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Resonant Tunneling and Band Mixing in Multichannel Superlattices
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Compact and closed expressions for the evaluatiom-oéll transmission amplitudes, in superlattices
with N open channels, are written in terms of the single-cell transmission amplitudes and a set of non-
commutative polynomials, which, in the one-channel case, reduce to the Chebyshev polynomials. In-
teresting and nontrivial features, due to channel mixing and multiple interference phenomena occurring
along then-cell system, emerge when applying to specific potential profiles. [S0031-9007(98)05557-4]

PACS numbers: 73.40.Gk, 71.15.Cr, 78.66.—w

The evaluation of transmission amplitudes through fi- ™ .2 2 k%,-hz N
nite periodic systems with finite cross section is not only |: o5t (E - >:|¢A,-(z) = Z Vii(z)¢i(z)
of interest in quantum mechanics and scattering theory, Zm* 0z 2m i=1
_but is also relevant to the understandin_g of band mi_XWith krj = mw(n2/w? + ng/wg)l/Z and
ing processes and resonant transmission of traveling we rw
modes in heterostructures, superlgtti_ces, quantg.nj-dot ary,(z) = if f ' Vi(x,y,2)¢}(x,y)ei(x,y) dx dy
rays, etc. [L-3]. Although transmission probabilities for WJo Jo
finite one-dimensional potentials have been routinely calthe channel couplings. Though is taken here as the
culated since the early days of quantum mechanics [4pumber of open channels, it counts in general the open
few analytic expressions for finite periodic chains areand some closed channels.
known [5,6]. Although these expressions are valuable, Assume now that the single-cell transfer matrix, de-
they are restricted to one-channel, transversely invariaritoted byM, has been obtained. Itis known that the trans-

or strictly 1D systems. fer matrices of the orthogonal class, independently of the
The purpose of this Letter is to report rigorous new for-particular potential shape, have the general structure

mulas for an easy evaluation of transmission amplitudes in a B

multichannebkuperlattices. Using transfer matrices, which M = (ﬁ* a*> 1)

relate wave vectors at two sides of the scattering region,
the n-cell transmission amplitude, can be expressed as With @ and g, N X N complex matrices. When flux
a simple function of the single-cell reflection and trans-iS conserved, these submatrices can be written, in the
mission amplitudes and+, and well defined orthogonal Bargmann’s parametrization, as = ucoshy v and
polynomialspy . B = usinhy v”, with ¥ andv, N X N unitary matrices

By open channels we mean, as usual, the physicallgnd x a diagonal matrix with elementg; = 0 (see
allowed propagating modes. In general they depend oRef. [7]). Even though we deal with systems of the
the quantum or optical model envisioned. In the scatterorthogonal universality class, our calculations extend
ing approach to the electronic transport processes, eaét@sily to other universality classes [7].
of the nonevanescent transversal quantum states defineFor the purpose of calculating transmission amplitudes,
a channel. For definiteness, we will be concerned wittit is fundamental to recall the relations
m'ulitchannel transport properties th.roggh. heterostructures t=(hH and = —a! )
with cross sectionW = w,w,, periodic in the grow- ) )
ing coordinatez, with time-reversal invariant and spin- between theN-channel transfer and scattering matrix
independent interactions, i.e., periodic 3D systems of th&locks, of a single cell. Similar relations hold, of course,
so called orthogonal universality class [7]. In generalfor the n-cell transmission and reflection amplitudes
we consider potential functionig(x, y, z), which contain, and r,, and the submatrices, and B,, of the n-cell
at least, two partsVz(x, y),, infinite for [x| > w,/2 and  transfer matrix

|yl > w,/2; and the functionV,(x,y,z), periodic inz. an  Bn a B "

Using N eigenfunctionse;(x,y) of (see, for example. M, = B: a “\p o) 3

Ref. [8] We shall present simple expressions to obtain and

N Ly B,, i.e., to obtainM,, without calculating powers of
2m* \ax2 © ay? (0. y) |@i(x,y) M. Although the power evaluations may numerically be

. attained, they become analytically unmanageable, even
= igi(x.y), for small n. The method proposed here allows better

one obtains the coupled equations numerical calculations, and more physical insights. We

0031-900798/80(12)/2677(4)$15.00 © 1998 The American Physical Society 2677



VOLUME 80, NUMBER 12 PHYSICAL REVIEW LETTERS 23 MRcH 1998

obtain «, and B,, and thusz,, as simple functions ForN = 1, we havep,, = ¢,,, which, according to the
of a, B, and a set of polynomialpy,, which, for comment after Eq. (8), is just the well known Chebyshev
simplicity, will be denoted just ag,, unless the number polynomialU, evaluated at TM /2 = (A; + A3)/2.

of channelsV needs to be specified. These polynomials All the interface matchings, required when solving the
play, for finite periodic systems, a similar role as theSchrédinger equation, are implicitly taken into account

Bloch functions in 1D infinite periodic systems. by solving the MRR. It is clear, from Egs. (6) and (7),
Using the transfer matrix propertd,, = MM, _,, itis  that the polynomial zeros determine the transmission
easy to obtain and conductance resonances. While the information on

