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Dynamical Simulation of Current Fluctuations in a Dissipative Two-State System
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Current fluctuations in a dissipative two-state system have been studied using a novel quantum
dynamics simulation method. After a transformation of the path integrals, the tunneling dynamics is
computed by deterministic integration over the real-time paths under the influence of colored noise
The nature of the transition from coherent to incoherent dynamics at low temperatures is reexamined
[S0031-9007(98)05663-4]
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A two-state system coupled to a dissipative environ
ment is the archetypical model for tunneling phenomen
in condensed phase. It has found widespread applic
tions in solid-state physics [1–3], most recently in inter
layer charge transport in high-Tc superconductors [4] and
quantum computing [5], as well as in biophysics [6] fo
the modeling of electron transport in biochemical reac
tions. One of the most intriguing features of this mode
is a dynamical phase transition between coherent tunn
ing and incoherent relaxation. This was first predicted b
Chakravarty and Leggett [7,8] and later confirmed by ex
periments on interstitial tunneling in niobium [9].

Although the existence of the coherent-incoherent tra
sition is widely accepted, its precise nature and locatio
has been called into question by some recent calculatio
[10–13]. Coherence is a phenomenon of dynamics, y
an exact treatment of tunneling in the time domain ha
so far been out of reach. The original prediction of th
transition [8] was based on a dynamical but approxima
theory, whereas the more recent theories, suggesting
transition would occur at a much weaker damping tha
predicted earlier, were based on statistical mechanical c
culations [10,11].

In this Letter, we describe a new exact numerica
method for calculating the real-time dynamics of diss
pative quantum systems and use it to investigate the tra
sition from coherent to incoherent dynamics in a two-sta
system at low temperatures. Previously, the only exa
numerical approach to tunneling dynamics has been t
dynamical quantum Monte Carlo (QMC) method [12,14
But all real-time QMC simulations fail at longer times be
cause the signal-to-noise ratio of the results vanishes e
ponentially due to the highly oscillatory integrand. This
problem is commonly referred to as thedynamical sign
problem. In the case of a large bandwidth of the dissipa
tive environment, QMC simulations further suffer from a
slowing-down problemcaused by the increasingly long-
lived correlations in the sampling process. The ne
method eliminates both problems through a generaliz
Hubbard-Stratonovich transformation and allows us
perform the functional integration over paths of the tun
neling system by a deterministic method, while statist
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cally sampling fluctuations from an ensemble of Gaussia
noise trajectories.

Dissipative two-state systems are often described by t
spin-boson model,

H ­ 2
1
2

Dsx 1
X
n

vn

µ
ay

n an 1
1
2

∂
1 q̂

X
n

Cnsan 1 ay
n d , (1)

where q̂ ­ q0szy2 is the position operator of the tun-
neling system with intrinsic tunneling frequencyD, sx

and sz are Pauli spin matrices, and̄h ­ 1. The effect
of the harmonic environment is fully characterized by
spectral densityJsvd ­ p

P
n C2

ndsv 2 vnd, for which
the Ohmic formJsvd ­ 2pavyq2

0 is experimentally the
most relevant and theoretically the most interesting. Th
Ohmic spectral density introduces a single dimensionle
damping constanta. This model must be regularized by
an upper cutoffvc of the spectral density. The scal-
ing limit vc ¿ D is characteristic of tunneling in solids
and, as shown by scaling arguments [15], the Ohmic sp
boson model has nontrivial dynamics only fora , 1, and
the renormalized tunneling frequency

Dr ­ DsDyvcdays12ad (2)

is the only frequency scale of the dynamics at zer
temperature other thanvc. The transition from coherent
to incoherent dynamics occurs at a critical dampingac at
which theQ factor of the tunneling oscillations vanishes
Tunneling oscillations can be observed as a damp
oscillatory component of the position correlation functio
Cstd ­

1
2 kszstdszs0d 1 szs0dszstdl that is present, in

addition to an incoherent relaxation background [16]. Th
asymptotic long-time behavior is always dominated by a
algebraic incoherent decay,Cstd ~ aD22

r t22 [17].
A coherence criterion equivalent to finiteQ is a

finite dephasing timeof the quantum beats that manifes
themselves as tunneling oscillations. A measure of th
dephasing time is given by the lifetime of delocalize
states of the tunneling system [18] (see also [13,19
j1l 6 ij2l, which are eigenstates of the tunneling curren
j ­ Dsyy2 ­ Ùszy2. The correlation timet of the
© 1998 The American Physical Society 2657
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current correlation function

Cjjstd ­
1
2

k jstdjs0d 1 js0djstdl (3)

equals the lifetime of these superposition states. A fin
correlation time of thecurrent correlation function thus
implies coherent oscillations in theposition correlation
function. This relationship allows us to identify coher
ence even for very strongly damped cases in which o
cillations may be masked by the incoherent backgroun
For a two-state system, the relationC̈std ­ 24Cjjstd pro-
vides another direct connection to previous studies on t
position correlation function.

