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Coalescence of Spheres by Surface Diffusion
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The shape evolution of small heated metal particles is dominated by surface diffusion. When two
spheres touch, they will thus merge into one, as they continually decrease their surface area. Focusing
on the asymptotic behavior when the radiusf the neck joining the two spheres is still small, it is
found that the metal does not stay simply connected, but encloses an intricate succession of toroidal
voids. The temporal evolution af exhibits a new type of self-similar behavior resulting from a discrete
sequence of secondary singularities. [S0031-9007(98)05587-2]

PACS numbers: 68.10.Cr, 03.40.Gc, 81.20.Ev

Powders of metal spheres are commonly merged intés looking at the flow problem [8] or at surface diffusion,
one continuous piece by heating, in a process called sirwhich is described below.
tering. It is thus a fundamental problem in metallurgy Figure 1 shows a schematic of two merging spheres
[1,2] to understand the most basic mechanism behind thisf initial radius R and R/, where the local radiug(z)
process, which is the coalescence of just two spheres iof the figure depends on the positiaralong the axis of
mutual contact. This should give information about thesymmetry. Conservation of mass demands that
t?me required for coalescenge and, with a detailed Qescrip- 9,h2 + 20.(Jh) = 0, 1)
tion of the small-scale motion, should allow predictions
about the microstructure of the resulting material.

Below the bulk melting temperature, and on scale
smaller thanl0 wm, the motion of atoms along the sur-
face is the dominant mechanism for mass transport [3].
Mullins and co-workers [3—5] derived the corresponding
equations of motion for the surface shapes and investi- . h
gated their properties in a series of papers. However, thvewt
singular shape of the initial profile makes the coalescence & = 1/(A[1 + (9.h)*]?) — (a..h)/[1 + (3.h)*T/?

whereJ(z) is the projection of the surface mass flux onto
dhe axis. This flux must be proportional to the gradient of
the curvature, and thus

= =T/l @R @)

problem a very difficult one, both theoretically and nu- 3)
merically, and an asymptotic description of the resultingihe cyryvature of a body of revolution. The additional
motion has remained an open problem. factor of 1/[1 + (3,4)?]"/2 in (2) accounts for the fact

Since large values of the surface curvature are concefnat atoms travel parallel to the surface, whiles the flux
trated around a very small region where the two sphereg, the ; direction.

touch, one expects a very rapid local motion of the bridge The fourth-order diffusion constar has dimensions
joining the spheres. Thus, by analogy with similar fluid cnt*/sec, and thus a typical time scale for the merging
mechanics problems exhibiting singular behavior [6], theg = = R*/B. A typical value of B for a metal near
minimum radiusr should exhibit power law scaling as a pe melting point isB = 10~'8 cnt*/sec [3], and surface
function of time. Below, we will see that, while power it sion will dominate over volume diffusion on scales
law behavior is indeed found, it is interrupted by a dis-pejow 10 um. In all of the following, we will useR and
crete sequence of secondary singularities, not unlike SUG-, as units of length and time, respectively.

cessive breakups driving a propagating front [7], which “gintering by surface diffusion was first considered by

makes this problem quite different from previously knownczynski [1], who determined the coefficient of surface
examples of power law scaling.

Qualitatively, motion by surface diffusion is not unlike
the corresponding fluid mechanics problem of flow driven
by surface tension, partly because the equilibrium states
are the same. For example, a cylinder is prone to the
surface-tension-driven Rayleigh-Plateau instability, which
causes the cylinder to break up into a series of spheres,

and so reduces th.e surface area. Ifthese sp'heres.meet, ”&‘?8 1. The surface profilé(z) produced by two coalescing
for both surface-diffusion-dominated and fluid motion theydrops of radiusk andR/3. The origin of the axis of symmetry

will merge into one. However, the asymptotic description; = ¢ lies at the initial point of contact. The bridge joining the
of the coalescence process is entirely different whether ongvo spheres has a radiusand a widthw.

h(z)

