VOLUME 80, NUMBER 12 PHYSICAL REVIEW LETTERS 23 MRcH 1998

Non-Haldane Spin-Liquid Models with Exact Ground States
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We present a family of spin-ladder models which can be solved exactly for the ground state
and exhibit non-Haldane spin-liquid properties as predicted recently by Nersesyan and Tsvelik
[Phys. Rev. Lett78, 3939 (1997)], and study their excitation spectra using a simple variatforsgdtz
The elementary excitation is neither a magnon nor a spinon, but a pair of propagating triplet or singlet
solitons connecting two spontaneously dimerized ground states. Second-order phase transitions separate
this phase from the Haldane phase and the rung-dimer phase. [S0031-9007(98)05634-8]

PACS numbers: 75.10.Jm, 75.40.Cx, 75.40.Gb

It is well known that one-dimensional (1D) Heisenbergwithin a simple variational approach, and discuss phase
antiferromagnets can exhibit several types of disorderettansitions into the Haldane and other phases.
“gquantum spin liquid” phases. The sp%nchain has a We start from a more general ladder Hamiltonian
unique disordered gapless ground state with power-lawvhich includes also transverse interaction along the ladder
decay of spin correlations, and its elementary excitationgliagonals and two additional biquadratic interactions. The
are pairs of spinons carrying spih [1]. The ground model is described by the Hamiltonian

state of the frustratel = % chain with sufficiently strong
next-nearest neighbor interaction is doubly degenerate,
the excitations are also spinon pairs, but the spectrum
is “gapful” [2—4]; in presence of any finite exchange + V(S1iS1i+1) (82:82i+1)
alternation along the chain the spinon pairs get confined + Ja(S1,:S2:+1 + S2:S1.+1)
into well defined magnon excitations [5]. The spin-1

(Haldane) chain has a unique spin-liquid ground state + K{(81382i+1) (S2:81i+1)
with a gap above it formed by a triplet of magnons = (S1.:S2.:) (S1i+1S2:+1)} 1)

. . 1 X
carrying spins = 1 [6!- The two-legS = 5 ladder, i.e., \here the indiced and 2 distinguish lower and upper
two HeisenbergS = 5 chains coupled by a transverse |egs, respectively, andlabels rungs. The model consid-
exchange, also has a disordered gapful ground state widted by Nersesyan and Tsvelik correspondsg;te= K =
magnons as elementary excitations [7], and is believed t9. To construct the ground stad, for the Hamilton-
be essentially in the slame phase as the Haldane chain, i@ (1), we will use the technique of matrix-product (MP)
well as frustrateds = 5 chain with alternating exchange states [12,13]. We start from the followirnsatz:
(8101 . Wo = trlgi () ga(u) -~ gan1G0) + gan ()},
Recently, Nersesyan and Tsvelik [11] have proposed an . 2
interesting example of a 1Pnon-Haldane spin liquid”  gi(u) = u - 1|s); + o rs1)i + o o) + oCleo)i .
which has a gapped spectrum but whose excitations Aligere|s);
neither spinons nor magnons. Using field-theoretical ar :
guments, they have shown that under certain condition
a two-leg§ = % Heisenberg ladder with additional leg-

leg biquadratic interaction enters a spontaneously dimerz ., ¢.q parameters. A simpler version of tiasatz
ized phqse with t_he excitation spectrum determined by thﬁ/ith u = u describes several known examples of valence
two-particle continuum, and identified the elementary exy) 4 type states, e.g., at= 0 the wave functior¥, is

citations as pairs of singlet and triplet domain walls CON-he ground state of the effective Affleck-Kennedy-Lieb-

nectlng_the two dimerized ground states. . Tasaki chain [14] whos§ = 1 spins are composed from
In this Letter we present a set of models which

exhibit non-Haldane spin-liquid properties as predictecjDalrs ofS = 3 spins of the ladder rungs,
by Nersesyan and Tsvelik, and whose ground state can H=S5SS . —8(S, -S. .)? 3
be foundexactly We study their excitation spectrum ; wSuct = BSn - Sasr) ®)

H = ZJ(SI,I'SI,H—I + 82i82i+1) + J,S1,iS2;
i

and|t,); are, respectively, the singlet and triplet
States of theith rung, 2N is the total number of rungs

Eperiodic boundary conditions are assumedl),is the
2 X 2 unit matrix, o are the Pauli matrices, and u
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at g = —%, and foru = 1 or u = o one obtains two family is the model atx = % with a purely biquadratic
degenerate ground states of the Majumdar-Ghosh chainterchain interaction:

[2]. Originally (2) with u = u was proposed in Ref. [15]

as a variational wave function, and recently it was used by Jr=Ji=K =0, J =3V/4>0. (7)

us [10] to construct another class of exact ground stategys “generic” model lies within the class of Hamiltonians
for a more general ladder model. In the following, we set.qnsidered by Nersesyan and Tsvelik. At=1 the
u # u, then the statel, is dimerized and the translation gjgenvalue), vanishes, indicating a first-order transition
for one rung leads to a different state with the samenig the fully polarized ferromagnetic state.
energy. TheAnsatz(2) obeys rotational symmetry, i.e., (B) Multicritical model—
W, is a global singlet [15,16].

