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We present an extensive NMR study of the spin-1y2 antiferromagnetic Heisenberg ladder
Cu2sC5H12N2d2Cl4 in a magnetic field range 4.5–16.7 T. By measuring the proton NMR relaxation
rate 1yT1 and varying the magnetic field around the critical fieldHc1 ­ DygmB ø 7.5 T, we have
studied the transition from a gapped spin liquid ground state to a gapless magnetic regime which can be
described as a Luttinger liquid. We identify an intermediate regimeT $ jH 2 Hc1j, where the spin
dynamics is (possibly) only controlled by theT ­ 0 critical point Hc1. [S0031-9007(98)05638-5]

PACS numbers: 75.10.Jm, 75.40.Cx, 76.60.–k
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One of the most fascinating effects in quantum ma
netism is perhaps the possibility to realize aT ­ 0 phase
transition [1] from a “quantum disordered” (gapped spi
liquid) ground state to a Luttinger liquid state in one
dimension (1D) [2] or to a Néel ordered state in two d
mensions (2D) [3,4]. There are well known examples o
gapped spin liquids in 1D: for integer-spin Heisenber
antiferromagnetic (HAF) chains [5,6] or spin-1y2 HAF
even-leg ladders [7], quantum fluctuations induce a sp
gapD between a singletsS ­ 0d ground state and triplet
sS ­ 1d excited states. An external magnetic field lift
the triplet degeneracy and induces a second orderT ­ 0
phase transition at a critical fieldHc1 ; D when the low-
est branch of the triplet crosses the ground state. At th
critical field, dynamical properties are defined by unive
sal exponents [8–10]. AboveHc1, the ground state is
magnetic with an algebraic decay of the correlation fun
tions. Close toHc1, the low frequencysv , T d spin
dynamics should be governed in a universal way by th
T ­ 0 critical point Hc1. In the vicinity of this point,
divergent quantum correlations are cutoff by thermal flu
tuations at a lengthjT which becomes the only relevant
length scale. This is thequantum criticalregime (QCR)
where the temperature is the only relevant energy sc
over the large intermediate regionJ . T . jH 2 Hc1j
[4]. The true challenge to experiments is to observe in
single system all the sequences of theT ! 0 regimes as
well as the finite temperature critical regime.

In a gapped HAF, such quantum phase transition can
experimentally studied only if the gapD is comparable to
accessible magnetic fields. The situation is hopeless in
S ­ 1y2 spin ladder compound SrCu2O3 sD $ 400 Kd
[11]. On the other hand, it is now well established tha
the organometallic compound Cu2sC5H12N2d2Cl4 [12] is a
unique representative of HAFS ­ 1y2 ladders with small
exchange constantssJ' ø 13.2 K, Jk ø 2.5 K d and a spin
0031-9007y98y80(12)y2713(4)$15.00
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gap sDk­p . J' 2 Jk ­ 10.5 6 0.3 K d [13–16] which
makes the entire phase diagram experimentally accessib

This Letter describes a protons1Hd NMR study of
Cu2sC5H12N2d2Cl4 in magnetic fields ranging from 4.5
to 16.7 T. The complete phase diagram (including th
various temperature crossovers) has been observed
perimentally. We unambiguously identify three differ-
ent regimes whenT ! 0: (1) A gapped phasefor
H , Hc1 ø 7.5 T, defined by a spin liquid ground state,
where the energy gap, deduced from nuclear spin-lattic
relaxation timesT1d measurements, is linearly reduced by
the magnetic field; (2) amagnetic phasewith a gapless
ground state forHc1 , H , Hc2 ø 13.2 T, character-
ized by a power-law divergence of1yT1 consistent with
an interpretation based on fermions in one dimension
and (3) afully polarized gapped phaseaboveHc2. At
intermediate temperatures, we analyze the crossovers b
tween these regimes and give for the first time convincin
evidences that a quantum critical regime is observed whe
D . T . jH 2 Hc1j.

