VOLUME 80, NUMBER 12 PHYSICAL REVIEW LETTERS 23 MRcH 1998

Dynamical Simulation of Current Fluctuations in a Dissipative Two-State System
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Current fluctuations in a dissipative two-state system have been studied using a novel quantum
dynamics simulation method. After a transformation of the path integrals, the tunneling dynamics is
computed by deterministic integration over the real-time paths under the influence of colored noise.
The nature of the transition from coherent to incoherent dynamics at low temperatures is reexamined.
[S0031-9007(98)05663-4]
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A two-state system coupled to a dissipative environ-cally sampling fluctuations from an ensemble of Gaussian
ment is the archetypical model for tunneling phenomenanoise trajectories.
in condensed phase. It has found widespread applica- Dissipative two-state systems are often described by the
tions in solid-state physics [1—3], most recently in inter-spin-boson model
layer charge transport in high- superconductors [4] and
quantum computing [5], as well as in biophysics [6] for H=- _A‘Tx + Z <
the modeling of electron transport in biochemical reac-
tions. One of the most intriguing features of this model +q Y Ca, +al), (1)
is a dynamical phase transition between coherent tunnel- v
ing and incoherent relaxation. This was first predicted bywhere § = goo,/2 is the position operator of the tun-
Chakravarty and Leggett [7,8] and later confirmed by exmeling system with intrinsic tunneling frequenay, o,
periments on interstitial tunneling in niobium [9]. and o, are Pauli spin matrices, and = 1. The effect

Although the existence of the coherent-incoherent tranef the harmonic environment is fully characterized by a
sition is widely accepted, its precise nature and locatiorspectral density (w) = 7 Y., C28(w — w,), for which
has been called into question by some recent calculationse Ohmic form/(w) = 27Taa)/q(2) is experimentally the
[10-13]. Coherence is a phenomenon of dynamics, yahost relevant and theoretically the most interesting. The
an exact treatment of tunneling in the time domain hafDhmic spectral density introduces a single dimensionless
so far been out of reach. The original prediction of thedamping constan&. This model must be regularized by
transition [8] was based on a dynamical but approximaten upper cutoffw,. of the spectral density. The scal-
theory, whereas the more recent theories, suggesting theg limit o, > A is characteristic of tunneling in solids
transition would occur at a much weaker damping tharand, as shown by scaling arguments [15], the Ohmic spin-
predicted earlier, were based on statistical mechanical caboson model has nontrivial dynamics only fer< 1, and
culations [10,11]. the renormalized tunneling frequency

In this Letter, we describe a new exact numerical A, = A(A /o )a/(l*a) )
method for calculating the real-time dynamics of dissi- g ¢
pative quantum systems and use it to investigate the trais the only frequency scale of the dynamics at zero
sition from coherent to incoherent dynamics in a two-statéemperature other thaa.. The transition from coherent
system at low temperatures. Previously, the only exadio incoherent dynamics occurs at a critical dampingat
numerical approach to tunneling dynamics has been th&hich theQ factor of the tunneling oscillations vanishes.
dynamical quantum Monte Carlo (QMC) method [12,14]. Tunneling oscillations can be observed as a damped
But all real-time QMC simulations fail at longer times be- oscnlatory component of the position correlation function
cause the signal-to-noise ratio of the results vanishes exG(r) = 5 <0'Z(t)a'z(0) + 0,(0)o,(r)) that is present, in
ponentially due to the highly oscillatory integrand. This addition to an incoherent relaxation background [16]. The
problem is commonly referred to as tldgnamical sign asymptotic long-time behavior is always dominated by an
problem In the case of a large bandwidth of the dissipa-algebraic incoherent decag(r) = aA; 2t 2 [17].
tive environment, QMC simulations further suffer from a A coherence criterion equivalent to finit® is a
slowing-down problentaused by the increasingly long- finite dephasing timef the quantum beats that manifest
lived correlations in the sampling process. The newthemselves as tunneling oscillations. A measure of this
method eliminates both problems through a generalizedephasing time is given by the lifetime of delocalized
Hubbard-Stratonovich transformation and allows us tcstates of the tunneling system [18] (see also [13,19])
perform the functional integration over paths of the tun-|+) = i|—), which are eigenstates of the tunneling current
neling system by a deterministic method, while statisti-j = Ao,/2 = ¢,/2. The correlation timer of the
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current correlation function limit is the explicit iteration of a short-time propagator.
| This reduces the path integral to a manageable series
Cji(t) = E<j(t)j(0) + j(0)j(1)) (3) of matrix multiplications [22]. Another algorithm was