z
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diffusion of various metals. It is instructive to repeatthreads. A nonuniform grid is chosen to ensure full
his arguments for deriving the time dependem¢e for  resolution of the smallest scales, which are of the 5izé.
small bridge radii. Since the initial spherical shape near The sequence of Fig. 2(a) shows a profile whenever
the point of contact has(z) = (22)/2, the width of the has increased by a factor of 2. One observes that the
narrow gap between the spheresuis~ (r2/2)(1 + §)  gap between the spheres is gradually filled in. However,
(see Fig. 1), and thus the curvature= r~% in that for smallerr there is a pronounced hollow part at the
region. To simplify the formulas, we will assunde= 1  end of the gap, which causes the profile to turn over, and
below (equal spheres), but the arguments apply equallgfter which 4(z) cannot be represented as a one-to-one
well to unequal spheres up to a simple geometricafunction, so we transformed (1)—(3) to a representation
constant. Assuming that the transition o= O(1)  z(h), which always works in the region of interest. For
occurs on the same scalg the gradient of curvature is smallr, the width of the hollowed end continues to grow
estimated to bev 2, and the mass flux into the end of the relative to the width of the gap, which contradicts the
gap isr/w?. A massdm = rwdr is needed to increase assumptions of Kuczynski's estimates, making the radius
the radius by/r, and by equating the flux with the change of curvature at the end larger thah. This result is even
in mass we arrive at,r =~ r~°. Integrating this equation, more apparent in the blowup of the smaltegion of the
we find same simulation shown in Fig. 2(b). At= 0.005 the
r = (A0, (4) width (;f the hollow regipn is several times the gap width
. . o w = r=. At the same time, the bulge above the hollow
where 1 = 0 is the time when the spheres initially gng has grown so much that the walls of the spheres
touched. The constadt remains to be determined. almost touch, which eventually happensrat 0.002, so
“Kuczynski [1] found good agreement between (4) andpat 5 toroidal void is enclosed inside the material. After
his experiments, but later numerical simulations [5] Withis secondary singularity, the inner and outer surfaces
initial radii as small as, = 0.05 gave an exponent closer o,o\ve separately. Note the difference in scale between
to 1/6. It was thus concluded in [5] that the order of \he axes so contrary to its appearance the elliptical void
magnitude estimate leading to (4) needed improvemenig actually longer than it is wide.
To test the scaling theory in greater detail, we conducted To study the evolution further, whenever a void was
simulations of (1)—(3) withro = 10 Y, the results of - gncjosed we smoothed the tip of the outer channel on a
which are shown in Fig. 2. We used a variant of agcgle 2, and continued the simulation. From Fig. 2(b)
fully implicit finite difference code [9], developed earlier i js apparent that an intricate succession of voids is
to describe the surface-tension-driven breakup of liquidyroqyced when starting from a small initial radius, making
the material highly porous. Only for = 0.002 does the
' tip of the channel recede sufficiently fast to escape further
h enclosure of air.
035 1 ] 0.007 ] To understand the local dynamics near the tip in more
detail, it is useful to look at the evolution on the scale of
0006 1 the gap widthw. On that scale, the gap width remains
almost constant, and since moreover> w, the radius
0005 1 ] of curvaturer can be neglected. The local dynamics
are thus equivalent to the evolution of a straight channel
0004 1 carved out of a two-dimensional piece of material (see
Fig. 3). Thus to study the local motion near the tip we
0008 I 1 consider the simplified initial condition of a semi-infinite
channel of width one, using the same equations of motion
as before. To be consistent with Fig. 2, we denote the
distance from the initial tip of the channel liy As the
channel fills in, it is hollowed out to a much greater width
z than it had originally. This response occurs because the
06004002 0 002 004 006 00001 5605 0 -56-05 -0.0001 shape near the tip is nearly singular, represented by a large

FIG. 2. Closeup views of the gap between two coalescind"eg""t've curvqture, as seen in the “th'ha”d p-a.rt of Fig. 3,
spheres of radius 1. Between two successive profiles showO that material cannot be replenished sufficiently fast
in (a) the minimum radius- increases by a factor of 2. The through the channel, and has to come from the immediate
top four profiles (going backwards in time) correspond toneighborhood of the tip. This in turn leads to a region

logy(1) = —5.8, —7.7, —9.4, and —11.2, respectively. (b) A st hositive curvature, which causes some material to flow

further enlargement, with the sequence of voids visible at theb k out of the ch LA It th . i
bottom. Here the top four profiles were taken at jog = ack out of the channel. As a result, there Is a pileup

—17.5, —18.3, —18.9, and—19.3. The voids are shown having Of material behind the hollow, which after a finite time
the shapes they had upon enclosure. grows large enough to touch down. Mathematically, this
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120 ——— ] 120 ———— Remarkably, fory = 0, one thus recovers Kuczynski's
h h law (4), which was based on the assumption of a
100 | { 100 b . continuous evolution beginning with(0) = 0. Thus his
estimates are still valid on the average, even if voids
80 |- { sof - are being formed. Figure 4 shows the comparison of (8)
<‘ > /’ with the numerical simulation of (1) and (2), using an
60 1 sl _ initial radius of o = 107*. Since the parametes,
are taken from previous estimates, there is no adjustable
w0l 1 ol i parameter in the comparison. The excellent agreement
< > - starts to break down only at larger valuesrofwhen the
.l ] 1 »l i incremental change inis no longer small. By comparing
(8) and (4), the amplitudd from (4) can be identified
: | unaure asA = 7a/ 7y, and thus voids are found below,iq =

0

452101254 05040302010 o1 0.0017 according to (5). Looking back at Fig. 2(b), this
FIG. 3. Evolution of a semi-infinite straight channel of width résult is in good agreement with simulations. As pointed
1, cut from a two-dimensional piece of material. At the out before, forr > ry.q the width of the hollow shrinks
left, the profile is shown; to the right, one can see the locaffaster than expected from the estimate~ = leading
curvature. While the groove fills in, it develops an increasinglyiq the larger exponent/6 for r(z), which is what was

EL?SSUJE\?SOBZ'onvhigﬂrta?tﬂgf‘eoe:d'T 4A§°¥gg tglisgc;"%vf\f' tp;]aert 4found by Nichols and Mullins [5]. The existence of this

gap. The preceding two profiles correspondgo= 3.2 x 10°  transient regi.me is again a consequence of the tendency
and1 X 10°. of the dynamics to “undercut” a narrow passage.

