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We present a family of spin-ladder models which can be solved exactly for the ground state
and exhibit non-Haldane spin-liquid properties as predicted recently by Nersesyan and Tsvelik
[Phys. Rev. Lett.78, 3939 (1997)], and study their excitation spectra using a simple variationalAnsatz.
The elementary excitation is neither a magnon nor a spinon, but a pair of propagating triplet or singlet
solitons connecting two spontaneously dimerized ground states. Second-order phase transitions separate
this phase from the Haldane phase and the rung-dimer phase. [S0031-9007(98)05634-8]

PACS numbers: 75.10.Jm, 75.40.Cx, 75.40.Gb
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It is well known that one-dimensional (1D) Heisenberg
antiferromagnets can exhibit several types of disordere
“quantum spin liquid” phases. The spin-1

2 chain has a
unique disordered gapless ground state with power-la
decay of spin correlations, and its elementary excitation
are pairs of spinons carrying spin12 [1]. The ground
state of the frustratedS ­

1
2 chain with sufficiently strong

next-nearest neighbor interaction is doubly degenerat
the excitations are also spinon pairs, but the spectru
is “gapful” [2–4]; in presence of any finite exchange
alternation along the chain the spinon pairs get confine
into well defined magnon excitations [5]. The spin-1
(Haldane) chain has a unique spin-liquid ground stat
with a gap above it formed by a triplet of magnons
carrying spinS ­ 1 [6]. The two-legS ­

1
2 ladder, i.e.,

two HeisenbergS ­
1
2 chains coupled by a transverse

exchange, also has a disordered gapful ground state w
magnons as elementary excitations [7], and is believed
be essentially in the same phase as the Haldane chain,
well as frustratedS ­

1
2 chain with alternating exchange

[8–10].
Recently, Nersesyan and Tsvelik [11] have proposed a

interesting example of a 1D“non-Haldane spin liquid”
which has a gapped spectrum but whose excitations a
neither spinons nor magnons. Using field-theoretical a
guments, they have shown that under certain condition
a two-leg S ­

1
2 Heisenberg ladder with additional leg-

leg biquadratic interaction enters a spontaneously dime
ized phase with the excitation spectrum determined by th
two-particle continuum, and identified the elementary ex
citations as pairs of singlet and triplet domain walls con
necting the two dimerized ground states.

In this Letter we present a set of models which
exhibit non-Haldane spin-liquid properties as predicted
by Nersesyan and Tsvelik, and whose ground state ca
be found exactly. We study their excitation spectrum
0031-9007y98y80(12)y2709(4)$15.00
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within a simple variational approach, and discuss pha
transitions into the Haldane and other phases.

We start from a more general ladder Hamiltonia
which includes also transverse interaction along the lad
diagonals and two additional biquadratic interactions. T
model is described by the Hamiltonian

bH ­
X

i

JsS1,iS1,i11 1 S2,iS2,i11d 1 Jr S1,iS2,i

1 V sS1,iS1,i11d sS2,iS2,i11d

1 JdsS1,iS2,i11 1 S2,iS1,i11d

1 KhsS1,iS2,i11d sS2,iS1,i11d

2 sS1,iS2,id sS1,i11S2,i11dj , (1)

where the indices1 and 2 distinguish lower and upper
legs, respectively, andi labels rungs. The model consid
ered by Nersesyan and Tsvelik corresponds toJd ­ K ­
0. To construct the ground stateC0 for the Hamilton-
ian (1), we will use the technique of matrix-product (MP
states [12,13]. We start from the followingAnsatz:

C0 ­ trhg1seud ? g2sud · · · g2N21seud ? g2N sudj ,

gisud ­ u ? b'jsli 1 s11jt11li 1 s21jt21li 1 s0jt0li .
(2)

Herejsli andjtmli are, respectively, the singlet and triple
states of theith rung, 2N is the total number of rungs
(periodic boundary conditions are assumed),b' is the
2 3 2 unit matrix, sm are the Pauli matrices, andu, eu
are free parameters. A simpler version of thisAnsatz
with u ­ eu describes several known examples of valen
bond type states, e.g., atu ­ 0 the wave functionC0 is
the ground state of the effective Affleck-Kennedy-Lieb
Tasaki chain [14] whoseS ­ 1 spins are composed from
pairs ofS ­

