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Coalescence of Spheres by Surface Diffusion
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(Received 15 October 1997)

The shape evolution of small heated metal particles is dominated by surface diffusion. When
spheres touch, they will thus merge into one, as they continually decrease their surface area. Foc
on the asymptotic behavior when the radiusr of the neck joining the two spheres is still small, it is
found that the metal does not stay simply connected, but encloses an intricate succession of tor
voids. The temporal evolution ofr exhibits a new type of self-similar behavior resulting from a discrete
sequence of secondary singularities. [S0031-9007(98)05587-2]

PACS numbers: 68.10.Cr, 03.40.Gc, 81.20.Ev
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Powders of metal spheres are commonly merged in
one continuous piece by heating, in a process called s
tering. It is thus a fundamental problem in metallurg
[1,2] to understand the most basic mechanism behind th
process, which is the coalescence of just two spheres
mutual contact. This should give information about th
time required for coalescence and, with a detailed descr
tion of the small-scale motion, should allow prediction
about the microstructure of the resulting material.

Below the bulk melting temperature, and on scale
smaller than10 mm, the motion of atoms along the sur-
face is the dominant mechanism for mass transport [3
Mullins and co-workers [3–5] derived the correspondin
equations of motion for the surface shapes and inves
gated their properties in a series of papers. However, t
singular shape of the initial profile makes the coalescen
problem a very difficult one, both theoretically and nu
merically, and an asymptotic description of the resultin
motion has remained an open problem.

Since large values of the surface curvature are conce
trated around a very small region where the two spher
touch, one expects a very rapid local motion of the bridg
joining the spheres. Thus, by analogy with similar fluid
mechanics problems exhibiting singular behavior [6], th
minimum radiusr should exhibit power law scaling as a
function of time. Below, we will see that, while power
law behavior is indeed found, it is interrupted by a dis
crete sequence of secondary singularities, not unlike su
cessive breakups driving a propagating front [7], whic
makes this problem quite different from previously know
examples of power law scaling.

Qualitatively, motion by surface diffusion is not unlike
the corresponding fluid mechanics problem of flow drive
by surface tension, partly because the equilibrium stat
are the same. For example, a cylinder is prone to t
surface-tension-driven Rayleigh-Plateau instability, whic
causes the cylinder to break up into a series of spher
and so reduces the surface area. If these spheres meet,
for both surface-diffusion-dominated and fluid motion the
will merge into one. However, the asymptotic descriptio
of the coalescence process is entirely different whether o
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is looking at the flow problem [8] or at surface diffusion
which is described below.

Figure 1 shows a schematic of two merging spher
of initial radius R and Ryd, where the local radiushszd
of the figure depends on the positionz along the axis of
symmetry. Conservation of mass demands that

≠th
2 1 2≠zsJhd ­ 0 , (1)

whereJszd is the projection of the surface mass flux ont
the axis. This flux must be proportional to the gradient
the curvature, and thus

J ­ 2
B
2

s≠zkdyf1 1 s≠zhd2g1y2, (2)

with

k ­ 1yshf1 1 s≠zhd2g1y2d 2 s≠zzhdyf1 1 s≠zhd2g3y2

(3)
the curvature of a body of revolution. The additiona
factor of 1yf1 1 s≠zhd2g1y2 in (2) accounts for the fact
that atoms travel parallel to the surface, whileJ is the flux
in thez direction.

The fourth-order diffusion constantB has dimensions
cm4ysec, and thus a typical time scale for the mergin
is tR ­ R4yB. A typical value of B for a metal near
the melting point isB ­ 10218 cm4ysec [3], and surface
diffusion will dominate over volume diffusion on scale
below10 mm. In all of the following, we will useR and
tR as units of length and time, respectively.

Sintering by surface diffusion was first considered b
Kuczynski [1], who determined the coefficient of surfac

FIG. 1. The surface profilehszd produced by two coalescing
drops of radiusR andRyd. The origin of the axis of symmetry
z ­ 0 lies at the initial point of contact. The bridge joining the
two spheres has a radiusr and a widthw.
© 1998 The American Physical Society
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diffusion of various metals. It is instructive to repea
his arguments for deriving the time dependencerstd for
small bridge radiir. Since the initial spherical shape nea
the point of contact hashszd ø s2zd1y2, the width of the
narrow gap between the spheres isw ø sr2y2d s1 1 dd
(see Fig. 1), and thus the curvaturek ø r22 in that
region. To simplify the formulas, we will assumed ­ 1
below (equal spheres), but the arguments apply equa
well to unequal spheres up to a simple geometric
constant. Assuming that the transition tok ­ Os1d
occurs on the same scalew, the gradient of curvature is
estimated to bew22, and the mass flux into the end of the
gap isryw2. A massdm ø rwdr is needed to increase
the radius bydr , and by equating the flux with the change
in mass we arrive at≠tr ø r26. Integrating this equation,
we find

r ­ sAtd1y7, (4)

where t ­ 0 is the time when the spheres initially
touched. The constantA remains to be determined.