To compute the exact dynamics ofCjj, we employ a hy-
brid stochastic/deterministic numerical method which w
shall label chromostochastic quantum dynamics (CSQD
This method, which is generally applicable to quantum sy
tems with linear dissipation, is based on the path integ
formulation of dissipative quantum dynamics [8,20]. Th
time evolution of the reduced density matrix for the sys
tem coordinateq can formally be represented by a doubl
functional integral [21]

rsqf , q0
f ; td ­

Z qf

qi
D fqg

Z q0f

q0i
D fq0geiS0fqg2iS0fq0g

3 Ffq, q0g . (4)

S0fqg is the action of the undamped quantum system
and its interactions with the environment are incorporate
into a complex-valued influence functionalFfq, q0g ­
exps2F0 2 iF00d with

F0fq, q0g ­
Z t

t0

dt0
Z t0

t0

dt00fqst0d 2 q0st0dg

3 L0st0 2 t00d fqst00d 2 q0st00dg , (5)

F00fq, q0g ­
1
2

Z t

t0

dt0
Z t0

t0

dt00fqst0d 2 q0st0dg

3 mgst0 2 t00d f Ùqst00d 1 Ùq0st00dg . (6)

L0std is the real part of the autocorrelation function of th
collective bath mode

P
n Cnsan 1 ay

n d, averaged over an
ensemble of free oscillators,m is the mass of the tunneling
particle, andgstd is the classical friction kernel associated
with the spectral densityJsvd. This influence functional
describes a “factorized” initial preparation, i.e., with th
particle constrained to one side for timest , t0 with
the environment fully relaxed. To simulate equilibrium
correlation functions, it is necessary to push the preparat
back to a sufficiently large negative timet0 , 0 [20] and
insert measurement operatorsj at times0 andt.

A direct quantum Monte Carlo evaluation of a time
discretized version of type (4) can be prohibitively
expensive due to the dynamical sign and slowing-dow
problems. An alternative approach for single-partic
problems or dissipative systems near the Markovia
2658
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limit is the explicit iteration of a short-time propagator.
This reduces the path integral to a manageable seri
of matrix multiplications [22]. Another algorithm was
recently presented by Cao, Unger, and Voth [23] for a
environment with a few oscillators. By directly sampling
the oscillator paths and propagating the system coordina
for each sample, they eliminate memory effects.

In this Letter, we tackle the problem of memory effects
in the important case of acontinuumof environmental
modes, such as in the case of Ohmic friction, where sam
pling over individual oscillator trajectories is not feasible
The major obstacle in trying to decompose the path inte
gral (4) into short-time propagators lies in the interaction
kernelL0std because its range diverges as the temperatu
approaches zero. In comparison, the friction kernelgstd
poses no problem because it vanishes at time larger th
v21

c , the shortest time scale in our problem.
The problem with the long-range interactions intro-

duced byL0std can nonetheless be solved, albeit at the co
of introducing an additional path variable. The exponen
tial of the nonlocal actionF0fq, q0g can be decomposed
into a superposition of time-local phase factors,

exps2F0fq, q0gd ­
Z

D fjgW fjg

3 exp

(
2i

Z t

t0

dt0jst0d fqst0d 2 q0st0dg

)
.

(7)

The distribution W fjg is real and Gaussian, with
kjstdjst0dlW ­ L0st 2 t0d, and normalizable through the
condition F0fq, qg ; 0. Formally, this decomposition
is a Hubbard-Stratonovich transformation in a function
space over the intervalft0, tg. Equation (7) is equivalent
to the construction of an influence functional for a
classical colored noise source [21], and, as such, we w
interpret the functionjstd as a noise trajectory.

In the CSQD algorithm, the propagation of the system
coordinatesq and q0 is carried out deterministically
for each realization of the noise trajectory, while the
noise trajectories are sampled from the distributionW fjg.
Instead of generating weights from a Metropolis-type
random walk, statistical weights are assigned to nois
trajectoriesa priori by numerically filtering white noise.

