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Interacting Individuals Leading to Zipf's Law
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We present a general approach to explain the Zipf's law of city distribution. If the simplest
interaction (pairwise) is assumed, individuals tend to form cities in agreement with the well-known
statistics. [S0031-9007(98)05632-4]

PACS numbers: 89.50.+r, 05.20.—y, 05.40.+]j

Zipf [1], half a century ago, found that city sizes citizen arrives in city; in the time interval(z,t + dr),
obey an astonishingly simple distribution law, which isso thatm; — m; + 1. With a probabilityw,(m;)dt one
attributed to the more generieast effort principle of of the m; citizens departs so that; — m; — 1. We
human behavior Let us denote by,, the number of cities also assume that there is a small probability/s that
having the population size:, thenR(m) = [, g,»dm’ a new city is created, with a single citizen. Assigning
defines the rank; i.e., the largest city h&s= 1, the the transition rates ,(m) andw,(m) specifies the model.
second largesk = 2, etc. Zipf found that empirically, Note that birth and death are not explicitly considered;
R(m) ~ 1/m”, with y = 1 (see Fig. 1). Remarkably these can be included in the transition probabilities. Note
Zipf showed that the scaling exponemt= 1 is very also that once an individual leaves a city, he/she will not
close to reality for many different societies and duringnecessarily settle in another city right away; thus the total
various time periods. More recent data [2,3] shows someaumber of city dwellers is not conserved. Thus the whole
variations from the purey = 1 result as also shown in system is composed of the city dwellers and a reservoir of
Fig. 1. Countries which have a unique social structureunsettled travelers whose number is unregistered.
such as the former USSR or China, do not follow One can study this problem introducing the average
Zipf's law. For other developed countries Zipf's law numberg,,, of cities of sizem at timer, which satisfies
remains a rather good approximation. Such a generic lathe master equation:
calls for a generic explanation, since different countries 9,4,,, = wy(m + Dgu+1s — wa(m)gms + pOma
(e.g., Germany and the U.S.) have different cultural and
economic structures, and their people have innumerable +walm = Dgm-1, = walm)gm,. (1)
reasons to Choose Whether to ||Ve |n a b|g or Sma”-rhe parametel’s Of the equa“on are the transition rates
city. Yet collectively the society self-organizes, without wa(m), p, wa(m).
express wishes of authorities, to obey Zipf's law. The total numben(r) = 3., mq,., of persons and the

Human settlements on the Earth’s surface appear ti9tal numberQ of cities are generally not constant:
be clustered, hence cities. This is because individuals 3,0 = p — wa(l)q1,, (2)
interact with each other through social, economic, and
cultural ties. In very primitive times an individual (or | * ' " Usnos
a family) performed all basic activities to survive; there " . Mode %
was no need to form a large cluster beyond the size of
tribe. In modern times, ever refined mutual cooperation e
competition brings people to live together. Yet this
tendency does not seem to lead to a single “megacity 1o |
in the world: Many of us may prefer to live in a big .o
city, but equally as many escape it for all its negative
impacts. Somehow the ensuing compromise results in
robust statistical distribution, Zipf's law.

All these very general features call for an equally
general approach to model city distribution. Below we
propose a general framework using master equations. L
there beQ cities andm; citizens in theith city. The
model is defined in terms of a master equation, assignin_ "' 0 100
transition rates for the growth, (m;) or decreasevq(m;) g 1. Zipf plot for cities of population larger tha®’ in the

of the population of a city of sizes;. In other words y.s. and in India (1994 estimate [2]), and for a simulation of
we assume that with a probability,(m;)dt a new the master equation with = 1073, W = 10°, anda = 2.
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= Wp (1 - p)"
= p = 3 Dvaln) = il @) =T A ™
Let us focus on the stationary state soluti@ng,., =  Note thatg,, ~ 1/m?, form < m* = 1/p. Again using
0, for which g,,, is simply denotedy,,, independent of the rank relation, we findR(m) ~ 1/m, or in the more
time, andrn andQ are constant on average. This leads USamilar form of Zipf m(R) ~ 1/R. Therefore we may
to the equation draw the conclusion that it is the pairwise interaction that
wa(m + D)gm+1 — wa(m)qy + pdmi+ is behind Zipf's law for city distribution, a general ex-
planation indeed. Recently Zanette and Manrubia have
Walm = 1gm-1 = wam)gn =0, (4) proposed a city formation model [3]. They use a multi-
plication and diffusion process and find that their results
also reproduce Zipf's law. A possible motivation for such
a multiplicative process is that citizens of the same city
are subject to the same aggregate shocks, which tend to
dncrease or decrease the population size. The implicit as-
sumption is that the strength of such random shocks does

where the ratesv are also independent of time. The
problem can be readily handled with the aid of the
generating functiorz(s) = >, s q.