Kuczynski [1] found good agreement between (4) an
his experiments, but later numerical simulations [5] wit
initial radii as small asr0 ­ 0.05 gave an exponent closer
to 1y6. It was thus concluded in [5] that the order o
magnitude estimate leading to (4) needed improveme
To test the scaling theory in greater detail, we conducte
simulations of (1)–(3) withr0 ­ 1024, the results of
which are shown in Fig. 2. We used a variant of
fully implicit finite difference code [9], developed earlier
to describe the surface-tension-driven breakup of liqu

FIG. 2. Closeup views of the gap between two coalescin
spheres of radius 1. Between two successive profiles sho
in (a) the minimum radiusr increases by a factor of 2. The
top four profiles (going backwards in time) correspond t
log10std ­ 25.8, 27.7, 29.4, and 211.2, respectively. (b) A
further enlargement, with the sequence of voids visible at th
bottom. Here the top four profiles were taken at log10std ­
217.5, 218.3, 218.9, and219.3. The voids are shown having
the shapes they had upon enclosure.
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threads. A nonuniform grid is chosen to ensure fu
resolution of the smallest scales, which are of the size1028.

The sequence of Fig. 2(a) shows a profile whenever
has increased by a factor of 2. One observes that
gap between the spheres is gradually filled in. Howev
for smaller r there is a pronounced hollow part at th
end of the gap, which causes the profile to turn over, a
after which hszd cannot be represented as a one-to-o
function, so we transformed (1)–(3) to a representati
zshd, which always works in the region of interest. Fo
small r, the width of the hollowed end continues to grow
relative to the width of the gap, which contradicts th
assumptions of Kuczynski’s estimates, making the radi
of curvature at the end larger thanr2. This result is even
more apparent in the blowup of the small-r region of the
same simulation shown in Fig. 2(b). Atr ø 0.005 the
width of the hollow region is several times the gap widt
w ø r2. At the same time, the bulge above the hollo
end has grown so much that the walls of the spher
almost touch, which eventually happens atr ø 0.002, so
that a toroidal void is enclosed inside the material. Aft
this secondary singularity, the inner and outer surfac
evolve separately. Note the difference in scale betwe
the axes, so contrary to its appearance the elliptical vo
is actually longer than it is wide.

To study the evolution further, whenever a void wa
enclosed we smoothed the tip of the outer channel on
scaler2, and continued the simulation. From Fig. 2(b
it is apparent that an intricate succession of voids
produced when starting from a small initial radius, makin
the material highly porous. Only forr * 0.002 does the
tip of the channel recede sufficiently fast to escape furth
enclosure of air.

To understand the local dynamics near the tip in mo
detail, it is useful to look at the evolution on the scale o
the gap widthw. On that scale, the gap width remain
almost constant, and since moreoverr ¿ w, the radius
of curvature r can be neglected. The local dynamic
are thus equivalent to the evolution of a straight chann
carved out of a two-dimensional piece of material (se
Fig. 3). Thus to study the local motion near the tip w
consider the simplified initial condition of a semi-infinite
channel of width one, using the same equations of moti
as before. To be consistent with Fig. 2, we denote t
distance from the initial tip of the channel byh. As the
channel fills in, it is hollowed out to a much greater widt
than it had originally. This response occurs because
shape near the tip is nearly singular, represented by a la
negative curvature, as seen in the right-hand part of Fig.
so that material cannot be replenished sufficiently fa
through the channel, and has to come from the immedi
neighborhood of the tip. This in turn leads to a regio
of positive curvature, which causes some material to flo
back out of the channel. As a result, there is a pileu
of material behind the hollow, which after a finite time
grows large enough to touch down. Mathematically, th
2635
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FIG. 3. Evolution of a semi-infinite straight channel of widt
1, cut from a two-dimensional piece of material. At th
left, the profile is shown; to the right, one can see the loc
curvature. While the groove fills in, it develops an increasing
pronounced hollow part at its end. Above the hollow part
bulge develops, which at timet0 ­ 7.4 3 103 closes off the
gap. The preceding two profiles correspond tot0 ­ 3.2 3 103

and1 3 103.

possibility comes from the oscillatory character of th
Green function of the fourth-order diffusion equation [4
The touchdown happens after a timet0 ­ 7.4 3 103,
and at a distancea ­ 85.5 from the original tip. These
numbers were determined from the simulation shown
Fig. 3. From dimensional analysis, the singularity tim
of a gap of widthw is thust ­ w4t0.

