential, which is equivalent
an exponential cutoff on the distribution ofmi . On the
other hand if one wants to build a state of higher dens
r . rc one gets into trouble. There are two ways ou
The first is to put somedmi ­ r 2 rc extra citizens in
each city. This results in a state which has a free ene
cost dF . Q lnsryrcd. The second way out is to put
all the Qsr 2 rcd excess citizens in only one city. This
leads to a free energy costdF . lnfQsryrc 2 1dg. This
only grows logarithmically with the system size wherea
the first variant leads to an extensive increase of the fr
energy. It is then clear that in the equilibrium state th
system prefers to create a megacity to accommodate
excess population.

This discussion clearly refers to an equilibrium mode
Metropolis or Monte Carlo dynamics of this equilibrium
system [6] is different from the dynamics of our maste
equation. Furthermore, and more importantly, we de
with a system in which neither the number of citiesQ
nor the population sizen is fixed. In other words the
density r is not fixed. Forp ø 1 the average density
is very close torcsad. The density, no matter how it
fluctuates, will sweep acrossrc in time. This suggests
that, in our model, dynamic nucleation of a megaci
should occur fora . 2. This agrees indeed with the
results of numerical simulations. We show in Fig. 2 th
distribution of the fractionmmaxyn of citizens who live in
the biggest city. Fora ­ 3, the distribution is peaked
at values very close to1 (for a ­ 2 the critical density
divergesrc ­ `. Some precursor effects of the transitio
are however visible).

This leads to our second observation, that proces
with a . 2 must result in the nucleation of a megacity
which is not very realistic. We can conclude that intera
tions of higher orders (than pairwise) are not relevant
the dynamics of city formation.

We see that the interaction leading to Zipf’s law is, o
one hand, the simplest possible (pairwise interaction). O
the other it is a rather special one, since it is the “lowe
order” of interaction which does not lead to the formatio
2743
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FIG. 2. Distribution of the fraction of citizens in the largest
city.

of a megacity, which draws a good portion of the whol
population. The absence of a megacity suggests that
an expansion of the transition rates in powers ofm, we
should neglect terms of order higher than the second. Th
2744
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leads us to the mixed interaction case, which gives ve
realistic results.

In many disparate societies, it is not unnatural
assume that individuals make their city-dwelling decisio
based on their own opinions as well as on their interacti
with other citizens. If this indeed is the case, we sho
that the larger cities obey approximately Zipf’s law.
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