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Quantization of the Hall Conductance in a Three-Dimensional Layer
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Quantization of the Hall conductance is observed in epitaxial layers of heavily dopgie GaAs
with thicknesg=100 nm) larger than both the screening length and the mean free path of the conduction
electrons. Therefore, the single-particle spectrum of the electrons is three dimensional. Analogous to
the quantum Hall effect in two-dimensional systems, the magnetic feldependence of the Hall
conductanceG,, shows, below 1 K, steps at quantized valued/n for i = 2,4,6 together with
pronounced minima in the transverse conductaice The minima inG,, and |dG,,/dB| appear
in magnetic fields where, & = 4 K, G,, = ie*/h. [S0031-9007(98)05631-2]

PACS numbers: 73.50.3t, 73.40.Hm, 73.61.Ey

For the occurrence of the quantum Hall effect (QHE)electron-electron interactions in disordered systems [6]
in a two-dimensional (2D) electron system in a magnetidoecome of the order of unity in high magnetic fields [7,8].
field, the dissipative components of the conductivity ten-Therefore, one can expect that a Coulomb gap occurs in
sor have to be zero with the existence of delocalized eledhe density of states and that the diagonal components of
tron states below the Fermi level [1]. In a single-particlethe conductivity tensor vanish.
description, the Landau quantization of the electrons leads The samples used were prepared by molecular-beam
to the Landau-level structure with localized states in theepitaxy. On a GaAs (100) substrate the following were
gaps between the levels resulting in the integer QHE. Theuccessively grown: an undoped at low temperature grown
gaps in the electronic density of states can also be caus&hAs layer(0.1 wm), an undoped GaAs lay€0.6 um),
by electron-electron correlations leading to the fractionah periodic structur@0 X GaAs/AlAs (10/5 monolayers),
QHE in systems with weak disorder [1]. The QHE wasan undoped GaAs layefl um), the heavily Si-doped
also observed in strongly anisotropic systems like a supefzaAs of nominal thicknesgl = 100 nm and different
lattice [2] or an organic metal [3—5] which have quasi-donor (Si) concentrations (1, 1.5, addx 10'7 cm™3 for
2D character due to the only weak coupling between 20hree samples), and a cap layérl(um for sample 1 and
conducting layers. In these cases there are also gaps Inum for the other samples). Hall bar geometries of width
the density of states in high magnetic fields and the HalD.18 mm and length 3 mm were etched out of the wafer.
conductances,, is quantized taG,, = 2iNe?/h as inN A phase sensitive ac technique was used for the magneto-
independent 2D parallel layers {s a small integer and transport measurements. In most experiments the applied
N > 1). In the superlattice a gap occurs when the cy-magnetic field up to 23 T was directed perpendicular to
clotron energyiw. = hieB/m in a magnetic fieldB be- the layers. A few experiments were done at 4.2 K with
comes larger than the interlayer tunneling integtallin  the field oriented in the plane of the layers but still perpen-
the organic metal a spin density wave state and, thereforéjcular to the applied current.

a gap appear due to electron-electron interaction. The bulk density of electrong in a heavily doped

In this work we observed, for the first time, the layer has been determined from the periodicity of the
gquantization of the Hall conductance in epitaxial layersShubnikov—de Haas oscillations in the transverse resis-
of heavily dopedn-type GaAs with thickness (100 nm) tancer,, with the results as listed in Table | for the three
larger than the screening length (10 nm) and the meaimvestigated samples. The mobilitigs have been de-
free path! (15—-30 nm) of the electrons determined fromtermined from the zero-magnetic-field resistance and the
mobility. Ignoring electron-electron correlation effects, Hall resistancer,, in the linear region of weak magnetic
the electronic system in the investigated GaAs layefields atT = 4.2 K (see Table |). They are close to the
has a 3D energy spectrum like that for bulk material
(in particular there are no variations of the density ofTABLE I. Values for the electron concentratian the mobil-
states due to dimensional quantization across the layenly u, and the thicknesg of the investigated heavily doped
However, at low temperatures the system becomes 25aAs layers.
for coherent phenomena in the diffusive transport. Fokgmpe n (cm3) w (CM2/V's) d (cm)
the explanation of the observed phenomenon, we wil

discuss the possibility that the corrections in the single- % 0-18§ o igi; %Zgg g'; . 18:2
particle density of states at the Fermi level and in the 3 2:5 % 1017 5500 0.83 % 105

diagonal components of the conductivity tensor due te
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mobilities found for bulk material with comparable elec- 0.6 . — ————
tron densities [9]. The average thicknesf the con- | —— T=42K Bllayer ;,*
ducting layers (see Table I) has been obtained by dividing 0.5F T 1
the electron density/, per area unit determined from the <> T 0.25
Hall measurements by the volume density The values & g4 0.06

< UAF e 42 Blllayer

for d of the investigated samples are somewhat smaller
than the nominal 100-nm thickness. ég 03
In order to be sure about the three dimensionality of |
the electronic spectrum of the investigated layers, we 3
have measured the magnetoresistance of samples 1 ar nf 0.21
2 atT = 4.2 K in a parallel magnetic field up to 11.5T

