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We present a density matrix approach for treating systems with a large or infinite number of deg
of freedom per site with exact diagonalization or the density matrix renormalization group. The me
is demonstrated on the 1D Holstein model of electrons coupled to Einstein phonons. In this sys
two or three optimized phonon modes per site give results as accurate as with 10–100 bare ph
levels per site. [S0031-9007(98)05615-4]

PACS numbers: 71.10.Fd, 71.10.Pm
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During the past decade there have been great strid
in the development of numerical techniques for simula
ing strongly correlated systems. A significant limitation
to many of these methods—for example, exact diagona
ization using the Lanczos algorithm, or the density matr
renormalization group [1] (DMRG)—is that they require
a finite basis. In an electron-phonon lattice model, for e
ample, the number of phonons is not conserved and t
Hilbert space is infinite, even for a finite number of sites
Of course, the number of phonons can be artificially con
strained, but for strongly coupled systems the number
phonons needed for an accurate treatment may be qu
large. This often severely constrains the size of the sy
tems which may be studied. (For recent examples, s
Ref. [2].)

Here we present a technique for generating a controll
truncation of the Hilbert space, which allows the use of
very small local basis without significant loss of accuracy
The local basis which is generated can be used in ex
diagonalization, DMRG, or other approaches to allow
treatment of larger systems. The procedure is close
related to DMRG, in that the local basis is generated usin
a density matrix, but it is simpler to implement. We
illustrate the method on the Holstein model, a model o
noninteracting electrons on a lattice coupled to phonon
with one Einstein oscillator on each site. For this mode
we show that with two or three optimized phonon mode
per site, we obtain the same accuracy as with doze
of unoptimized phonon levels per site. For simplicity
the Hilbert space reduction technique is used here
conjunction with exact diagonalization, but coupling it to
other approaches, such as DMRG, would allow treatme
of larger systems.

The key idea of this approach is identical to the ke
idea of DMRG [1]: in order to eliminate states from a
part of a system without loss of accuracy, one shou
transform to the basis of eigenvectors of the reduce
density matrix, and discard states with low probability
The key difference is that here the subsystem is a sing
site, or a handful of sites, rather than varying fractions o
the entire system. To be specific, consider a many-bo
system divided into unit cells which we will call “sites,”
0031-9007y98y80(12)y2661(4)$15.00
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such that the complete Hilbert space of the system is
outer product of the states of the sites. The number
states per site may be finite or infinite. We will conside
here only systems with translational invariance, so that
sites are equivalent. Leti label the states of a particular
single site, say site 1. Letj label the combined states o
all of the rest of the sites. Then a wave function of th
system can be written as

jcl ­
X
ij

cijjil jjl . (1)

The density matrix for this site when the system is in th
statejcl is

rii 0 ­
X

j

cijcp
i0j . (2)

Let wa be the eigenvalues ofr, and letya be the eigen-
vectors. Thewa are the probabilities of the statesya. If
wa is negligible, then the corresponding eigenvectorya

can be discarded from the basis for the site, without a
fecting the statec . If one wishes to keep a limited num-
ber of statesm per site, then the best states to keep a
the eigenstates ofr with the largest eigenvalues [1]. In
the case of the Holstein model, we will show that all bu
a handful of these eigenstates have negligible probabili

Usually the target statec which one wants to represen
is the ground state. If one wants a site basis whi
represents several states, one can add each state into
density matrix

rii0 ­
X
a

X
j

aaca
ij ca

i0j
p, (3)

where theaa are weights assigned to each target sta
representing the importance of that state. Again, t
optimal states to keep are the eigenstates ofr.

Unfortunately, in order to obtain the optimal state
we need the target state, which we do not know–usua
we want the optimal states to help get the target sta
This problem can be circumvented in several ways. W
© 1998 The American Physical Society 2661
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illustrate these approaches in the Holstein model with
periodic boundary condition, which has as Hamiltonian

H ­ v
X

,

b
y
, b, 2 g

X
,

sby
, 1 b,dn,

2 t
X
,s

scy
,11sc,s 1 c

y
,sc,11sd , (4)

wherec
y
,s andc,s are electron creation and annihilation

operators,b
y
, andb, are phonon creation and annihilation

operators, n, ­ c
y
,"c," 1 c

y
,#c,# and t is the hopping

integral,g is the electron-phonon coupling constant, an
each oscillator has frequencyv.