1
2 spins of the ladder rungs,

bH ­
X
n

SnSn11 2 bsSn ? Sn11d2, (3)
© 1998 The American Physical Society 2709
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at b ­ 2
1
3 , and for u ­ 1 or u ­ ` one obtains two

degenerate ground states of the Majumdar-Ghosh ch
[2]. Originally (2) with u ­ eu was proposed in Ref. [15]
as a variational wave function, and recently it was used
us [10] to construct another class of exact ground sta
for a more general ladder model. In the following, we se
u fi eu, then the stateC0 is dimerized and the translation
for one rung leads to a different state with the sam
energy. TheAnsatz(2) obeys rotational symmetry, i.e.,
C0 is a global singlet [15,16].

The Hamiltonian (1) can be rewritten as a sum o
identical local terms coupling neighboring rungs,bH ­P

isbhi,i11 2 E0d. Let us demand that the wave function
(2) is a zero-energy ground state ofbH (which can always
be achieved by the appropriate choice ofE0), then the
following requirements have to be fulfilled [13]: (i) The
local Hamiltonianbhi,i11 has to annihilateC0, which, due
to the product property of (2), means that all elemen
of the two matrix productsgisudgi11seud, giseudgi11sud
should be zero-energy eigenstates ofbhi,i11; (ii) the other
eigenstates ofbhi,i11 should have positive energy. Those
two conditions fix the structure of the local Hamiltonian
as follows:

bhi,i11 ­
X

J­0,1,2

JX
M­2J

lJ jcJMl kcJM j , (4)

where the eigenvalueslJ . 0, andjcJMl are the compo-
nents of the positive-energy multiplets constructed fro
the states of the four-spin plaquettesi, i 1 1d:

jc00l ­ f3 1 sueud2g21y2h
p

3jssl 1 ueujttlJ­0j ,

jc1l ­ f2 1 f2g21y2h fjttlJ­1 1 jstl 1 jtslj , (5)

jc2l ­ jttlJ­2, f ; su 1 eudy
p

2 .

Here we use the notationjttlJ­1 for the triplet of states
with the total spinJ ­ 1 constructed, in turn, from two
triplets on rungsi andi 1 1, etc.

Now we demand that the structure (4) is compatib
with the desired form of the Hamiltonian (1), which yields
the connection between the parametersJ, Jr , Jd , V , K on
one hand, and the local eigenvalueslJ and singlet weight
parametersu, eu of the ground state wave function on the
other. Those solutions can be classified into the followin
three types:

(A) “Checkerboard-dimer” model withK ­ 0, Jd fi

0.—

u ­ 61, eu ­ 71, V ­ 4Jy3, K ­ 0 ,

l1 ­ 1, l0 ­ 3xy8, l2 ­ 3s1 2 xd ,

0 # x # 1, Jr ­ s8Jy3d s2 2 3xdys4 2 3xd ,
(6)

Jd ­ Jr y2, J . 0 ,

the ground state energy density per rung isE0 ­ 2
3
4 J,

andx is an arbitrary parameter. Two degenerate grou
states are simply checkerboard-type products of sing
bonds along the ladder legs. A generic example from th
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family is the model atx ­
2
3 with a purely biquadratic

interchain interaction:

Jr ­ Jd ­ K ­ 0, J ­ 3Vy4 . 0 . (7)

This “generic” model lies within the class of Hamiltonians
considered by Nersesyan and Tsvelik. Atx ­ 1 the
eigenvaluel2 vanishes, indicating a first-order transition
into the fully polarized ferromagnetic state.

(B) Multicritical model.—

u ­ 2eu, l0 ­ 0, l2 ­ 3l1 ,

Jr ­ V ­ 4Jy3, Jd ­ Jry2, K ­ 0, J . 0 .
(8)

This model has a remarkable property:anywave function
C0sud of the form (2) withu ­ 2eu is a ground state with
the same energy per rungE0 ­ 2

3
4 J. One can show that

two ground state (g.s.) wave functions with different va
ues ofu areasymptotically orthogonalin thermodynamic
limit N ! `: kC0sud jC0su0dl ­ zN , zsu, u0d # 1, so that
the degeneracy of the ground state is exponentially larg
It is easy to observe that the model (8) is a particular ca
of (6) at x ­ 0, so that the model (6) has another phas
transition point atx ­ 0; below we will argue that this
transition is of the first order.