]

additionally to the measurements in perpendicular field. 0.1
The curves of the transverse resistance for the two field
configurations (see Fig. 1 for sample 2) show the usual 0.0 10 15 20

Shubnikov—de Haas oscillations. The stronger increase a B (T)
the extreme quantum limit (EQL) where only the lowest

Landau level is occupied was also observed for the twarIG. 1. Magnetic field dependence of the Hall resistaRge
configurations (for sample 1 above 5 T and for sampleand the transverse resistankgl (per square) for sample 2 in
2 above 9 T). These curves are close to each othef magnetic field perpendicular to the GaAs layer at different

o mperatures. The dashed horizontal lines represent quantized
pointing to the 3D character of the spectra. The smalle@luesRﬂ —h/edifori = 2, 4, and 6. The arrow indicates

oscillation amplitude for the magnetic field parallel to y,q field Bgor of the extreme quantum limit. The reproduced
the layer can be ascribed to the finite ratio of thedata of4RL at 4.2 K show a comparison with parallel to
sample thicknesd to the magnetic length. Pronounced the layer.

oscillations can be observed only when the electron orbit
radius is much smaller thath. For one sample prepared

with a metallic gate on top, we could reduce the thicknessé1 nlg trllzgt.riﬁsv\v/grgs\gnpdlatéte; mé%e Srag ﬁg?g?g:in;iy le
of the conducting region. AlthougR,, andR,, almost Per sq P

doubled due to the reduced thickness of the heavily dopeﬁfIS obtallned by mverUEgRthe rz%gnft%rzeastagéemte_nsor n
GaAs layer, the positions of maxima and minima of the S USUD"’; wayz, 8.0y = Ruy/(Rey xy) an o
Shubnikov—de Haas oscillations did not change indicatindx/ (R * Rs,). The Hall conductancé., practically
a constant 3D density of electrons. These measuremerf{9€S Not depend on temperature in magnetic fields up to
confirm that the electron spectra in the samples are reall EQL’,the field _vvhere_only the lowest Landau level is
three dimensional & = 4.2 K. ccup|_ed. In higher fields the Hall conductance starts
In Fig. 1 the magnetotransport data of the Hall resistanc oscillate around the curve TOT =42K and all .
R,, and the transverse resistariig have been plotted for ow-tem.pgerature curves cross this curve at the quantized
sample 2 at a few temperatures between 4.2 K and 60 mR/alues ie*/h. At the same field values minima in
The transverse resistance per squirehas been obtained
from the measured resistan®&g, taking account for the
surface geometry of the Hall bar. The magnetoresistance
data at 4.2 K show the typical behavior of bulk material
with weak Shubnikov—de Haas oscillations for increasing
field and a stronger upturn in the EQL where only the
lowest Landau level is occupied. At lower temperatures
the Hall resistance reveals remarkable steps near the values %
h/e*i with i =2 and 4. In the corresponding fields ©
pronounced minima can be observed in the transverse .
resistance. Similar structures could be observed for the ©
other two samples investigated. For sample 1 one step
for i = 2 could be observed & = 7.2 T. For sample
3, only weak oscillations around valuges= 4,6, and 8 at
11, 14, and 20 T, respectively. Comparing the observed
plateaus inR,, and minima inR%} with those in the QHE B (T)
;(;;;lstg:)edé?;glsé?ensl ff:[mnrg?’tt?gem?r?iﬁz tg?et \r;eerl;[/h?jreter;)GlG' 2. Magnetic field dependence of the Hall conductance
and the transverse conductancg! (per square) for

Similar structures would be observed in the QHE for a nosample 2 at different temperatures. The horizontal dashed lines
yet fully developed gap in the density of states. represent quantized valués, = ie?/h for i = 2 and 4.
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G2 arise which become more pronounced at decreasing®? dependence extrapolates to zero conductance for
temperature. Similar phenomena have been observed faero temperature. Because of the limited temperature
the other two samples. range another power law dependercé? could equally

