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Resonant Tunneling and Band Mixing in Multichannel Superlattices
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Compact and closed expressions for the evaluation ofn-cell transmission amplitudes, in superlattices
with N open channels, are written in terms of the single-cell transmission amplitudes and a set of
commutative polynomials, which, in the one-channel case, reduce to the Chebyshev polynomials.
teresting and nontrivial features, due to channel mixing and multiple interference phenomena occu
along then-cell system, emerge when applying to specific potential profiles. [S0031-9007(98)05557
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The evaluation of transmission amplitudes through
nite periodic systems with finite cross section is not on
of interest in quantum mechanics and scattering theo
but is also relevant to the understanding of band m
ing processes and resonant transmission of travel
modes in heterostructures, superlattices, quantum-dot
rays, etc. [1–3]. Although transmission probabilities fo
finite one-dimensional potentials have been routinely c
culated since the early days of quantum mechanics [
few analytic expressions for finite periodic chains a
known [5,6]. Although these expressions are valuab
they are restricted to one-channel, transversely invari
or strictly 1D systems.

The purpose of this Letter is to report rigorous new fo
mulas for an easy evaluation of transmission amplitudes
multichannelsuperlattices. Using transfer matrices, whic
relate wave vectors at two sides of the scattering regi
the n-cell transmission amplitudetn can be expressed a
a simple function of the single-cell reflection and tran
mission amplitudesr and t, and well defined orthogonal
polynomialspN ,n.

By open channels we mean, as usual, the physica
allowed propagating modes. In general they depend
the quantum or optical model envisioned. In the scatt
ing approach to the electronic transport processes, e
of the nonevanescent transversal quantum states de
a channel. For definiteness, we will be concerned w
mulitchannel transport properties through heterostructu
with cross sectionW ­ wxwy, periodic in the grow-
ing coordinatez, with time-reversal invariant and spin
independent interactions, i.e., periodic 3D systems of
so called orthogonal universality class [7]. In genera
we consider potential functionsV sx, y, zd, which contain,
at least, two parts:VT sx, yd,, infinite for jxj . wxy2 and
j yj . wyy2; and the functionVLsx, y, zd, periodic in z.
Using N eigenfunctionswisx, yd of (see, for example.
Ref. [8])"
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one obtains the coupled equations
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the channel couplings. ThoughN is taken here as the
number of open channels, it counts in general the op
and some closed channels.

Assume now that the single-cell transfer matrix, de
noted byM, has been obtained. It is known that the trans
fer matrices of the orthogonal class, independently of th
particular potential shape, have the general structure

M ­

√
a b

bp ap

!
(1)

with a and b, N 3 N complex matrices. When flux
is conserved, these submatrices can be written, in t
Bargmann’s parametrization, asa ­ u coshx yy and
b ­ u sinhx yT , with u andy, N 3 N unitary matrices
and x a diagonal matrix with elementsxii $ 0 (see
Ref. [7]). Even though we deal with systems of th
orthogonal universality class, our calculations exten
easily to other universality classes [7].

For the purpose of calculating transmission amplitude
it is fundamental to recall the relations

t ­ sayd21 and rp ­ 2a21b (2)

between theN-channel transfer and scattering matrix
blocks, of a single cell. Similar relations hold, of course
for the n-cell transmission and reflection amplitudestn

and rn, and the submatricesan and bn, of the n-cell
transfer matrix

Mn ­

√
an bn

bp
n ap

n

!
­

√
a b

bp ap

!n

. (3)

We shall present simple expressions to obtainan and
bn, i.e., to obtain Mn, without calculating powers of
M. Although the power evaluations may numerically b
attained, they become analytically unmanageable, ev
for small n. The method proposed here allows bette
numerical calculations, and more physical insights. W
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obtain an and bn, and thus tn, as simple functions
of a, b, and a set of polynomialspN ,n, which, for
simplicity, will be denoted just aspn, unless the number
of channelsN needs to be specified. These polynomia
play, for finite periodic systems, a similar role as th
Bloch functions in 1D infinite periodic systems.

Using the transfer matrix propertyMn ­ MMn21, it is
easy to obtain

ap
n ­ pn 2 b21abpn21 and bn ­ bpn21 . (4)

Thus, then-cell transmission amplitude is given by

tT
n ­ spn 2 b21abpn21d21 (5)

while then-cell four-probe Landauer conductance by

Gn ­
1

pn21
G

√
1

pn21

!y

. (6)

These are simple functions of thematrix polynomialspn

and the single-cell transfer matrix blocks. It is clear that
these polynomials are of central importance here. Know
ing them, the conductance and transmission coefficien
can easily be evaluated, without having to solve explicitl
the Schrödinger equation of the whole system. All w
need is to solve the single-cell Schrödinger equation.