Let us first consider the linear casg(m) = Dm and
wa(m) = Am. This corresponds to independent decision

by the individuals. It is convenient to choose the con- . Lo
stants to bed = (1 — p)/n,D = 1/n, wheren counts not depend on the size; of city i. Our present approach

the average total number of citizens (constant). In generzg complementary to theirs: sihce there are more oriess
there is a deficit for each existing city; > w,, since a epartures anq arrlvals,_thg net increase _(or dec“me)
departing individual has a finite chance to create a nep! the population of a city in a unit time interval, i-

city. The above equation is readily solved with the resulte_ar_Iy p_roporti'onal tor. This leads to a system With. mul-
tiplicative noise. This argument shows, on one side that

_ _np a—-pr _ lefpm. (5) multiplicative noise results from a pairwise interaction, on
1—p m m the other that aggregate shocks, i.e., random events which

One can verify that the average number of citizens i%ﬁfhcézg%?ailzsi?s: rcgtlezse?noguar %;\g%rérzlty, also would lead

indeed > mq, = n while the average number of cities ™ " oo hand, the linear case ~ m is charac-

m

1S terized by fluctuation$m which are proportional tq/m.
0 = nplInp| (6) As has been discussed in another reproduction-diffusion
1—p system [4], this is typical of a system of noninteracting
_individuals.

Several remarks are in order: due to the above deficit
the odds are always against the existing cities. If th
deficit is small (orp < 1), fluctuations can still make

a large city arise. The parametgrsets the cutoff size

m” = 1/p of the power law behavioy,, ~ 1/m. The One may argue that, in realitpoth linear and square
condition p < 1 is equivalent to the statement that thete

N . .~ terms should be present, since an individual’s decision
gbove deficit is small, or that the creation of a NeW Cityyust have both his independent as well as interactive

rbarts. Therefore it is natural to consider the mixed case.
For the ease of presentation we assume the transition

' These results are confirmed by numerical simulations.
&ve show in Fig. 1 the Zipf plot of a population of cities
obtained forw,(m), wy(m) ~ m?. This compares well
with actual data [1].

gm ~ 1/m is very broad. Inverting the rank function
R(m), we find m(R) = m exp(—R + 1), very different probabilities to be
from the observed Zipf's law. ) )

The linear model implies no interaction among citizens. , () = UL wa(m) = el/m*(m_ + am)_
From an individual's viewpoint, the chance to leave mo mo
(or arrive at) a city is independent of the city’'s size ®)
m; everybody is free to move around. The simplest
interaction we may consider is pairwise type; this leadslhe simplest way to derive the distribution of city sizes,

us tow ~ m?. In this case we choose,(m) = (1 — in this case, is to use detailed balance: The number of
p)m?/W andw,(m) = m?/W. The calculation is, again, cities of sizem becoming of sizen — 1is g, ,wa(m). In
standard and the result is that the steady state, this has to balance the number of cities of
sizem — 1 becoming of sizen, i.e., gn—1,was(m — 1).
Wlin ) Lo v e dm= Lt a
n= %, This readily gives
© 1 - > _ oM Tm + my)
Q:“n'Z( 2p) :6|77|'n|’ m m T(m+ 1+ amg)’
npl = m np .
m=l where the constar@ depends on the rate at which new
and cities are created.
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For sizesm < my the distribution is practically the
same as that for the linear casg, ~ 1/m. If the
cutoff sizem™ <« mg, we conclude that the quadratic term
is not relevant. If, on the other hana* > my, the
linear behaviorg,, ~ 1/m holds form < my and then
it crosses over to a power law behavior

qm ~ m~27@=mo  for o < m < m*.

The Zipf exponent is thereforg = 1/[1 + (a — 1)myg].
Zipf's law y = 1 obtains only if the pairwise interaction
is dominant, i.e., more precisely |ifrg(a — 1)| < 1. In
the original Zipf's work [1], the scaling law is valid only
for large cities. The above results witla — 1] < 1
allow for a scenario where the distribution of city sizes
crosses over from Zipf's law witly = 1 for large cities

m > my to a noninteracting situationy,, ~ 1/m for
small townsn < my. The population dynamics in small

towns is dominated by the linear term in the transition
rates, which describes noninteracting individuals. In large
cities, on the other hand, interaction dominates and it Iead?a

to Zipf's law. Note that Zipf's law, with a general value
of v, can also occur if the conditiofmg(a — 1)] < 1 is
not met.