(C) Model with two second-order phase boundarie
with Jd ­ 0, K fi 0.—

u ­ 2eu, K ­ Jr ­ l0su2 2 1d su2 1 3dy2 ,

Jd ­ 0, V ­ l0s5u4 1 2u2 1 9dy4 ,

J ­ 3l0su4 1 10u2 1 5dy16 , (9)

l1 ­ l0s3u4 1 14u2 1 15dy8 ,

l2 ­ l0s5u4 1 18u2 1 9dy8 ,

the g.s. energy per rung isE0 ­ 2
3
64 l0s7u4 1 22u2 1

19d. This is a one-parametric family of models sinceu is
arbitrary (the parameterl0 just sets the energy scale and
thus is irrelevant). A particular caseu ­ 61 again leads
to the generic model (7). One can readily observe that
u ­ 0 or u ­ ` the ground state is no more dimerized
The state withu ­ 0 describes the ground state of an
effective S ­ 1 chain (3) with b ­ 2

1
3 ; the state with

u ­ ` corresponds to a product of singlet bonds on th
rungs. It is easy to calculate spin-spin and dimer-dim
correlation functionsCSsnd ­ kSz

1,iS
z
1,i1nl and CDsnd ­

kDiDi1nl; hereDi ­ S1,i ? sS1,i11 2 S1,i21d:

CSsnd ­ su2 1 3d21sz1z2dnsdn,2k 2 z2dn,2k11d ,

CDsnd ­ 144u2ysu2 1 3d4, (10)

z6 ­ su 6 1d2ysu2 1 3d .

One can see that the dimer correlations exhibit long-ran
order vanishing foru ! 0, `, but remarkably there is no
exponential tail. The spin correlation length goes throug
zero atu ­ 1 and diverges atu ! `; however, there is
no long-range spin order atu ! ` since the amplitude
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of spin correlations vanishes in this limit. Thus, on
can conclude that the model (C) exhibits two secon
order phase transitions: into the Haldane phase atu ­ 0
and into the rung-dimer phase atu ­ `. We will show
below that those transitions are characterized by vanish
singlet and triplet gaps, respectively.

By induction with respect to the ladder length one ca
prove that in cases (A) and (C) the two ground stat
given by the MPAnsatzare the only ground states of the
system.

Elementary excitations of the model (A) can be easi
visualized as singlet or triplet diagonal bonds separati
the two ground states and thus being solitons in th
dimer order (see Fig. 1). Since solitons can be creat
only in pairs, the excitation spectrum is a two-particl
continuum. To study the scattering soliton states, o
may consider the ladder with2N 1 1 rungs and periodic
boundary conditions, and write down a simple single
soliton variational state with a certain value of momentu
p and parityz ­ 61:

jplz
t,s ­

X
n

eips2n11djnlz
t,s , (11)

Here the momenta are defined in terms of the Brillou
zone of nondimerized ladder, so thatp [ f0, pg. The
statesjnlz

t,s are shown in Fig. 1; in a MP formulation they
can be written as

jnlz
s,t ­

nY
i­1

fg2i21seudg2isudggss,td
2n11

NY
i­n11

g2iseudg2i11sud ,

gs
z ­ gsud 2 z gseud, gt

z ,m ­ smgsud 1 z gseudsm.
(12)

Here m ­ 0, 61 denotes thez projection of spin of the
triplet excitation. Another candidate for the role of th
elementary excitation is a magnon (the Haldane triple
the corresponding variational wave function can be aga
written in the form (11) with

jnlz
H ­

n21Y
i­1

fg2i21seudg2isudggH
z

NY
i­n11

g2i21seudg2isud ,

gH
z ,m ­ smg2n21seudg2nsud 1 z g2n21seudsmg2nsud .