Proton NMR experiments have been performed with
the magnetic field direction along the$b axis (perpendic-
ular to the [101] ladder direction) of small single crys-
tals (typically100 200 mg each). We used conventional
pulse spin-echo sequences and frequency-shifted (summ
Fourier transform) processing [17]. In a first runsH ,

8.7 T d, a set of five crystals with their$b axis oriented
has been used; for larger fields,one single crystal was
used. While spectra displayed minor variations, the ab
solute values ofT1 were found reproducible between
these two runs. A typical proton NMR spectra is dis-
played in Fig. 1. Note that the large magnetization a
16.7 T allows one to resolve all 24 proton sites. How-
ever, since the total width of the spectra follows the mag
netization M, this discrimination becomes increasingly
difficult as M ! 0. The arrow in Fig. 1 indicates the
© 1998 The American Physical Society 2713
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FIG. 1. Top panel:1H NMR spectrum atf0 ­ 710.1 MHz
and T ­ 5.1 K. All measurements reported here were mad
on the line marked by an arrow. Bottom panel: Magnet
hyperfine shiftKI as a function ofH and T . Bold and dotted
lines represent macroscopic susceptibility data obtained
AC-SQUID magnetometersh ­ 0.1 Td and torsional oscillator
magnetometer, respectively [18]. The normalization fact
gives a hyperfine couplingAI ø 2.9 kOe.

line (I) where the hyperfine shiftK and T1 have been
measured (see Ref. [19] for a discussion of the prot
sites assignment).

The temperature dependence of the magnetic hyperfi
shift K , kSz

i lyH at various magnetic fields is shown in
Fig. 1. The uniform staticsq ­ 0, v ­ 0d susceptibility
x0 ­ MyH at different fields is also displayed on the
same scale using the relationK ­ sAIygbmBdx0 with
the hyperfine couplingAI ø 2.9 kOe and theg factor
gb ­ 2.03 [14]. For H , Hc1, both K and x0 drop
exponentially due to the effective gapDh ­ D 2 gmBH
between the singlet and the lowest triplet state.

As the critical fieldHc1 is crossed,bothK andx0 show
a clear persistent downturn at low temperatures due
residual short range antiferromagnetic correlations in t
intermediate phase. WhenT ! 0, K andx0 go to a finite
value, which rises continuously as the field is increas
from Hc1 to Hc2, following the increase of ground state
magnetization. AboveHc2 where MsT­0d is saturated
[14], MyH should decrease as1yH sH . Hc2, T ! 0d.
This is already visible atT ø 1.4 K, whereK at 16.7 T
is smaller than at 15 T. The maximum value ofK ,
extrapolated toT ­ 0 corresponds tokSzl ­

1
2 . Above

T ø J', we recover a Curie-like tail for all fields, which
defines the “classical” (decorrelated) regime.
2714
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We now discuss the spin-lattice relaxation rate1yT1
which is expressed in terms of the magnetic structu
factors [20]

1
T1

­
sgngeh̄d2

2

X
q,a

FasqdSasq, vnd ,

Sasq, vnd ­
Z

expsivntd dt kSasq, tdSas2q, 0dl ,

(1)

whereFasqd are hyperfine form factors of dipolar origin
[21] and a ­ z, 6 represents the longitudinal and trans
verse components, respectively.

At low fields and low temperatures,T ø Hc1 2 H
(singlet gapped phase), 1yT1 falls off exponentially
with a characteristic energy gapDh ­ D 2 gmBH [see
Fig. 2(a)]. This effective gap is represented in the lowe
graph of Fig. 2(a). This result can easily be understoo
for line (I), it has been shown in a previous study [19
that two-magnon processes (neark ­ p , q . 0) in the
“intrabranch” channel [22] dominate the nuclear relaxa
tion. It follows that1yT1, in this gapped phase, is driven
by longitudinal correlationsSzzsq . 0, vnd , exps2 Dh

T d.
As we approach the critical field,T ø Hc1 2 H, the
analysis breaks down since competing mechanism
like “staggered” direct, q ­ p, processes take over
and dominate the relaxation [22]. At higher tempera
tures, T $ D, 1yT1 is constant, as expected in the
classical limit [20].