* -1 _ the tunneling processes is provided by the single-cell
= - -1 and = -1. 4 , :
@ = Pn = B a’BI.)" ! .’8” _’81_7” - @ 5 bmatricesa and B, the very complicated quantum
Thus, then-cell transmission amplitude is given by interference phenomenon, which gives rise to the band
tr{ = (pn — B_laﬁpn,l)_l (5)  structure, Igvel splittings, bapd qnd chgnnel mixings,
and other interesting properties, is carried out by the
{ polynomialsp,,.
1 1 Let us now discuss some applications. For the one-
G, = G . (6)

while then-cell four-probe Landauer conductance by

Pu—1 Pn—1 channel 1D systems, the-cell transmission amplitude
These are simple functions of theatrix polynomialsp, and the four probe Landauer conductance are obtained

and the single-cell transfer matrix blockdt is clear that from
these polynomials are of central importance here. Know- t* d G — G 10
ing them, the conductance and transmission coefficients In an ==, (0

. . . .. p”t* — Pn-1 Pn-1
can easily be evaluated, without having to solve explicitly

the Schrodinger equation of the whole system. All Wewhere G and ¢ are the single-cell conductance and

need is to solve the single-cell Schrédinger equation. %[ﬁnsmllssmfntﬂmpclzlaucé)es,hrespec,;tlvely,_ qln%dlth: Un-1. ¢
Despite the importance of the polynomialsg, and in € role ot e Lhebyshev polynomial in the resonan

: ehavior of|7,|?> andG, is clear.
order to keep the paper readable for the general audlenc%,In Fig. 1, the one-channel Landauer conductance and

we shall just mention some of its general properties I . )
The polynomials are solutions of thmatrix recurrence transmission coefficients of pBa_.As/GaAs, with

; = (.3, are plotted as functions of the incident energy.
lation (MRR) [9 T . .
relation ( ) 1] The potential profile has been taken as a sequence
Pn = &{pn-1 + Mpp2=0  n=1, (7)  of square barriers of height 0.23 eV and width 20 A,

where = (B~ 'aB + a*), n = (a*B 'ap — B*B), Separated a distance 100 A. In Figs. 1(a) and 1(b) we
p_1 =0, and py = Iy (the unit matrix of dimension ShowT\ = |n|*andT, = |z,|>. In Fig. 1(a) the system
N). This relation resembles the well known orthogonalcontains three barriers and two wells, i.e.= 3. The
polynomial recurrence relations. In fact, in the onetrace ofM (dotted curve), known to predict band widths
channel case (i.e., fa¥ = 1), Eq. (8) reduces to the well and their position, is also plotted. In 1(b) the same
known Chebyshev recurrence relatidthen the number Parameters have been taken, but now we chaeose7.

of channels is larger than one (i.8/,> 1), all the factors It is clear that the band structure is better defined when

appearing in (8) becom@& X N matrices. This makes dets larger. The band positions and widths are the same.

the problem complex and interesting [10]. In Fig. 1(c) we haveG andG, (these in units ok*/m i)
The general solution to the MRR is and the Chebyshev polynomigl,—; (U in this case).
OIN—1 k One can easily play with other possibilities, using the
Pm = Z Z Pi8k—1qm—r for m =2N. (8) one-channel expressions. For example, band structure
k=0 1=0 tailoring due to impurities can be predicted. In Fig. 2, we

Here, the higher order matrix polynomials are expresseglot the transmission probability for a one-channel system
in terms of the firskN — 1 lower order polynomialy,  with n = 14 (i.e., 14 barriers and 13 wells), containing

and the invariant functions one “impurity well” at the center of the system, for
2N the same potential parameters as in Fig. 1, i\&.,=
gn = D AL A, 0.23 eV,a = 20 A, andb = 100 A. Taking the impurity
ly>>h>1=1 width b; = z;b, impurity levels are produced at will in
and the energy gaps, varying . In Figs. 2(a) and 2(b)z;
N jaN+a-l has been taken equal €085 and 1.1, respectively. The
qn = Z —_— (9)  impurity levels separate from the bottom or the upper

i=1 %Zi(’\i — ) band edges, respectively. Simultaneously, the resonant-
where A; is the ith eigenvalue ofM. The symmetric band structures are strongly modified.
functions g,, can also, of course, be written in terms of If we have more than one open channel, all the physical
the transfer matrix traces. quantities are matrices. It is known from the scattering

2678



VOLUME 80, NUMBER 12 PHYSICAL REVIEW LETTERS 23 MRcH 1998

theory that the matrix elemert,);x = ¢, represents ForN = 2, the transfer matrix is given by

the transmission amplitude from chanrelon the left i kT kT

to channeli on the right. Hence,T,; = > |t,il? a=5L+ B and B =-— ( )

