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Density Matrix Approach to Local Hilbert Space Reduction
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We present a density matrix approach for treating systems with a large or infinite number of degrees
of freedom per site with exact diagonalization or the density matrix renormalization group. The method
is demonstrated on the 1D Holstein model of electrons coupled to Einstein phonons. In this system,
two or three optimized phonon modes per site give results as accurate as with 10—-100 bare phonon
levels per site. [S0031-9007(98)05615-4]

PACS numbers: 71.10.Fd, 71.10.Pm

During the past decade there have been great stridesich that the complete Hilbert space of the system is the
in the development of numerical techniques for simulat-outer product of the states of the sites. The number of
ing strongly correlated systems. A significant limitation states per site may be finite or infinite. We will consider
to many of these methods—for example, exact diagonakere only systems with translational invariance, so that all
ization using the Lanczos algorithm, or the density matrixsites are equivalent. Létlabel the states of a particular
renormalization group [1] (DMRG)—is that they require single site, say site 1. Letlabel the combined states of
a finite basis. In an electron-phonon lattice model, for exall of the rest of the sites. Then a wave function of the
ample, the number of phonons is not conserved and thgystem can be written as
Hilbert space is infinite, even for a finite number of sites.

Of course, the number of phonons can be artificially con- lyy =D wislid ). @)
strained, but for strongly coupled systems the number of i

phonons needed for an accurate treatment may be quite

large. This often severely constrains the size of the systhe density matrix for this site when the system is in the
tems which may be studied. (For recent examples, segtate|y) is

Ref. [2].)

Here we present a technique for generating a controlled piir = Z b 2)
truncation of the Hilbert space, which allows the use of a F !
very small local basis without significant loss of accuracy.

The local basis which is generated can be used in exattet w, be the eigenvalues gf, and letv, be the eigen-
diagonalization, DMRG, or other approaches to allowvectors. Thew, are the probabilities of the stateg. If
treatment of larger systems. The procedure is closely, is negligible, then the corresponding eigenveaigr
related to DMRG, in that the local basis is generated usingan be discarded from the basis for the site, without af-
a density matrix, but it is simpler to implement. We fecting the statey. If one wishes to keep a limited num-
illustrate the method on the Holstein model, a model ofber of statesn per site, then the best states to keep are
noninteracting electrons on a lattice coupled to phononghe eigenstates gf with the largest eigenvalues [1]. In
with one Einstein oscillator on each site. For this modelthe case of the Holstein model, we will show that all but
we show that with two or three optimized phonon modesa handful of these eigenstates have negligible probability.
per site, we obtain the same accuracy as with dozens Usually the target stat¢g which one wants to represent
of unoptimized phonon levels per site. For simplicity,is the ground state. If one wants a site basis which
the Hilbert space reduction technique is used here imepresents several states, one can add each state into the
conjunction with exact diagonalization, but coupling it to density matrix

other approaches, such as DMRG, would allow treatment

of larger systems. = @,k

The key idea of this approach is identical to the key pi ; ;aa% te ®)
idea of DMRG [1]: in order to eliminate states from a
part of a system without loss of accuracy, one shouldvhere thea, are weights assigned to each target state,
transform to the basis of eigenvectors of the reducedepresenting the importance of that state. Again, the
density matrix, and discard states with low probability. optimal states to keep are the eigenstates.of
The key difference is that here the subsystem is a single Unfortunately, in order to obtain the optimal states,
site, or a handful of sites, rather than varying fractions ofiwve need the target state, which we do not know—usually
the entire system. To be specific, consider a many-bodwe want the optimal states to help get the target state.
system divided into unit cells which we will call “sites,” This problem can be circumvented in several ways. We
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illustrate these approaches in the Holstein model with antil the optimal modes have converged. In the first
periodic boundary condition, which has as Hamiltonian diagonalization, the optimal modes are not very accurate
because the bare phonon levels used on the other sites
H=w Zbgm -y Z(b} + be)ng severely truncate the Hilbert space. Convergence takes

¢ ¢ only a few diagonalizations, however.