In general, there are two ways to treat the remainin
term F00. If q̂ acts on a finite-dimensional Hilbert space
qstd contains discrete jumps between the eigenvalues ofq̂.
The “state vector” that is propagated must then rememb
these “virtual transitions” during a finite number of
preceding time slices. But since the friction kernelgstd
decays rapidly over the memory timev21

c , the number of
transitions needed “in memory” is small for large cutoff.
On the other hand, if̂q describes a continuous degree o
freedom, the kinetic term inS0fqg requires the relevant
pathsqstd to be smooth. Then the limitvc ! ` can be
applied to (6), makingF00fq, q0g a time-local functional.

For the two-state system, we achieve excellent accura
with a maximum of two tunneling events in memory.
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FIG. 1. Current correlation function for various damping
a , 1y2, vcyDr ­ 50.

The error resulting from this truncation can be mad
arbitrarily small by increasingvc, i.e., moving further
into the scaling regime [24]. The length of our time step
is a fixed fraction of the inverse bandwidthv21

c , which is
short enough to make the particular choice of approxima
short-time propagator a minor issue.

Empirically, we find that the statistical variance o
CSQD grows no faster thanlogarithmically with t. This
remarkable performance compared to theexponentialdi-
vergence observed in conventional QMC methods resu
from the fact that deterministic integration is not af
fected by the oscillatory nature of the integrand. Con
secutive samples in the CSQD simulation are by desi
statistically independent. This completely eliminates any
slowing-down problem. We have tested the validity an
accuracy of our method, comparing it to known analyti
results for the real-time fluctuations and the relaxation b
havior of the tunneling coordinate at dampinga ­ 1y2
and a ø 1. We find excellent agreement between ou
numerical results and previous analytic calculations.

Figure 1 shows CSQD results forCjjstd at zero temper-
ature and for0 , a , 1y2. Except for the initial drop
at timest & v21

c , all four curves represent functions of
the scaling argumentDrt only. To obtain a formal es-
timate for t, we define it to be the first zero ofCjjstd
[25]. Positive current-current correlations do persist up
times of orderD21

r , i.e., the scaled dephasing timeDrt

is nonzero and finite (at least) up toa ­ 0.4, although it
declines significantly with increasinga. Quantum coher-
ence becomes increasingly short lived, however, maki
it impossible to resolve oscillations from a background o
monotonous signal decay fora * 0.3 (Fig. 2).

An expanded view of the initial decay ofCjjstd in
the vicinity of the critical valueac ­ 1y2 is provided in
Fig. 3. In this region, the correlation timet decreases
rapidly with increasinga (note the different scales on
the time axes). Comparing results for different cutof
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FIG. 2. Coherent oscillations and long-time decay of the
current correlation functionsvcyDr ­ 50d.

frequenciesvc, we observe markedly different scaling
behavior fora above or below1y2. For a , 1y2, t is
scaled byDr , leavingDrt finite; whereas fora . 1y2, t

scales asv21
c , i.e.,Drt vanishes in the scaling limit.

Critical behavior atac ­ 1y2 is also predicted by
perturbation theory in the bare tunneling frequencyD. In
the scaling limit, the short-time behavior of the current
correlation function is given by

Cjjstd ­
D2

r

4
cosspad sDr td22a . (8)

For a , 1y2, this expression (valid forv21
c ø t ø D),

as well as the exact perturbative result (valid fort ø
D21), is positive. It follows thatt * D21, which can
only be satisfied ift scales withDr rather thanvc. For
a . 1y2, (8) is negative, and we conclude thatCjjstd
turns negative at a timet of the order ofv21

c .
Taken together, these results lead to a clear pictur

of how the scaled dephasing timeDrt depends on the

FIG. 3. Scaling behavior of the current correlation function in
the vicinity of its first zero.
2659
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damping strength, shown in Fig. 4. We see a gradu
decline ofDrt to very small but finite values, followed
by a discontinuous drop atac ­ 1y2. The finite value
Drt ø 0.034 at a ­ 1y2 emerges both from our simu-
lations and from applyingCjjstd ­ 2C̈stdy4 to analytic
results for the position correlation function ata ­ 1y2
[16,26].

Our conclusion,ac ­ 1y2, coincides exactly with the
value originally found by Chakravarty and Leggett [7
for the dynamics of a two-state system with a factorize
initial preparation. In contrast, Lesage, Saleur, and Sko
[10] as well as Costi and Kiefer [11] recently found
a lower value,ac ø 1y3, for the critical damping. In
both of their works, the criterion of coherence was no
the observation of tunneling oscillations themselves, b
the presence of inelastic peaks in the spectral function
the position fluctuations. Forstronglydamped oscillations
in the symmetric functionCstd, however, the inelastic
peaks at positive and negative frequencies become w
enough to merge into a single peak centered atv ­ 0.
The absence of a peak at finite frequency therefore do
notnecessarily indicate the absence of coherence. In or
to determine the true critical coupling, a more elabora
analysis needs to be performed on the spectra of [10,11