Despite the importance of the polynomialspn, and in
order to keep the paper readable for the general audien
we shall just mention some of its general propertie
The polynomials are solutions of thematrix recurrence
relation (MRR) [9]

pn 2 z pn21 1 hpn22 ­ 0 n $ 1 , (7)

where z ­ sb21ab 1 apd, h ­ sapb21ab 2 bpbd,
p21 ­ 0, and p0 ­ IN (the unit matrix of dimension
N). This relation resembles the well known orthogona
polynomial recurrence relations. In fact, in the on
channel case (i.e., forN ­ 1), Eq. (8) reduces to the well
known Chebyshev recurrence relation. When the number
of channels is larger than one (i.e.,N . 1), all the factors
appearing in (8) becomeN 3 N matrices. This makes
the problem complex and interesting [10].

The general solution to the MRR is

pm ­
2N21X
k­0

kX
l­0

plgk2lqm2k for m $ 2N . (8)

Here, the higher order matrix polynomials are express
in terms of the first2N 2 1 lower order polynomialspl

and the invariant functions

gm ­
2NX

lm.···.l2.l1­1

ll1ll2 · · · llm

and

qn ­
2NX
i­1

l
2N1n21
iQ2N

jfiisli 2 ljd
, (9)

where li is the ith eigenvalue ofM. The symmetric
functions gm can also, of course, be written in terms o
the transfer matrix traces.
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For N ­ 1, we havepm ­ qm, which, according to the
comment after Eq. (8), is just the well known Chebyshev
polynomialUn evaluated at TrMy2 ­ sl1 1 l2dy2.

All the interface matchings, required when solving the
Schrödinger equation, are implicitly taken into accoun
by solving the MRR. It is clear, from Eqs. (6) and (7),
that the polynomial zeros determine the transmissio
and conductance resonances. While the information o
the tunneling processes is provided by the single-ce
submatricesa and b, the very complicated quantum
interference phenomenon, which gives rise to the ban
structure, level splittings, band and channel mixings
and other interesting properties, is carried out by th
polynomialspn.

Let us now discuss some applications. For the one
channel 1D systems, then-cell transmission amplitude
and the four probe Landauer conductance are obtain
from

tn ­
tp

pntp 2 pn21
and Gn ­

G

p2
n21

, (10)

where G and t are the single-cell conductance and
transmission amplitudes, respectively, andpn21 ­ Un21.
The role of the Chebyshev polynomial in the resonan
behavior ofjtnj2 andGn is clear.

In Fig. 1, the one-channel Landauer conductance an
transmission coefficients of AlxGa12xAsyGaAs, with
x ­ 0.3, are plotted as functions of the incident energy
The potential profile has been taken as a sequen
of square barriers of height 0.23 eV and width 20 Å
separated a distance 100 Å. In Figs. 1(a) and 1(b) w
show T1 ­ jt1j

2and Tn ­ jtnj2. In Fig. 1(a) the system
contains three barriers and two wells, i.e.,n ­ 3. The
trace ofM (dotted curve), known to predict band widths
and their position, is also plotted. In 1(b) the same
parameters have been taken, but now we choosen ­ 7.
It is clear that the band structure is better defined whenn
gets larger. The band positions and widths are the sam
In Fig. 1(c) we haveG andGn (these in units ofe2yp h̄)
and the Chebyshev polynomialpn21 (U6 in this case).

One can easily play with other possibilities, using the
one-channel expressions. For example, band structu
tailoring due to impurities can be predicted. In Fig. 2, we
plot the transmission probability for a one-channel system
with n ­ 14 (i.e., 14 barriers and 13 wells), containing
one “impurity well” at the center of the system, for
the same potential parameters as in Fig. 1, i.e.,Vo ­
0.23 eV, a ­ 20 Å, andb ­ 100 Å. Taking the impurity
width bi ­ zib, impurity levels are produced at will in
the energy gaps, varyingzi . In Figs. 2(a) and 2(b),zi

has been taken equal to0.85 and 1.1, respectively. The
impurity levels separate from the bottom or the uppe
band edges, respectively. Simultaneously, the resonan
band structures are strongly modified.

If we have more than one open channel, all the physica
quantities are matrices. It is known from the scattering
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theory that the matrix elementstndik ; tn,ik represents
the transmission amplitude from channelk on the left
to channel i on the right. Hence,Tn,i ­

P
k jtn,ikj2

is the total transmission probability to channeli. To
illustrate the use of our method in the calculation of thes
quantities, with clear channel mixing effects, we need
considermore than one channel.

We shall discuss now a simple example with mor
than one open channel. Let the sequence of laye
ABABA . . . , where theA’s are finite-cross-section layers
of d-scatterer centers (monatomic layers), and theB’s
thicker layers of lengthlc and constant potential with also
finite cross section. In other words, we are dealing wi
a potential regionV ­ VT 1 VL, whereVT is taken as
an infinite sequence of square wells, andVL ­ gfdsz 2

nlcd
P

m dsx 2 xmdds y 2 ymdg, with n ­ 1, . . . , n, and
sxm, ymd denoting the scattering centers positions.