It is also interesting to consider a general model with

wa(m) = (1 — p)m*/W and wy(m) = m®/W. This

the total population. This effect has been studied recently
[5] in an equilibrium model where a Hamiltoniai =

> ;Inm; was considered. The equilibrium distribution
at inverse temperatur@@ = « is clearly given by a
power law distribution. However, fora > 2, there
are two phases: a fluid phase far < p.(a) which

is well described by a power law distribution with
an exponential cutoff, and eondensecdbhase where a
megacity nucleates, containing a finite fraction of the total
population. It is easy to understand this transition from
equilibrium considerations: Let us consider the state in
which we assign to each city a random number of
citizens m; drawn from a power law distribution with
exponenta > 2. This state minimizes the entropy and
it has a density which is given by = n/Q = (m;) =
p.(a). If we want to find a state with a lower density, one
can introduce a chemical potential, which is equivalent to
an exponential cutoff on the distribution of;. On the
other hand if one wants to build a state of higher density
> p. one gets into trouble. There are two ways out:
he first is to put somém; = p — p. extra citizens in
each city. This results in a state which has a free energy
cost8F = QlIn(p/p.). The second way out is to put
all the Q(p — p.) excess citizens in only one city. This
leads to a free energy ca8f = In[Q(p/p. — 1)]. This
only grows logarithmically with the system size whereas

indeed allows us to investigate the effects of multipersonafirst variant leads to an extensive increase of the free

interactions. For example = 3 would represent a three
person interaction. Having found that far = 1,2 the
solution is

_pW (A -=p"
1—p me

we can try this solution in the equation. Treating sepa
rately the cases: = 1 andm > 1 we see indeed that this

(9)

m

energy. It is then clear that in the equilibrium state the
system prefers to create a megacity to accommodate the
excess population.

This discussion clearly refers to an equilibrium model.
Metropolis or Monte Carlo dynamics of this equilibrium
system [6] is different from the dynamics of our master

equation. Furthermore, and more importantly, we deal

with a system in which neither the number of citi@s

is the solution. Such a solution is also readily found using,o; the population size: is fixed. In other words the

detailed balance. The numbersandQ are given by
_pW 2t
" MNa -1 Jo e¢e—14+p°

(10)

If @« > 2 the integral is finite asp — 0 and one has
simply n ~ pW. Forl < a < 2 the integral diverges
as p — 0 and the leading term is ~ p*~'W. In the
same way one can calculate the number of cities

- pwW e ldr
0= gn=+—
m=1

IMNa) Jo e —1+p°
For @ > 1 the integral is finite forp = 0, so that
Q ~ pW.

(11)

density p is not fixed. Forp <« 1 the average density
is very close top.(a). The density, no matter how it
fluctuates, will sweep across. in time. This suggests
that, in our model, dynamic nucleation of a megacity
should occur fora > 2. This agrees indeed with the
results of numerical simulations. We show in Fig. 2 the
distribution of the fractionnmay/n of citizens who live in
the biggest city. For = 3, the distribution is peaked
at values very close td (for « = 2 the critical density
divergesp. = . Some precursor effects of the transition
are however visible).

This leads to our second observation, that processes
with @ > 2 must result in the nucleation of a megacity,

The interesting point here is that the average size ofvhich is not very realistic. We can conclude that interac-

cities is finite fora > 2, n/0 = {(a — 1)/{(a), where

tions of higher orders (than pairwise) are not relevant in

{(x) is Riemann’s zeta function. This observation raiseghe dynamics of city formation.
the question of what happens when the population density We see that the interaction leading to Zipf's law is, on

p = n/Q grows beyond the valug. = {(a — 1)/{(a).
The answer is that the excess population concentrates

one hand, the simplest possible (pairwise interaction). On
the other it is a rather special one, since it is the “lowest

just one city, which therefore has a finite, large fraction oforder” of interaction which does not lead to the formation
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45 - T ' - leads us to the mixed interaction case, which gives very
realistic results.

In many disparate societies, it is not unnatural to
assume that individuals make their city-dwelling decision
based on their own opinions as well as on their interaction
with other citizens. If this indeed is the case, we show
that the larger cities obey approximately Zipf's law.
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FIG. 2. Distribution of the fraction of citizens in the largest
city.
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