The first approach is illustrated in Fig. 1(a). Her
one site of the system (the “big site”) is allowed t
have a large number of phonon statesM, with M ,
10 100. The rest of the sites have a much smalle
number of phonon levels,m , 2 3. A set of Davidson
or Lanczos exact diagonalizations are performed.
the first diagonalization, all of the phonon states a
“bare”: they are eigenstates of the single site phon
Hamiltonian, characterized by the frequencyv. After
each diagonalization, the density matrix for the phono
modes of the big site is diagonalized. The most probab
m eigenstates are the new optimal phonon modes. Th
optimal phonon modes are used on all of the other si
for the next diagonalization. In each diagonalization, th
big site always has a large number of phonon mod
so that it can generate improved optimal modes f
the next iteration. The diagonalizations are repeat

FIG. 1. Algorithms for constructing optimal bases. (a) Th
big site has the complete set of bare phonon levels. (b) T
big site has the optimal levels plus a few bare levels.
2662
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until the optimal modes have converged. In the fir
diagonalization, the optimal modes are not very accura
because the bare phonon levels used on the other s
severely truncate the Hilbert space. Convergence ta
only a few diagonalizations, however.

While this approach is very simple, the large number
states on the big site limits the size of the system whi
can be diagonalized. A more sophisticated approach
illustrated in Fig. 1(b). Here, the big site has both the o
timal modes and two or three extra levels, rather thanM
bare levels. These extra levels allow improvement of t
optimal basis. They are taken from the set ofM bare lev-
els but are explicitly orthogonalized to the current optim
modes. After a diagonalization including these levels,
new density matrix is formed and optimal modes foun
These optimal modes can mix in a little of the extra lev
els to improve the basis. The next diagonalization us
different extra levels. One sweep consists of enough
agonalizations to include allM bare levels as extra levels
A couple of sweeps is needed to reach full convergence
the optimal levels. Each diagonalization uses as the st
ing wave function the converged wave function from th
last step. Therefore, only two or three Davidson steps a
needed for convergence, rather than dozens.

A further improvement comes from forming the densit
matrix for an entire site, including electron degrees
freedom, rather than just the phonon levels. This form
different optimal phonon modes for each of the fou
electron states of the site, which reduces the number
states needed for a given accuracy.

In Fig. 2 we show the ground state energy of a fo
site system as a function of the number of phonon mod
both for bare phonon levels and for optimal modes, whe
the m optimal modes are allowed to be different for eac
electron state of a site. The energy in these restric
bases form upper bounds to the true ground state ene
of the four site system. The improvement coming fro
using optimal modes is remarkable. Using only tw
optimal modes, the energy is accurate to less than 0.1

FIG. 2. Ground state energy of a four site half filled Holstei
system withv ­ t and g ­ 1.5t as a function of the number
of phonon states kept on each site of the lattice. The in
shows an expanded view of the results for the optimal basis.
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whereas keeping eleven bare modes (the largest num
we could treat), the error is greater than 5%.

The very rapid convergence of the energy as a functi
of the number of optimal phonon modes is due to the ve
tight distribution of their probabilitieswa . In two special
cases (g ­ 0 or t ­ 0) it is possible to show that, at most
one optimal phonon level for each electron state of a s
has a nonzero probability. For arbitrary couplings seve
optimal phonon levels can have a finite probability, bu
only a few of them are significant. In the ground sta
of a six site Holstein model withv ­ t, we have found
that the third and fourth highest eigenvalueswa (for a
given electron state of a site) are smaller than1023 and
1025, respectively, for any electron-phonon couplingg.
Therefore, we have never needed more thanm ­ 2 3
optimal phonon levels to get an accurate ground state.

In Fig. 3(a) we show the four most probable phono
states expressed in the bare phonon basis for the gro
state of a six site Holstein lattice. The probabilitywa

and the occupation of the electronic site are also given
each state. It is clear that one needs at least,20 bare
phonon levels for an accurate treatment of this system.

An additional improvement is often possible: the opt
mal levels may be transferable from a smaller system to
larger system. We find that in the Holstein model at ha
filling, the levels obtained from applying this procedure t
a two site or four site system work very well for large
systems. Thus for the larger system, one needs to do o

FIG. 3. (a) The first four optimal phonon states expressed
the bare phonon basis for a six site half filled Holstein syste
with v ­ t andg ­ 1.5t. (b) Optimal phonon wave functions
as a function of the oscillator positionq for different electron-
phonon couplingsg for the same lattice.
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one diagonalization, and each site has onlym levels. This
would be the simplest way to incorporate this approa
into DMRG: use a small system diagonalization approa
to find optimal levels, and then use DMRG to treat ve
long chains. Away from half filling, because only certa
fillings are possible on small systems, it would probab
be necessary to simultaneously target two or more sta
with different fillings in order for the optimal basis to b
transferable to a large system.

The form of the optimal phonon levels can tell u
important information about the system. In Fig. 3(b) w
show optimal phonon wave functions as a function
the oscillator positionq ­ by 1 b for different electron-
phonon couplings. Only the most probable optimiz
phonon level is shown for each possible electron state
a site. If the optimal states are allowed to be differe
for each electron state, we find that every optimal st
is either an eigenstate of an oscillator with a shifte
equilibrium position or a linear combination of two suc
eigenstates, to surprisingly high accuracy, with overla
greater than 96%. Unfortunately, we cannot use t
property to calculatea priori a basis of optimal states.