The Hamiltonian (1) can be rewritten as a sum of u=—u, M=0, Ay=31,

identical local terms coupling neighboring rungs, = J, =V =4J/3, Js=1U1/2 K=0, J>0.
Y.i(hij+1 — Eo). Let us demand that the wave function '
(2) is a zero-energy ground state Bf(which can always This model has a remarkable properyry wave function

be achieved by the appropriate choice /), then the Yol of the form (2) withu = _§ is a ground state with
following requirements have to be fulfilled [13]: (i) The the same energy per ruig = —zJ. One can show that
local Hamiltonianiz\i .+1 has to annihilateVy, which, due two ground state (g.;.) wave functlops with dlfferent_val—
to the product proberty of (2), means that all element _es_t%u art:ogszlpmptotllﬁall)i ort_ho%]vonah tr)er<m(1)dyna;rr:1|;:
of the two matrix productsg;(u)g;s1(u), gi(i)gi+1(u) imit N — oot (Wo(u) [Wo(u) = 2", z(u,u) = 1, so tha

: o the degeneracy of the ground state is exponentially large.
should be zero-energy eigenstatesipfi; (ii) the other 5o ooy 10 observe that the model (8) is a particular case

eigenstates ok, ;+; should have positive energy. Those of (6) atx = 0, so that the model (6) has another phase
two conditions fix the structure of the local Hamiltonian trgnsition point atr = 0; below we will argue that this

(8)

as follows: , transition is of the first order.
~ (C) Model with two second-order phase boundaries
higer = > > Almn) Waml 4)  withy, =0 K # 0.—
J=0,12M=—-J ’
where the eigenvalues, > 0, and|¢;,,) are the compo- u=-u, K=17J,=Mu®-1)u?®+3)/2,

nents of the positive-energy multiplets constructed from

; = = o(5u* + 2u* + 9)/4
the states of the four-spin plaquetiei + 1): Ja=0.V oSu ! /4,

_ 4 2
o) = [3 + (il 43lss) + wiiler)s—o} J =320l + 104" + 5)/16, ©)
_ 4 2
) =12+ f21 V2 fliryor + Lst) + s}, (5) A= QBu” + 14+ 15)/8,
— 4 2
W) = lit)yma. f = (u + W2 A2 = AlSu” + 1847 + 9)/8,
Here we use the notatiop),_, for the triplet of states the g.s. energy per rung By = — gy Ao(7u* + 22u® +
with the total spinJ = 1 constructed, in turn, from two 19). This is a one-parametric family of models sincés
triplets on rungs andi + 1, etc. arbitrary (the parametex, just sets the energy scale and

Now we demand that the structure (4) is compatiblethus is irrelevant). A particular case= *1 again leads
with the desired form of the Hamiltonian (1), which yields to the generic model (7). One can readily observe that at
the connection between the parametgrs,, J;, V, K on u = 0 or u = « the ground state is no more dimerized.
one hand, and the local eigenvalugsand singlet weight The state withu = 0 describes the ground state of an

parameters:, u of the ground state wave function on the effective S = 1 chain (3) with 8 = —%; the state with
other. Those solutions can be classified into the following: = o corresponds to a product of singlet bonds on the
three types: rungs. It is easy to calculate spin-spin and dimer-dimer
(A) “Checkerboard-dimer” model withk = 0, J; #  correlation functionsCs(n) = (S{;S7,;+,) and Cp(n) =
0.— (DiDj+,), hereD; = Sy; - (S1i+1 — Spi-1):
w==xl, u==1, V=43 K=0, Cs(n) = (u? + 3) Nz42-)"(Snok — 2-8n2k+1) s
A= A =3x/8 L =301-x), Cp(n) = 14412 /(u® + 3)*, (10)

0=x=1, J,=(8J/3)(2 — 3x)/4 — 3x),

Ja=J:/2, ] >0, One can see that the dimer correlations exhibit long-range
the ground state energy density per rungeis= —%J, order vanishing fox — 0, %, but remarkably there is no
andx is an arbitrary parameter. Two degenerate grounéxponential tail. The spin correlation length goes through
states are simply checkerboard-type products of singletero atu = 1 and diverges ai: — o°; however, there is
bonds along the ladder legs. A generic example from thisio long-range spin order at — oo since the amplitude

2710
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of spin correlations vanishes in this limit. Thus, oneand for the model (6) one has, ihunits,
can conclude that the model (C) exhibits two second- e = 26:(1/2 = O), 20 = 1/4,