recently presented by Cao, Unger, and Voth [23] for an
equals the lifetime of these superposition states. A finitenvironment with a few oscillators. By directly sampling
correlation time of thecurrent correlation function thus the oscillator paths and propagating the system coordinate
implies coherent oscillations in thposition correlation  for each sample, they eliminate memory effects.
function. This relationship allows us to identify coher- In this Letter, we tackle the problem of memory effects
ence even for very strongly damped cases in which osin the important case of aontinuumof environmental
cillations may be masked by the incoherent backgroundmodes, such as in the case of Ohmic friction, where sam-

For a two-state system, the relatioitr) = —4C;i(r) pro-  pling over individual oscillator trajectories is not feasible.
vides another direct connection to previous studies on th&he major obstacle in trying to decompose the path inte-
position correlation function. gral (4) into short-time propagators lies in the interaction

To compute the exact dynamics@f;, we employ a hy-  kernel L'(r) because its range diverges as the temperature
brid stochastic/deterministic numerical method which weapproaches zero. In comparison, the friction kerpg)
shall label chromostochastic quantum dynamics (CSQD)poses no problem because it vanishes at time larger than
This method, which is generally applicable to quantum sysw !, the shortest time scale in our problem.
tems with linear dissipation, is based on the path integral The problem with the long-range interactions intro-
formulation of dissipative quantum dynamics [8,20]. Theduced byL’(r) can nonetheless be solved, albeit at the cost
time evolution of the reduced density matrix for the sys-of introducing an additional path variable. The exponen-
tem coordinate; can formally be represented by a doubletial of the nonlocal actiond/[g, ¢'] can be decomposed

functional integral [21] into a superposition of time-local phase factors,
plar.qy;1) = ] " Dlq] " D[ eiSla)=isola exp(—®'lg.4') = f Dl£Iw€]
qi q'i t
_ / / NN (4]
X Flq.q']. (4) Xexp{ l[zo dr'§(t') [q(1') = q'()]} .

. . 7
Solg] is the action of the undamped quantum system, - _ _ ( )_
and its interactions with the environment are incorporated he distribution W[¢] is real and Gaussian, with

into a complex-valued influence functiondl[q,q’] = (@& )w = L'(t — +'), and normalizable through the
exp(—®’ — i®") with condition ®'[¢g,q] = 0. Formally, this decomposition
, M is a Hubbard-Stratonovich transformation in a function
d'[q,q'] = [ dt’ f di'"[q(t) — 4'(t)] space over the intervaly, r]. Equation (7) is equivalent
o 1o to the construction of an influence functional for a

I IN I classical colored noise source [21], and, as such, we will
X L= lgt) = a (D], 6) interpret the functiorf(¢) as a noise trajectory.
1 [t 7 In the CSQD algorithm, the propagation of the system
®'lq.q'] = + f dr’ [ di"[q(t") — ¢'(¢')] coordinatesq and ¢’ is carried out deterministically
2 Ju fo for each realization of the noise trajectory, while the
X my(t' — ") [q(t") + ¢'(+")]. (6) noise trajectories are sampled from the distribuibf¢].
Instead of generating weights from a Metropolis-type
L'(z) is the real part of the autocorrelation function of therandom walk, statistical weights are assigned to noise
collective bath mod&’, C,(a, + a}), averaged over an trajectoriesa priori by numerically filtering white noise.
ensemble of free oscillators is the mass of the tunneling  In general, there are two ways to treat the remaining
particle, andy(z) is the classical friction kernel associated term ®”. If § acts on a finite-dimensional Hilbert space,
with the spectral density(w). This influence functional ¢(¢) contains discrete jumps between the eigenvaluds of
describes a “factorized” initial preparation, i.e., with the The “state vector” that is propagated must then remember
particle constrained to one side for times< 7y with  these “virtual transitions” during a finite number of
the environment fully relaxed. To simulate equilibrium preceding time slices. But since the friction kerndl)
correlation functions, itis necessary to push the preparatiodecays rapidly over the memory tine€. !, the number of
back to a sufficiently large negative timg < 0 [20] and  transitions needed “in memory” is small for large cutoff.
insert measurement operatgrat times0 and:. On the other hand, i describes a continuous degree of
A direct quantum Monte Carlo evaluation of a time- freedom, the kinetic term ifo[¢] requires the relevant
discretized version of type (4) can be prohibitively pathsg(z) to be smooth. Then the limib. — o can be
expensive due to the dynamical sign and slowing-dowrapplied to (6), makingb”[¢, ¢'] a time-local functional.
problems. An alternative approach for single-particle For the two-state system, we achieve excellent accuracy
problems or dissipative systems near the Markoviarwith a maximum of two tunneling events in memory.
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FIG. 1. Current correlation function for various damping;