The form of the most important phonon states sho
in Fig. 3(b) can be understood qualitatively in the we
and strong coupling regimes. The behavior at interm
diate couplings interpolates smoothly between strong a
weak coupling. In the weak coupling regime (g ­ 0.5t)
optimal states are simply eigenstates of an oscillator w
an equilibrium positionq ø 2gyv as predicted by a
mean-field approximation. Differences between the o
timal phonon states for the different electronic states
a site are small compared to their widths, which are d
termined by phonon fluctuations. Therefore, electron a
phonons are almost independent and the lattice relaxa
generated by the presence of electrons is much sma
than quantum lattice fluctuations.

In the strong coupling regime (g ­ 2t) we have
found that the optimal phonon states forNf ­ 0 or 2
electrons on the site are very similar to the ground sta
of oscillators with equilibrium positionsq ø 2Nf gyv.
This corresponds to a bipolaronic ground state in whi
electrons are trapped by local lattice distortions a
form pairs localized on a single site, with one pa
for every two sites. Except for a small shift in th
equilibrium positions, the optimal phonon states for
singly occupied site are almost the superposition
the optimal phonon states forNf ­ 0, 2. This can be
understood as a retardation effect: theNf ­ 1 states are
intermediate states with low probability; electrons do n
spend enough time in these states for the phonon st
to adapt. These optimized phonon states forNf ­ 1 are
very different from the phonon states generated by
Lang-Firsov transformation which shifts each oscillat
equilibrium position by a quantity2Nf gyv. Therefore, it
is not surprising that the standard strong coupling theo
which is based on the Lang-Firsov transformation, poo
2663
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FIG. 4. Phonon order parametermp, staggered static elec-
tronic susceptibilityxf and next-nearest-neighbor pairing corre
lations kP,P

y
,12l as a function of the electron-phonon coupling

in a six site Holstein lattice withv ­ t.

describes the electronic and dynamical properties of t
Holstein Hamiltonian [3].

Mean-field theory predicts that the ground state o
the half filled Holstein model is a charge-density-wav
(CDW) state with a dimerized lattice and a gap at th
Fermi surface for any finite electron-phonon coupling
An interesting question is whether the ground state
modified when quantum lattice fluctuations are taken in
account. There is strong evidence that the system
dimerized for arbitrary finite coupling at finite phonon
frequency [4,5]. On the other hand, recent results sugg
that the gap is destroyed by quantum lattice fluctuatio
in the weak coupling regime [6]. In the two site Holstein
model it is known that there is a crossover from quasi-fre
electrons to a bipolaron at a finite coupling [3].

In Fig. 4 we present several quantities obtained wi
our method as a function of the electron-phonon co
pling g for a six site system withv ­ t. Our results
for the phonon order parametermp, defined by4m2

p ­

ksq, 2 q,11d2l 2 2, where q, ­ b
y
, 1 b,, are qualita-

tively similar to the predictions of previous studies [4,5]
Note that with this definition,mp ­ 0 for g ­ 0. We
find mp fi 0 for any finite g, although mp is smaller
than the zero-point lattice fluctuations in the weak cou
pling regimeg # 0.8t. Forg $ 1.5t, mp approaches the
strong coupling theory resultmp ­ 2gyv The electronic
static staggered susceptibility, defined as

xf ­
X

,

s21d, knini1,l , (5)
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indicates the existence of a transition aroundg ­ t,
wherexf suddenly increases from the free electron resu
xf ­ 1 and approaches the valuexf ­ 6 representative
of a perfect CDW order in a six site system (Fig. 4).
Finally, in Fig. 4 we also show the next-nearest-neighbo
pairing correlationkP,P

y
,12l, where P, ­ c,"c,#. This

quantity has a peak around the value ofg where the
dimerization amplitudemp starts to dominate quantum
lattice fluctuations andxf goes up rapidly.

In the weak coupling regime we have been able to stud
larger systems (with up to 40 sites) with a DMRG method
using a different approach to handle the phonon Hilbe
space [7]. We have found that despite the peak evide
in Fig. 4, the pairing correlationskP,P

y
,1ml decrease as

1ym2, similar to the behavior of free electrons, even for
a coupling as large asg ­ 0.8t. In the strong coupling
regime, pairing correlations decay exponentially becaus
the dimerization opens a gap at the Fermi level [4]
Therefore, it is possible that there is a transition from a
metallic to an insulating CDW phase at a finite electron
phonon coupling [6].

Obviously, a complete understanding of the Holstein
model properties requires the study of larger system
The use of optimized phonon basis coupled to powe
ful numerical methods, such as DMRG, will enable us
to perform these calculations. Similarly, the technique
described in this Letter could greatly improve our capabil
ity to perform numerical studies of other problems which
involve an infinite Hilbert space.
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