(13)

The variational dispersion laws have the following form:

´spd ­ e0yf1 1 2c0Asz, pdg ,

Asz, pd ­ fcoss2pd 2 zgyf1 1 z2 2 2z coss2pdg ,
(14)

FIG. 1. The statesjnlz
t,s used in Eq. (11), in a special case

of the model (7). Thick solid lines indicate singlet bonds, an
thick dashed lines can be either singlets or triplets. Arrow
indicate the “direction” of the singlet bonds [i.e.,js1!2l ­
221y2sj " 1 # 2l 2 j # 1 " 2ld].
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and for the model (6) one has, inJ units,

c
s,t
0 ­ zs,ts1y2 2 z d, zs,t ­ 1y4, zH ­ cH

0 ­ 0 ,

eH
0 ­ 1, es

0 ­
4 1 3x

s4 2 2z d s4 2 3xd
, (15)

et
0 ­

44 2 39x
6s2 2 z d s4 2 3xd

.

One can see that the lowest energy is always reached
the odd-parity states (z ­ 21). The Haldane triplet is in
this case dispersionless, and has a high energy equal to
The elementary excitation is a soliton-antisoliton pair, an
for the scattering states its energy is given byeEsk, qd ­ ´s,tfsk 1 qdy2g 1 ´s,tfsk 2 qdy2g , (16)

wherek andq are the total and relative momentum. For
x ­

2
3 [i.e., for the generic model (7) with zero transverse

exchange] the energies of triplet and singlet soliton
coincide. The lowest boundaryEskd of the continuum
described by (16) atx ­

2
3 is shown in Fig. 2. The gap

is given byEs0d ­ Espd ­
1
2 J, and the lowest excitation

has a 16-fold degeneracy because the states of a solit
pair can be classified into two singletssssd and sttdJ­0,
three tripletssstd, stsd, and sttdJ­1, and one quintuplet
sttdJ­2. The energy of the Haldane triplet is lower than
the continuum boundary in the vicinity of the zone cente
k ­

p

2 , indicating the possible presence of bound soliton
antisoliton states. If the transverse exchange is switche
on (i.e., x fi

2
3 ), the singlet-triplet degeneracy is lifted,

and forx ,
2
3 (x .

2
3 ) the lowest excitation is determined

by singlet (triplet) solitons, respectively. Behavior of the
corresponding gaps is shown in Fig. 3(a); one can se
that for both phase transition pointsx ­ 0 andx ­ 1 the
gaps remain finite, which suggests that the transition t
the “multicritical” state atx ­ 0 is of the first order.

FIG. 2. The excitation spectrum of the model (7). The
continuum is determined by free two-soliton states; its lowes
boundary is 16-fold degenerate. The dashed line is determin
by the Haldane triplet excitation (13) and indicates a variationa
estimate for bound soliton-antisoliton states.
2711
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FIG. 3. (a) The gaps of different variational excitations for
the model (6); (b) the same for model (9). HereD

z
SS , D

z
TT ,

and D
z
H denote the gaps of singlet-singlet, triplet-triplet soliton

pairs, and the Haldane triplet, respectively, andz ­ 61 is the
parity.

The Ansätze(12) and (13) can be used for the model
(C) as well. One again obtains the dispersion laws of th
form (14), with

cs
0 ­ zss1 1 z z21y2

s dy2, ct
0 ­ zts1 2 z z

21y2
t dy2 ,

es
0 ­ 12u2yhsu2 1 3d2s1 1 zz1y2

s dj ,

et
0 ­ 4su2 1 2dyhsu2 1 3d2s1 2 z z

1y2
t dj ,

cH
0 ­ zH 1

z z
1y2
H s1 2 zHd

2s1 1 z z
1y2
H d

,
(17)

eH
0 ­

8z
1y2
t

su2 1 3d s1 1 z z
1y2
H d

, z1y2
s ­

u2 2 3
u2 1 3

,

z
1y2
t ­

u2 1 1
u2 1 3

, z
1y2
H ­

u2 2 1
u2 1 3

.

2712
e

Behavior of the gaps is shown in Fig. 3(b) as a function
of parametery ­ u2ys1 1 u2d. Again, the lowest excita-
tions are always soliton pairs. Aty ! 0 the odd-singlet
soliton gap goes to zero, indicating the second-order tra
sition to the Haldane phase. Aty ! 1 three gaps (of
even-singlet and odd-triplet solitons and of the even Ha
dane triplet) vanish, signaling another second-order trans
tion into the rung-dimer phase. Actually, it follows from
(17) that aty ! 0 (1) the whole continuum of singlet
(triplet) soliton pairs collapses to zero.
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