a < 1/2, w./A, = 50. FIG. 2. Coherent oscillations and long-time decay of the

current correlation functiofw./A, = 50).

The error resulting from this truncation can be mad frequenciesw,, we observe markedly different scaling
9 ehavior fora above or belowi/2. Fora < 1/2, 7 is

arbitrarily small by increasingw., i.e., moving further . L
into the scaling regime [24]. The length of our time stepss'calIeOI byA,, leavingA, 7 finite; whereas for > 1/2, 7

T . . oo
is a fixed fraction of the inverse bandwidhy !, which is scales aw, , I.e., A,7 vanishes in the scaling limit.

) . ; Critical behavior ata, = 1/2 is also predicted by
short e_nough to make the parﬂpular choice of approx'mat%erturbation theory in the bare tunneling frequercy In
short-time propagator a minor issue.

Empirically, we find that the statistical variance of the scaling limit, the short-time behavior of the current

CSQD grows no faster thdogarithmically with ¢. This correlation function is given by

remarkable performance compared to éxponentialdi- A2 _

vergence observed in conventional QMC methods results Cji(1) = -~ codma) (A1) . (8)

from the fact that deterministic integration is not af-

fected by the oscillatory nature of the integrand. Con-For o < 1/2, this expression (valid fow, ! < ¢ < A),

secutive samples in the CSQD simulation are by desigas well as the exact perturbative result (valid for

statistically independent This completely eliminates any A~!), is positive. It follows thatr = A~!, which can

slowing-down problem. We have tested the validity andonly be satisfied ifr scales withA, rather thanw.. For

accuracy of our method, comparing it to known analytice > 1/2, (8) is negative, and we conclude th&s;(r)

results for the real-time fluctuations and the relaxation beturns negative at a time of the order ofw_ .

havior of the tunneling coordinate at damping= 1/2 Taken together, these results lead to a clear picture

and @ < 1. We find excellent agreement between ourof how the scaled dephasing time.~ depends on the

numerical results and previous analytic calculations.
Figure 1 shows CSQD results fay;(r) at zero temper-

ature and fol0 < a < 1/2. Except for the initial drop | | ' a)l ' ' l
. —1 . : c/Ar COC/Ar

at timesr < w_ ', all four curves represent functions of 20l 11 ]
the scaling argumenA,r only. To obtain a formal es- i — 200 | 10f — 200
timate for 7, we define it to be the first zero of;;(r) = | 40 | [+ 400 ]
[25]. Positive current-current correlations do persist up to O [ 3
times of orderA !, i.e., the scaled dephasing tinde 7 1ol s[
is nonzero and finite (at least) up to= 0.4, although it A o = 0.55
declines significantly with increasing. Quantum coher- i
ence becomes increasingly short lived, however, making [
it impossible to resolve oscillations from a background of 0.0 O
monotonous signal decay far = 0.3 (Fig. 2). ) [ ez

An expanded view of the initial decay of};() in L o
the vicinity of the critical valuen. = 1/2 is provided in 0.05 0.10 0.15 A ¢ 0.01 0.02 0.03 A ¢
Fig. 3. In this region, the correlation time decreases r r

rapidly with increasinga (note the different scales on FiG. 3. Scaling behavior of the current correlation function in
the time axes). Comparing results for different cutoffthe vicinity of its first zero.
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damping strength, shown in Fig. 4. We see a gradual This research has been supported by the National Sci-
decline of A, 7 to very small but finite values, followed ence Foundation under Grant No. CHE-9528121. Com-
by a discontinuous drop at. = 1/2. The finite value putational resources have been provided by the IBM
A,7 = 0.034 at « = 1/2 emerges both from our simu- Corporation under the SUR Program at USC.
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