In conclusion, we have introduced a new numerical a
gorithm for the dynamics of dissipative quantum system
which solves the dynamical sign problem and eliminate
slowing-down problems. Its validity, efficiency, and ac
curacy have been demonstrated for the spin-boson mo
with Ohmic dissipation. We have determined the life
time of coherent superposition states at zero temperat
and different strengths of the damping from the curre
correlation function. This time scale decreases with i
creasing damping strengtha, but remains finite (indicat-
ing quantum coherence) for alla below the critical value
ac ­ 1y2. Analytic results, where available, are repro
duced with good agreement. Details of the CSQD meth
and its applications to more complex problems, such
the noise spectrum of fractional quantum Hall system
will be reported elsewhere.

FIG. 4. Variation of the scaled dephasing timeDr t with
increasing dampinga.
2660
al

]
d

rik

t
ut
of

ide

es
der
te
].
l-
s,
s

-
del
-
ure
nt
n-

-
od
as
s,

This research has been supported by the National Sc
ence Foundation under Grant No. CHE-9528121. Com
putational resources have been provided by the IBM
Corporation under the SUR Program at USC.

[1] H. Grabert and H. Wipf,Advances in Solid State Physics
(Vieweg, Braunschweig, 1990), Vol. 30, p. 1.

[2] B. Golding, N. M. Zimmerman, and S. N. Coppersmith,
Phys. Rev. Lett.68, 998 (1992).

[3] S. Chakravarty and S. Kivelson, Phys. Rev. Lett.50, 1811
(1983).

[4] S. Chakravarty and P. W. Anderson, Phys. Rev. Lett.72,
3859 (1994).

[5] A. Garg, Phys. Rev. Lett.77, 964 (1996).
[6] R. A. Marcus and N. Sutin, Biochim. Biophys. Acta811,

265 (1985).
[7] S. Chakravarty and A. J. Leggett, Phys. Rev. Lett.52, 5

(1984).
[8] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A.

Fisher, A. Garg, and W. Zwerger, Rev. Mod. Phys.59,
1 (1987);ibid. 67, 725 (1995).

[9] H. Wipf, D. Steinbinder, K. Neumaier, P. Gutsmiedl,
A. Magerl, and A. J. Dianoux, Europhys. Lett.4, 1379
(1987).

[10] F. Lesage, H. Saleur, and S. Skorik, Phys. Rev. Lett.76,
3388 (1996).

[11] T. A. Costi and C. Kieffer, Phys. Rev. Lett.76, 1683
(1996).

[12] R. Egger, H. Grabert, and U. Weiss, Phys. Rev. E55,
R3809 (1997).

[13] S. P. Strong, Phys. Rev. E55, 6636 (1997).
[14] K. Leung, R. Egger, and C. H. Mak, Phys. Rev. Lett.75,

3344 (1995).
[15] S. Chakravarty, Phys. Rev. Lett.49, 681 (1982); A. J. Bray

and M. A. Moore, Phys. Rev. Lett.49, 1545 (1982).
[16] F. Guinea, Phys. Rev. B32, 4486 (1985).
[17] We are not aware of systematic errors that prevent ou

numerical method from reproducing this result. However
we leave verification of this to a future publication.

[18] W. H. Zurek, Phys. Rev. D26, 1862 (1982).
[19] M. Grifoni, M. Winterstetter, and U. Weiss, Phys. Rev. E

56, 334 (1997).
[20] U. Weiss,Quantum Dissipative Systems(World Scientific,

Singapore, 1993).
[21] R. P. Feynman and F. L. Vernon, Ann. Phys. (N.Y.)24,

118 (1963).
[22] D. Thirumalai, E. J. Bruskin, and B. J. Berne, J. Chem

Phys.79, 5063 (1983); D. Makarov and N. Makri, Chem.
Phys. Lett.221, 482 (1994).

[23] J. Cao, L. W. Ungar, and G. A. Voth, J. Chem. Phys.104,
4189 (1996).

[24] A Gaussian cutoff exps2v2y2v2
c d is advantageous here.

This modifies Eq. (2) by an insignificant numerical factor.
[25] In the limit of zero coupling,t will underestimate the

dephasing time. Apart from this, none of our conclusions
will be affected by a change in the formal definition oft.

[26] M. Sassetti and U. Weiss, Phys. Rev. A41, 5383 (1990);
F. Guinea, V. Hakim, and A. Muramatsu, Phys. Rev. B
32, 4410 (1985).