Applying this result to the original problem, the touch
down singularity will occur after a timet ­ r8

0 t0, when
starting from an initial radiusr0. On the other hand from
(4) it is clear that the tip of the gap retracts only on a tim
scaletr ­ r7

0 yA, which is slower. Thus, as long as

r0 & rvoid ­ 1yst0Ad , (5)

voids will be enclosed continually, as seen in Fig. 2(b
To understand the asymptotics asr0 ! 0, we therefore
have to study the discrete steps of the forming void
which can be obtained with a simple model. If the radiu
of the bridge isri at the last enclosure, it will be

ri11 ­ ri 1 awi ­ ri 1 ar2
i (6)

at the next, because the channel closes after the tip
receded a distanceaw according to the simulation of
Fig. 3. The total time elapsed since the first step is

ti ­ t0

iX
n­0

r8
n (7)

according to the above estimates. While (6) and (7) a
difficult to solve in closed form, the incremental chang
from one iteration is very small whenri is small. Thus
one can write (6) and (7) as a continuous evolution, whi
easily leads to

r ­
£
7atyt0 1 r7

0

§
1y7. (8)
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Remarkably, forr0 ­ 0, one thus recovers Kuczynski’s
law (4), which was based on the assumption of
continuous evolution beginning withrs0d ­ 0. Thus his
estimates are still valid on the average, even if void
are being formed. Figure 4 shows the comparison of (
with the numerical simulation of (1) and (2), using an
initial radius of r0 ­ 1024. Since the parametersa, t0
are taken from previous estimates, there is no adjusta
parameter in the comparison. The excellent agreeme
starts to break down only at larger values ofr, when the
incremental change inr is no longer small. By comparing
(8) and (4), the amplitudeA from (4) can be identified
as A ­ 7ayt0, and thus voids are found belowrvoid ø
0.0017 according to (5). Looking back at Fig. 2(b), this
result is in good agreement with simulations. As pointe
out before, forr . rvoid the width of the hollow shrinks
faster than expected from the estimatew ø r2, leading
to the larger exponent1y6 for rstd, which is what was
found by Nichols and Mullins [5]. The existence of this
transient regime is again a consequence of the tenden
of the dynamics to “undercut” a narrow passage.

So far we have not discussed the evolution of the void
after they have formed. To minimize surface area, the
cross section will evolve to a circle. But the resulting
torus in fact resembles a long, thin cylinder, which wil
then be unstable due to the surface diffusion analog
the Rayleigh-Plateau instability, forming a necklace o
spherical voids. Note that this final instability breaks th
rotational symmetry we have used throughout. Anoth

FIG. 4. A test of the scaling law (8) for the minimum radius
as a function of time. The full line is the simulation, and the
dashed line is the theoretical prediction. The initial radius
r0 ­ 1024. The slope is very close to1y7, as predicted by our
theory, while it differs noticeably from the transient slope o
1y6, found by Nichols and Mullins [5].
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detail of the subsequent evolution to be pointed out
the dynamics close to the point where the walls touc
and close off a void. Asymptotically, this is the same a
the problem of two spheres touching, but having muc
smaller initial radii. Thus for the formation of each
void, the whole sequence of events is embedded he
in a process that repeats itselfad infinitum. Very soon
of course the structures become so small that they a
virtually impossible to follow even numerically.

Finally, it should be noted that the diameter of th
largest spherical void is only0.1 mm if the initial sphere
radius is 1 mm. Above the roughening temperature [10
macroscopic facets disappear, and the surface is smo
down to atomic scales. By using one sphere as the tip
a scanning tunneling microscope, one should be able
make the approach of the two spheres in a very controll
fashion, such that contact is made on a nanometer sc
[11,12]. Voids formed in the process of touching shoul
therefore be confined to atomic scales as well. Th
allowing for a careful preparation of the two crystals, void
of the predicted size should be observable experimenta
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