In the magnetic phasesHc1 , H , Hc2d [14], 1yT1

turns upward at low temperature in striking contras
with its behavior in the gapped phase [see top parts
Figs. 2(a) and 2(b)]. Very close toHc1, a divergence is
readily visible below 2–3 K. As the magnetic field is in-
creased just aboveHc1 s7.5 , H , 9 Td, the divergence
becomes more pronounced and develops at temperatu
below 5 K. At higher fields, the divergent behavior is re
placed by a smooth increase as the temperature is lowe
below 10 K and progressively vanishes as we approa
the upper critical fieldHc2.

To conclude theT ­ 0 limit, we discuss the “high
field phase” which appears aboveHc2 ­ J' 1 2Jk [14].
It is apparent [bottom of Fig. 2(b)] that the relaxation
rate decays exponentiallyat low temperatures with an
activation energyDup ­ gmBsH 2 Hc2d. Since theT ­
0 magnetization is saturated aboveHc2, the spin system
is fully polarized [14] and all dimers are in the triplet
statej""l. Dup can therefore be interpreted as the energ
gap between the “fully polarized” ground statejFGSl ­
Pi j""li and the lowest excited states generated by a sing
spin flip. The balance between the energy gainJ' 1 2Jk

when the antiferromagnetic couplings are satisfied and t
Zeeman termgmBH determines the valuegmBsH 2 Hc2d
for the energy gap.

At this stage, we propose the experimental phas
diagram schematically shown in Fig. 3. TheT ­ 0
phases discussed above are as follows: (1) The gapp
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FIG. 2. Panel (a): Temperature dependence of1yT1 through
the critical fieldHc1. The lower part covers the singlet gappe
phase sH , Hc1d, while the upper part is in the magnetic
phase aboveHc1. The dashed lines are guides to the eye
Lines in the inset are low-T fits to the field dependent energy
gap Dh ­ D 2 gmBH with gb ­ 2.03. Experimental values
of Dh are shown in the lower graphshd together with those
obtained fromxsT d and MsHd s≤d [14]. Lines labeledsAd
and sCd correspond to the crossover lines of Fig. 3. Pan
(b): Temperature dependence of1yT1 through the critical
field Hc2. The upper part is in the magnetic phase asHc2
is approached while the lower part is in the “fully polarized
gapped phasesH . Hc2d. Lines in the inset are low-T fits
with an energy gapDup ­ gmBsH 2 Hc2d and gb ­ 2.03.
Experimental values ofDup are shown in the lower graphshd
together withHc2 s≤d [14].

spin liquid phase; (2) a magnetic phase to be characteriz
(see below); and (3) the gapped polarized phase.

At finite temperatures, these phases are separated
crossover lines: sAd and sBd in Fig. 3 correspond, re-
spectively, to the onset of the gapped spin liquid regim
and of the gapped polarized regime, both characterized
an exponential decay of1yT1. Line sCd sets the upper
boundary of the “magnetic phase,” where a divergent b
havior of 1yT1 f,T2ag is observed. At higher tempera-
tures sT $ Dd, we have the classical regime defined b
1yT1 ø cst [20] and a Curie-like behavior ofK , 1yT
at all magnetic fields (see Fig. 1). What can be said abo
the large intermediate region between these crosso
d
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FIG. 3. H-T phase diagram which can be tentatively drawn
from the present experiment. Dashed lines represent crossov
between the different regimes discussed in the text: linesDd is
the QCR-classical crossover, and linessAd and sBd correspond
to T ø Hc1 2 H andT ø Hc2 2 H, respectively. LinesCd is
the QCR to Luttinger liquid (LL) regime crossover. The black
region corresponds to the 3D ordered phase withTN smaxd ø
0.8 K [23].

lines? On one hand,1yT1 is found to be nearlyT in-
dependent in the range6.6 , H , 9 T, above a charac-
teristic temperature “T0” , jH 2 Hc1j (see Fig. 2). On
the other hand,K shows a clear field dependence below
T , D. This is no longer a classical regime: we pro-
pose that this region corresponds to a QCR where1yT1

is predicted to be almost temperature independent [4
while, at the same time, static properties depart from th
classical picture.

In the final part of this Letter, we discuss the nature
of the magnetic phase, particularly the origin of the low
temperature divergence of1yT1 betweenHc1 andHc2.