4 + While this approach is very simple, the large number of

— 12 (clrigCle + CigCirio). (4} states on the big site limits the size of the system which

to can be diagonalized. A more sophisticated approach is

1 . ... illustrated in Fig. 1(b). Here, the big site has both the op-
wherec,, andcy, are electron creation and annihilation timal modes and two or three extra levels, rather than

t . e
operatorsp, andb, are phonon creation and annihilation bare levels. These extra levels allow improvement of the

operators, n¢ = c%ca + 0316’@1 and 7 is the hopping  optimal basis. They are taken from the sepbare lev-
integral, y is the electron-phonon coupling constant, ande|s put are explicitly orthogonalized to the current optimal
each oscillator has frequeney. o modes. After a diagonalization including these levels, a
The first approach is illustrated in Fig. 1(a). Herepew density matrix is formed and optimal modes found.
one site of the system (the “big site”) is allowed to These optimal modes can mix in a little of the extra lev-
have a large number of phonon states with M ~  e|s to improve the basis. The next diagonalization uses
10-100. The rest of the sites have a much smallergjtferent extra levels. One sweep consists of enough di-
number of phonon levelsy ~ 2-3. A set of Davidson  agonalizations to include alif bare levels as extra levels.
or Lanczos exact diagonalizations are performed. Im couple of sweeps is needed to reach full convergence of
the first diagonalization, all of the phonon states arghe optimal levels. Each diagonalization uses as the start-
“bare™ they are eigenstates of the single site phonoing wave function the converged wave function from the
Hamiltonian, characterized by the frequenay After  |aststep. Therefore, only two or three Davidson steps are
each diagonalization, the density matrix for the phonomeeded for convergence, rather than dozens.
modes of the big site is diagon.alized. The most probable A fyrther improvement comes from forming the density
m eigenstates are the new optimal phonon modes. Thesgatrix for an entire site, including electron degrees of
optimal phonon modes are used on all of the other sitegeedom, rather than just the phonon levels. This forms
for the next diagonalization. In each diagonalization, thegitferent optimal phonon modes for each of the four
big site always has a large number of phonon modessectron states of the site, which reduces the number of
so that it can generate improved optimal modes foktates needed for a given accuracy.
the next iteration. The diagonalizations are repeated |, Fig. 2 we show the ground state energy of a four

site system as a function of the number of phonon modes,

Bare phonon states Optimized phonon states both for b_are phonon levels and for optim_al modes, where
- the m optimal modes are allowed to be different for each
-_— electron state of a site. The energy in these restricted
— bases form upper bounds to the true ground state energy
t — x x @ of the four site system. The improvement coming from
A, am A, A, using optimal modes is remarkable. Using only two
® R R ) optimal modes, the energy is accurate to less than 0.1%,
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FIG. 2. Ground state energy of a four site half filled Holstein
FIG. 1. Algorithms for constructing optimal bases. (a) Thesystem withw = ¢t andy = 1.5¢ as a function of the number
big site has the complete set of bare phonon levels. (b) Thef phonon states kept on each site of the lattice. The inset

big site has the optimal levels plus a few bare levels. shows an expanded view of the results for the optimal basis.
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whereas keeping eleven bare modes (the largest numbene diagonalization, and each site has onllevels. This
we could treat), the error is greater than 5%. would be the simplest way to incorporate this approach

The very rapid convergence of the energy as a functiointo DMRG: use a small system diagonalization approach
of the number of optimal phonon modes is due to the veryo find optimal levels, and then use DMRG to treat very
tight distribution of their probabilitiess,. In two special long chains. Away from half filling, because only certain
casest = 0 ort = 0) itis possible to show that, at most, fillings are possible on small systems, it would probably
one optimal phonon level for each electron state of a sitbe necessary to simultaneously target two or more states
has a nonzero probability. For arbitrary couplings severalith different fillings in order for the optimal basis to be
optimal phonon levels can have a finite probability, buttransferable to a large system.
only a few of them are significant. In the ground state The form of the optimal phonon levels can tell us
of a six site Holstein model witlw = ¢, we have found important information about the system. In Fig. 3(b) we
that the third and fourth highest eigenvalues (for a  show optimal phonon wave functions as a function of
given electron state of a site) are smaller tHén> and  the oscillator positior; = bt + b for different electron-
1073, respectively, for any electron-phonon couplisg  phonon couplings. Only the most probable optimized
Therefore, we have never needed more thar= 2-3  phonon level is shown for each possible electron state of
optimal phonon levels to get an accurate ground state. a site. If the optimal states are allowed to be different

In Fig. 3(a) we show the four most probable phononfor each electron state, we find that every optimal state
states expressed in the bare phonon basis for the grouigl either an eigenstate of an oscillator with a shifted
state of a six site Holstein lattice. The probability,  equilibrium position or a linear combination of two such
and the occupation of the electronic site are also given foeigenstates, to surprisingly high accuracy, with overlaps
each state. It is clear that one needs at lea®b bare greater than 96%. Unfortunately, we cannot use this
phonon levels for an accurate treatment of this system. property to calculata priori a basis of optimal states.