For a given Fermi energyEF , the N open channels
are those propagating modes with longitudinal wave num
bers k2

j ­ k2 2 k2
Tj $ 0, sj ­ 1, . . . , Nd and the cou-

pling constants

Gij ­
2mpg

h̄2

X
m

wp
i sxm, ymdwjsxm, ymd . (11)

FIG. 1. Four probe Landauer conductance and transmiss
probabilities as functions of the energy in one-channel system
In (a) and (b) we plotjtj2 and jtnj2 for a Al0.3Ga0.7AsyGaAs
superlattice, represented by square barriers of hightVo ­
0.23 eV, and widtha ­ 20 Å, separated a distanceb ­ 100 Å
(the well width). We also plot in (a) the real part ofa (dashed
line), which predicts band widths and their position. In (c)
the single-cell and then-cell conductancesG and Gn (in units
of e2yp h̄) are plotted for the same system, together with th
Chebyshev polynomial.
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For N ­ 2, the transfer matrix is given by

a ­ I2 1 b and b ­ 2
i

2k1k2

√
k2G11 k2G12

k1G21 k1G22

!
,

with k2G12 ­ k1G21 when flux is conserved. In this case,
t and tn are 2 3 2 matrices. This is the simplest ex-
tension beyond the one-channel systems, which alread
exhibits channel mixing effects. Equations (6) and (9)
allow direct calculations of transmission amplitudes for
any number of cells. In Fig. 3, we plot transmission
probabilities for the systemABABABA (with four d-
barrier layersA and three wellsB, i.e., n ­ 4). In
Figs. 3(a) and 3(c), uncoupled-channels (G12 ­ 0) trans-
mission probabilitiesT11 ­ jt4,11j

2 and T22 ­ jt4,22j
2 are

shown. In this uncoupled-channels limit, well defined
resonances are seen. Their particular positions and widt
depend, of course, on the specific choice for the underly
ing parameters. When the channel coupling is turned on
channel mixing takes place, as can be seen in Fig. 3(b
where jt4,11j2 is plotted again forG12 ­ 20.904. De-
pending on the coupling parameter, interference effect
or new resonances, proper of the uncoupled-channel
may appear indicating, as suggested in Ref. [11] for hol
transport, propagation via transformation from channel 1
to channel 2 and back to channel 1. Because of chan
nel interference, some of the uncoupled-channel reso
nances remain, while others disappear. In Fig. 3(d), th
total conductanceg ­ Trsttyd is plotted when the chan-
nels are coupled and interfere. The behavior of the tota
conductance differs from the well defined resonant-ban
structures, seen for uncoupled or one-channel transmi
sion amplitudes. Frequently, experimental conductance
with resonance broadenings,suppressions, and other ef-
fects of primary importance, can be explained in terms o
interchannel and interlayer interfering couplings.

We presented here a method for the evaluation o
multichannel-multilayer tunneling properties. This

FIG. 2. Gap levels produced by one impurity well at the
center of a AlxGa12xAsyGaAs superlattice, withn ­ 14 and
x ­ 0.3, i.e., twice as large as the system of Fig. 1(b). In (a),
the impurity widthbi ­ zib is taken withzi ­ 0.85, while in
(b), we choosezi ­ 1.1. Clearly, level positions depend onzi .
2679
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FIG. 3. Coupled and uncoupled two-channel transmissio
probabilities in a 3D superlattice. Transversely confine
propagating modes are scattered byd-potential centers located
in planesA of a sequenceABAB . . . . In the uncoupled channels
limit (i.e., G12 ­ 0), the transmission coefficientsT11 ­ jtn,11j

2

and T22 ­ jtn,22j
2 are shown in (a) and (c). They behave

of course, as in the one-channel case. In the coupled ca
[see (b) and (d)], channel mixing effects are seen forT11 and
the conductanceg ­ Trsttyd. In this example, the transversal
width is ø30 Å, the cell lengthlc ø 30 Å, and n ­ 4. The
one- and two-channel thresholds areø7.71 eV andø12.34 eV,
respectively.

method allows easier numerical calculations, and provid
simple analytic formulas for then-cell transmission am-
plitudestn, entirely expressed in terms of the single-ce
amplitude t, and a set of noncommutative polynomials
pN ,n, reported here. Interesting and nontrivial feature
come out for the transmission probabilities and the La
dauer conductance. As one should expect in a quantu
process of this kind, which generalizes the 1D behavio
the multichannel superlattice tunneling contains informa
tion of the single-barrier tunneling, embodied byt, and the
complicated interference phenomena and channel mixin
2680
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described bypN ,n. It will be of interest to extend this
method to include electric fields.
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