Since a 3D field-induced ordering aboveHc1 has been
observed in specific heat measurements belowTNsHd #

0.8 K [23], we first consider critical fluctuations as a
possible origin for the observed divergence. In this
scenario, one expects a divergence of1yT1 in a range
dT ø TN aboveTN [24] with a generic behaviorT21

1 ,
sT 2 TN d2n s0.5 , n , 1d. The exponentn must be
independent of the magnetic field. We cannot fit our data
taking into account the known field dependence ofTN sHd
[23] without releasing this constraint. Moreover,1yT1
starts to diverge atT ø 5 K, which is at leastdT ø
5 2 6TN above TN . From these arguments, it is clear
that the onset of a 3D ordering cannot explain alone th
behavior of1yT1 in this temperature rangesT $ 1.3 Kd.
Hence, 1D quantum fluctuations have to be invoked t
explain our results [25].

We then propose an analysis in terms of fermion
in one dimension (i.e., a Luttinger liquid [2]) in the
regimeT ø H 2 Hc1. The spin-ladder Hamiltonian can
be converted into a 1D interacting spinless fermion
model using a Jordan-Wigner transformation [6,10,26]
The spectrum consists of two bands with energiesh̄vk ­
6sD 1

c2

2D k2d. In this mapping, the magnetic fieldH
2715
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plays the role of the chemical potentialm ­ gmBsH 2

Hc1d of the fermions (atH ­ 0, m lies in the middle
of the spectrum). AboveHc1 sm . 0d, the density of
fermions n increases withm as n ~ M , p

m [9,27].
Since there is no gap, direct nuclear relaxation proces
are allowed, and one expects an enhancement of
relaxation by an amount related to the magnetizati
sM ~ nd of the electronic system. Within this picture
the staggered partS'sq ø p, vnd leads to1yT1 , T2a

sa ­ 0.5d when H ! H1
c1 [6,22]. At higher fields,

n increases and interactions give rise to nonunivers
behaviors of the spin correlations, i.e., dependent of t
microscopic details. For instance, Ref. [10] predicts th
a stays close to0.5 aboveHc1 for a ladder in contrast
with otherS ­ 1y2 gapped systems.

This picture agrees with our results, at least belo
9 T, and becomes poorer above due, possibly, to la
interactions between excitations [14,19]. The data
Fig. 2 show that the divergent term (controlled by th
exponenta), increases fromHc1 and is maximum around
H ø 8.5 9 T. WhenH ! Hc2, the divergence weakens
and the exponenta cannot be reliably estimated. An
important point is that the exponenta is related to
the exponenths­ 1 2 ad controlling the decay of the
spatial correlation,kS0Srl , s21dr jrj2h . Our data are
roughly consistent with exact diagonalization calculation
of kS0Srl for Haldane chains in the gapless phase [28
both h and a are close to 0.5 atHc1 and Hc2. In
between,h should have a minimum valueh ø 0.3 [28],
meaning a maximum ofa. To summarize, we have
shown that the field dependent1yT1 divergence is a 1D
effect and not an onset of the 3D ordering which occurs
lower temperature. Even though the exponenta cannot
be estimated precisely, a value ofa ­ 0.5 at Hc1 is
consistent with our data.

In conclusion, the magnetic field-temperature pha
diagram of the spin-1y2 HAF ladder Cu2sC5H12N2d2Cl4
has beencompletelyexplored by probing the low fre-
quency spin dynamics. ThreeT ! 0 regimes are iden-
tified: (1) A gapped spin liquid phase forH , Hc1; (2) a
Luttinger liquid phase, well defined forHc1 # H, charac-
terized by a field-dependent correlation exponenta; and
(3) a fully polarized gapped phaseH . Hc2. We em-
phasize that the exponenta derived from our data is in
qualitative agreement with a Luttinger liquid picture ver
close toH1

c1. Nevertheless, further studies of the field de
pendence of the exponenta are needed. Finally, various
temperature crossovers are observed and closely resem
theoretical predictions for a “quantum critical” regime in
a rangeD . T . jH 2 Hc1j.
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