In order to illustrate the quantized behavior in the Hallwell describe our experimental results. However, the
conductance for all our samples we have plotted in Fig. Zero-temperature extrapolation for A2 power law
G- as a function ofG,, for magnetic field sweeps at extrapolated to a negative:, for zero temperature. In
4.2 K and 60 mK. For low magnetic fields (6—9 T, for order to check for a possible activated behavior, we
sample 2) the curves descend more or less vertically duglso plotted IrGt] versus1/7. These curves are not
to a strong dependence 6f) on magnetic field, while linear in the temperature range 0.1-0.25 K. Below 0.1 K
G,y changes slowly. For increasing fields, the 60-mKwe observed in ouGy. data a saturating behavior. A
curves show for decreasing conductaidte a quantized reduction of the excitation current did not influence this
behavior atG,, = ie?/h for i =2, 4, 6, and 8. By saturating behavior.
comparing these graphs for the different samples, one can In a two-dimensional electron system the conductivity
observe that for samples 1 and 2 with equal conductancainimum occurs at integer values for the filling factor
Gl at 4.2 K the same minimum value occurs@}, at v = N,h/eB corresponding to the number of occupied
60 mK. Sample 3, showing a higher 4.2-K conductanceLandau levels below the Fermi level for an electron
has less pronounced minimaiat 4 and 6 compared to density per unit ared;. For the investigated GaAs layers
samples 1 and 2. The same property can be observed liye values of the filling factor are appreciably larger tthan
comparing the data dt= 4, 6, and 8 of sample 3. From using the electron density, as determined from the Hall
these findings we can conclude that the lower the value aheasurements at low fields. For example, for sample 2
GU at 4.2 K, the more pronounced the minimumaGn!  with Ny = 1.3 X 10'2 cm™2, » = 4.6 and 3 in fields of
at 60 mK at the quantized Hall conductance values. Wd1.7 and 18.1 T, respectively, while= 4 and 2.
note that, for a thicker sample withh = 2.7 X 107> cm The experimental results cannot be explained by the
and with comparable electron density and mobility butmanifestation of oscillations in the density of states due
larger GL (around6e?/h in the EQL) compared to the to dimensional quantization across a layer (i.e., a division
data in Fig. 3, we did not observe the quantized behavioof the lowest Landau subband into levels of dimensional
for temperatures down to 50 mK. guantization) because of the smallness of the mean free

In Fig. 4 we have plotted the temperature dependencpath of the electrons with respect to the layer thickness.
of G for sample 1 atB = 7.2 T in the minimum of  For the occurrence of dimensional quantization the elec-
G5 (corresponding té = 2 quantization inG,,) and for  trons should move ballistically across the layer. In our
sample 2 at 11.7 Ti = 4) and at 18.1 T(i = 2). All case the mean free path in zero magnetic field (15—30 nm)
three dependencies show a very similar behavior, botfs a few times smaller than the thickness of the samples. In
with respect to the range of values and the functionathe extreme quantum limit of the applied magnetic fields
dependence. The dependence is practically linear ithe mean free path along the field is even less than the
T3 scale between 0.1 and 0.25 K and, moreover, the
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FIG. 4. Temperature dependence of the transverse conduc-
FIG. 3. Transverse conductané! as a function of the Hall tance G5, at constant magnetic field in the minima 6f;,
conductanceG,, for the three samples at 0.06 and 4.2 K asfor sample 1 at 7.2 T (wher&,, has a plateau de?/h) and
constructed from the dependence 6f. and G,, on mag- for sample 2 at 11.7 and 18.1 T (plateausdp at4e¢*/h and
netic field. V 2¢2/h).
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mean free path in zero magnetic field [10]. Because of thevhich could follow from a Coulomb gap with zero den-
disorder the broadening of dimensionally quantized levsity of states only at the Fermi level. In the case of a real
els is larger than the energy difference between the lewgap the temperature dependence should be exponential as
els. In the case of a pure layer with= 0.7 X 107> cm in the integer and fractional QHE in weakly disordered
and N, = 1.3 X 10'2 cm™2 as in sample 2, three levels 2D systems.
(each of them with two spin orientations) of dimensional In accordance with the gauge argument by Laughlin
quantization would be occupied in a 11.7-T field (at the[12] a disappearance of dissipative components of the
minimum of GL)) with the energy difference between the conductivity tensor should result in the Hall conductance
third and second level of the dimensional quantizationguantization. However, there is a question why the
i.e.,(3% — 22) (wh/d)*/2m, corresponding to 68 K. From dissipative conductivity and the single-particle density of
the transport electron relaxation timethe broadening states at the Fermi level vanish only at particular fields.
I' = h/7 corresponds te=90 K. The calculated electron This has to result from a possible quantization of the
spectrum for a simple model of broadened 2D levels transmany-body electron system, which would be different
forms already for a broadeninlg larger than 50 K into a from the usual Landau quantization. To some extent
3D spectrum at the Fermi level. Moreover, the monotonidhe situation is similar to the situation in the fractional
magnetic-field dependence of the resistance aBpwyg at QHE where gaps at the Fermi level occur due to the
4.2 K indicates that the electron spectrum is really three diguantization of the many-body electron system in high
mensional at this temperature (which is much smaller thamagnetic fields.
the corresponding energy difference between the levels of In summary, we observed the Hall conductance quan-
dimensional quantization) without variations of the densitytization in three-dimensional GaAs layers below 1 K in
of states due to dimensional quantization. the extreme quantum limit of the applied magnetic field,
In view of the necessity of zero-valued dissipative com-while the usual Shubnikov—de Haas oscillations do not
ponents of the conductivity tensor for the occurrence oflepend on temperature below 4 K. We suggest that the
the Hall conductance quantization, we will discuss thequantization is related to the enhancement of electron-
following possibility. In 3D disordered metallic systems electron interaction effects in a disordered electron system
the electron-electron interaction yields small correctionsn the lowest Landau level.
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