An additional improvement is often possible: the opti- The form of the most important phonon states shown
mal levels may be transferable from a smaller system to a Fig. 3(b) can be understood qualitatively in the weak
larger system. We find that in the Holstein model at halfand strong coupling regimes. The behavior at interme-
filling, the levels obtained from applying this procedure todiate couplings interpolates smoothly between strong and
a two site or four site system work very well for larger weak coupling. In the weak coupling regime & 0.5¢)
systems. Thus for the larger system, one needs to do ontyptimal states are simply eigenstates of an oscillator with

an equilibrium positiong = 2y/w as predicted by a

1.0 mean-field approximation. Differences between the op-
0.8 O—ON-0,5-0, w=04718 timal phonon states for the different electronic states of
0.6 G- -ON1, 824112, w,=0.0148 a site are small compared to their widths, which are de-
§ 0.4 o NF2, 820, wop4TIS termined by phonon fluctuations. Therefore, electron and
0.2 2 phonons are almost independent and the lattice relaxation
0.0 generated by the presence of electrons is much smaller

than quantum lattice fluctuations.
In the strong coupling regimey(= 2¢) we have

n found that the optimal phonon states fa: = 0 or 2
N — electrons on the site are very similar to the ground states
0.4 F ™5 AN\ T NS0 of oscillators with equilibrium positiong =~ 2N y/w.
v N, < NZsDo This corresponds to a bipolaronic ground state in which
0.0 P - electrons are trapped by local lattice distortions and
04 f (b) form pairs localized on a single site, with one pair
< 0.0 for every two sites. Except for a small shift in the
S04t equilibrium positions, the optimal phonon states for a
singly occupied site are almost the superposition of
0.0 3 the optimal phonon states favy = 0,2. This can be
0.4 ¢ \ understood as a retardation effect: thig = 1 states are
. A — L e intermediate states with low probability; electrons do not
-6-4-20 2 4 6 8 101214 spend enough time in these states for the phonon states
q to adapt. These optimized phonon statesNer= 1 are

very different from the phonon states generated by the

FIG. 3. () The first four optimal phonon states expressed in ang Firsoy transformation which shifts each oscillator
the bare phonon basis for a six site half filled Holstein system

with @ = ¢ andy = 1.5¢. (b) Optimal phonon wave functions equilibrium position by a quantityN, y/w. Therefore, it
as a function of the oscillator positiap for different electron- IS not surprising that the standard strong coupling theory,
phonon couplingy for the same lattice. which is based on the Lang-Firsov transformation, poorly
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o= indicates the existence of a transition aroupd= ¢,
0,,0"" I where y suddenly increases from the free electron result
4

xr = 1 and approaches the valyg = 6 representative
o of a perfect CDW order in a six site system (Fig. 4).
’ / ‘,—.' Finally, in Fig. 4 we also show the next-nearest-neighbor
pairing correlation(PgPérH), where P¢ = cyicq.  This
quantity has a peak around the value pfwhere the
dimerization amplituden, starts to dominate gquantum
lattice fluctuations angr, goes up rapidly.

In the weak coupling regime we have been able to study
larger systems (with up to 40 sites) with a DMRG method
using a different approach to handle the phonon Hilbert
space [7]. We have found that despite the peak evident
in Fig. 4, the pairing correlation$PgP;r+m> decrease as
1/m?, similar to the behavior of free electrons, even for
a coupling as large ag = 0.8¢. In the strong coupling
regime, pairing correlations decay exponentially because
the dimerization opens a gap at the Fermi level [4].
FIG. 4. Phonon order parameter,, staggered static elec- Therefore, it is possible that there is a transition from a
tronic susce+pt|b|I|tyXf and next-nearest-neighbor pairing corre- metallic to an insulating CDW phase at a finite electron-
lations (P¢P¢+,) as a function of the electron-phonon coupling phonon coupling [6].

In a six site Holstein lattice wit = 1. Obviously, a complete understanding of the Holstein

model properties requires the study of larger systems.
describes the electronic and dynamical properties of théhe use of optimized phonon basis coupled to power-
Holstein Hamiltonian [3]. ful numerical methods, such as DMRG, will enable us

Mean-field theory predicts that the ground state ofto perform these calculations. Similarly, the techniques
the half filled Holstein model is a charge-density-wavedescribed in this Letter could greatly improve our capabil-
(CDW) state with a dimerized lattice and a gap at thelty to perform numerical studies of other problems which
Fermi surface for any finite electron-phonon coupling.involve an infinite Hilbert space.
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model it is known that there is a crossover from quasi-free

electrons to a bipolaron at a finite coupling [3].
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