So far we have not discussed the evolution of the voids

possibility comes from the oscillatory character of theafter they have formed. To minimize surface area, their

Green function of the fourth-order diffusion equation [4]. 0SS section will evolve to a circle. But the resulting
The touchdown happens after a timg = 7.4 X 10°, torus in fact resembles a long, thin cylinder, which will
and at a distance = 85.5 from the original tip. These then be unstable due to the surface diffusion analog of

numbers were determined from the simulation shown if€ Rayleigh-Plateau instability, forming a necklace of
Fig. 3. From dimensional analysis, the singularity timeSPherical voids. Note that this final instability breaks the
of a gap of widthw is thusr = w470.’ rotational symmetry we have used throughout. Another

Applying this result to the original problem, the touch-
down singularity will occur after a time = r§r, when 3 . . , .

starting from an initial radiug,. On the other hand from
(4) it is clear that the tip of the gap retracts only on a time

scaler, = r(]/A, which is slower. Thus, as long as l0g10(r) sl simulation
ro = rvoia = 1/(10A), () theory
voids will be enclosed continually, as seen in Fig. 2(b).
To understand the asymptotics as— 0, we therefore 34 1

have to study the discrete steps of the forming voids,
which can be obtained with a simple model. If the radius
of the bridge isr; at the last enclosure, it will be 36

tiv1 =1 +aw; =r; + ari2 (6)

at the next, because the channel closes after the tip has
receded a distancew according to the simulation of
Fig. 3. The total time elapsed since the first step is

i =19 Z rff (7) -4
n=0

-30 -28 -26 -24 -22 -20

slope 1/6

slope 1/7 /

according to the above estimates. While (6) and (7) are log(t)

difficult tO,SOIV(,e 'n_CIOSEd form, the Ingremental ChangeHG_ 4. A test of the scaling law (8) for the minimum radius
from one iteration is very small when is small. Thus  as a function of time. The full line is the simulation, and the
one can write (6) and (7) as a continuous evolution, whichlashed line is the theoretical prediction. The initial radius is
easily leads to ro = 107*. The slope is very close tb/7, as predicted by our

/7 theory, while it differs noticeably from the transient slope of
r = [7at/7 + rJ]'"". (8)  1/6, found by Nichols and Mullins [5].
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detail of the subsequent evolution to be pointed out is | thank Joachim Krug for pointing out the problem and
the dynamics close to the point where the walls toucHor enlightening discussions. Howard Stone made very
and close off a void. Asymptotically, this is the same ashelpful comments on the manuscript.
the problem of two spheres touching, but having much
smaller initial radii. Thus for the formation of each
yoid, the whole sequence of ev_en_ts_ is embedded here[l] G.C. Kuczynski, Trans. AIMELSS, 169 (1949).
in a process that repeats itseldl infinitum Very soon 2] R. M. GermanPowder Metallurgy SciencgMetal Powder
of course the structures become so small that they are  |ndustries Federation, Princeton, NJ, 1984).
virtually impossible to follow even numerically. [3] W.W. Mullins, J. Appl. Phys28, 333 (1957).

Finally, it should be noted that the diameter of the [4] W.W. Mullins, J. Appl. Phys30, 77 (1959).
largest spherical void is onlf).1 wm if the initial sphere  [5] F.A. Nichols and W.W. Mullins, J. Appl. PhyS86, 1826
radius is 1 mm. Above the roughening temperature [10],  (1965).
macroscopic facets disappear, and the surface is smootff] J- Eggers, Rev. Mod. Phy89, 865 (1997).
down to atomic scales. By using one sphere as the tip ofl’] ;5'25 (Pl%";%s and R.E. Goldstein, Phys. Rev. L&®,
a scanning tunneling microscope, one should be able to[s] 3. Eggers, J. Lister, and H. A. Stone (to be published).
make the approach of the two spheres in a very controIIedég]

. . J. Eggers and T.F. Dupont, J. Fluid Meck62 205
fashion, such that contact is made on a nanometer scal (19923 P 2

[11,12]. Voids formed in the process of touching shouldi;o; . Rottman and M. Wortis, Phys. Reb03, 59 (1984).
therefore be confined to atomic scales as well. Thu$11] J. K. Gimzewski and R. Méller, Phys. Rev. 85, 1284

allowing for a careful preparation of the two crystals, voids (1987).
of the predicted size should be observable experimentally§12] J.I. Pascuakt al., Phys. Rev. Lett71, 1852 (1993).
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