H
. : zg =cy =0,
order phase transitions: into the Haldane phase &t0 " 0

and into the rung-dimer phase at= . We will show o — 1 ot — 4+ 3x (15)
below that those transitions are characterized by vanishing 0 04— 20)(4 — 3x)’
singlet and triplet gaps, respectively. 44 — 39y

By induction with respect to the ladder length one can ey = 62— )4 — 3%

prove that in cases (A) and (C) the two ground state%rle can see that th
given by the MPAnsatzare the only ground states of the the odd-parity states/(= —1). The Haldane triplet is in

system. . . . -
Elementary excitations of the model (A) can be easilyth's case dispersionless, and has a high energy equal to 1.

visualized as singlet or triplet diagonal bonds separatinghe elementa_ry excitation is a SOI'th"’?mt'SO“ton pair, and
the two ground states and thus being solitons in th or tNhe scattering states its energy is given by

dimer order (see Fig. 1). Since solitons can be created E(k,q) = e.,[(k + q)/2] + . [(k — ¢)/2], (16)
only in pairs, the excitation spectrum is a two-particlewherek andq are the total and relative momentum. For
continuum. - To study the_scatterlng soliton states, ong — % [i.e., for the generic model (7) with zero transverse
may consider the ladder witW + 1 rungs and periodic  gychange] the energies of triplet and singlet solitons

boundary conditions, and write down a simple single-coincige. The lowest boundarg(k) of the continuum
soliton variational state with a certain value of momentumy .« ribed by (16) at = 2 is shown in Fig. 2. The gap
3 . .

= +1:
p and parityg = =1: is given byE(0) = E(w7) = %J, and the lowest excitation
| p)es = Ze"”(z"“)ln}{x, (11) has a 16-fold degeneracy because the states of a soliton
" pair can be classified into two singlefss) and (¢¢),—o,
Here the momenta are defined in terms of the Brillouinthree triplets(sz), (¢s), and (¢t);=;, and one quintuplet
zone of nondimerized ladder, so thate [0,7]. The (t1);=>. The energy of the Haldane triplet is lower than
statesjn},{s are shown in Fig. 1; in a MP formulation they the continuum boundary in the vicinity of the zone center

e lowest energy is always reached for

can be written as k = %, indicating the possible presence of bound soliton-
n N antisoliton states. If the transverse exchange is switched

lnys, = l_[[gZH(E)gZi(u)]g(z‘i,’Ql 22i(W)g2i+1(u), on (i.e.,x # 3), the singlet-triplet degeneracy is lifted,
i=1 i=n+l (12)  andforx < 3 (x > ) the lowest excitation is determined

gy =gu) — Lg(u), g, = otglu) + {glw)ot. by singlet (triplet) solitons, respectively. Behavior of the

Here 4 = 0, =1 denotes the; projection of spin of the corresponding gaps is shown in Fig. 3(a); one can see

triplet excitation. Another candidate for the role of the that for both phase transition points= 0 andx = 1 the
elementary excitation is a magnon (the Haldane triplet)9@Ps remain finite, which suggests that the transition to

the corresponding variational wave function can be agaife “multicritical” state ate = 0 is of the first order.
written in the form (11) with

n—1 N
Inyy = l_[[gZi—l(z)g%(u)]g? [T g2i-1()g2iw),
i=1 i=n+1
N N (13)
gl = 0¥ gun-1()gan () + £gan—1()o* grn(u).
The variational dispersion laws have the following form:
= 1 + 2coA(z, p)],
e(p) = eo/[ coA(z, p)] (14)

A(z, p) = [co92p) — z]/[1 + 2* — 2zcoq2p)],

Ek)/J

2n+1

[ ’{ ’ ]
0 /2 T

TN

FIG. 1. The stateS%n)f,S used in EqQ. (11), in a special case FIG. 2. The excitation spectrum of the model (7). The
of the model (7). Thick solid lines indicate singlet bonds, andcontinuum is determined by free two-soliton states; its lowest
thick dashed lines can be either singlets or triplets. Arrowsboundary is 16-fold degenerate. The dashed line is determined
indicate the “direction” of the singlet bonds [i.€ls—,) = by the Haldane triplet excitation (13) and indicates a variational
2712(1 10 Ly — 1L T estimate for bound soliton-antisoliton states.
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Behavior of the gaps is shown in Fig. 3(b) as a function
of parametey = u?/(1 + u?). Again, the lowest excita-
tions are always soliton pairs. At— 0 the odd-singlet
soliton gap goes to zero, indicating the second-order tran-
sition to the Haldane phase. At— 1 three gaps (of
even-singlet and odd-triplet solitons and of the even Hal-
dane triplet) vanish, signaling another second-order transi-
tion into the rung-dimer phase. Actually, it follows from

(17) that aty — 0 (1) the whole continuum of singlet
(triplet) soliton pairs collapses to zero.
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