. > AR on, 2kiko \ kil'21 kiI'2

is the total transmission probability to channel To ) i i

illustrate the use of our method in the calculation of thesdVith k2I'z = k;I'z; when flux is conserved. I this case,

quantities, with clear channel mixing effects, we need td and z, are2 X 2 matrices. This is the simplest ex-

considermore than one channel tension beyond the one-channel systems, which already
We shall discuss now a simple example with more€xhibits channel mixing effects. Equations (6) and (9)

than one open channel. Let the sequence of |aye@,,llow direct calculations of transmission amplltudgs _for

ABABA ..., where theA’s are finite-cross-section layers @ny number of cells. In Fig. 3, we plot transmission

of §-scatterer centers (monatomic layers), and fie Probabilities for the systenMBABABA (with four &-

thicker layers of lengtti. and constant potential with also barrier layersA and three wellsB, i.e., n =4). In

finite cross section. In other words, we are dealing withFigs. 3(&) and 3(c), uncoupled-channdlg,(= 0) trans-

a potential regionV = V7 + V., where V7 is taken as Mission probabilities’;; = ltan|* and Ty = |14 20|* are

an infinite sequence of square wells, and= y[8(z — Shown. In this uncoupled-channels limit, well defined
vI) Y, 8(x — x,)8(y — y,)], with » = 1,...,n, and resonances are seen. Their particular positions and widths
(x.y,) denoting the scattering centers positions. depend, of course, on the specific choice for the underly-

For a given Fermi energy,, the N open channels iNg parameters. When the channel coupling is turned on,
are those propagating modes with longitudinal wave numehannel mixing takes place, as can be seen in Fig. 3(b),
bers k} = k> — k3; = 0, (j = 1,...,N) and the cou- Where |t4.1112 is plotted again forl'; = —0.904. De-
pling constants pending on the coupling parameter, interference effects
. or new resonances, proper of the uncoupled-channel 2,
27 Z 0 (X y)ei(xu, yu) - (11) may appear indicating, as suggested in Ref. [11] for hole

I transport, propagation via transformation from channel 1
to channel 2 and back to channel 1. Because of chan-
nel interference, some of the uncoupled-channel reso-
nances remain, while others disappear. In Fig. 3(d), the
total conductanceg = Tr(¢1) is plotted when the chan-
nels are coupled and interfere. The behavior of the total
conductance differs from the well defined resonant-band
structures, seen for uncoupled or one-channel transmis-
sion amplitudes. Frequently, experimental conductances,

_ 2m
h

with resonance broadeningsuppressions, and other ef-
fects of primary importance, can be explained in terms of
0. interchannel and interlayer interfering couplings
We presented here a method for the evaluation of
multichannel-multilayer tunneling properties.  This
1 (a)
4.5 0.8
0.6
3 0.4
I
— ev
0.1 0.2 0.3
0 ev
1 (b)
0.8
o 0.6
FIG. 1. Four probe Landauer conductance and transmission  ,
probabilities as functions of the energy in one-channel systems. 0'
In (a) and (b) we plotz|> and |#,|?> for a Aly3Ga,;As/GaAs -2 U

superlattice, represented by square barriers of hight= 0.1 0.2 0.3 ev

0.23 eV, and widtha = 20 A, separated a distande= 100 A ’ ’ ’

(the well width). We also plot in (a) the real part @of(dashed FIG. 2. Gap levels produced by one impurity well at the
line), which predicts band widths and their position. In (c), center of a AlGa_,As/GaAs superlattice, witlm = 14 and
the single-cell and the-cell conductance& andG, (in units  x = 0.3, i.e., twice as large as the system of Fig. 1(b). In (a),
of ¢2/x 1) are plotted for the same system, together with thethe impurity widthb; = z;b is taken withz; = 0.85, while in
Chebyshev polynomial. (b), we choose; = 1.1. Clearly, level positions depend ap
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FIG. 3. Coupled and uncoupled two-channel transmission
probabilities in a 3D superlattice. Transversely confined
propagating modes are scattered &potential centers located

in planesA of a sequencdBAB.... Inthe uncoupled channels
limit (i.e., T'; = 0), the transmission coefficien®; = |¢,11]?

and Ty = |t,»|*> are shown in (a) and (c). They behave, 5]
of course, as in the one-channel case. In the coupled case
[see (b) and (d)], channel mixing effects are seenTfgrand
the conductancg = Tr(#1). In this example, the transversal
width is =30 A, the cell lengthl, = 30 A, andn = 4. The
one- and two-channel thresholds af&.71 eV and=12.34 eV,
respectively.

[4]

(6]

method allows easier numerical calculations, and provides
simple analytic formulas for the-cell transmission am-
plitudesz,, entirely expressed in terms of the single-cell [7]
amplitude ¢, and a set of noncommutative polynomials
PN, feported here. Interesting and nontrivial features
come out for the transmission probabilities and the Lan-
dauer conductance. As one should expect in a quantu
process of this kind, which generalizes the 1D behavior,
the multichannel superlattice tunneling contains informa-
tion of the single-barrier tunneling, embodied fwand the
complicated interference phenomena and channel mixings

(8]
9
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described bypy .
method to include electric fields.
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