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Noninterferometric Phase Imaging with Partially Coherent Light
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We demonstrate that interferometric imaging may be replaced by noninterferometric propagation-
based techniques in many experiments. We explore propagation through the Poynting vector and
find two classes of phase, one of which is topological in origin. Only this latter class may require
interferometry to be determined, and even then only in specific well-defined circumstances. Our
alternative definitions of phase are readily generalized to partially coherent radiation. Our analysis
leads to an approach that is able to determine the absolute phase and the amplitude of a wave.
[S0031-9007(98)05618-X]

PACS numbers: 42.30.Rx, 41.20.Bt, 42.25.Kb, 42.50.—p

Interferometry is a key technique in the exploration ofso extends the range of applicability of phase determina-
many aspects of physics and is the subject of continuetion techniques and substantially reduces the coherence re-
development. Single crystal interferometers are nowjuirements on the source.
routinely used for x rays [1] and neutrons [2]. In recent Quantitative noninterferometric phase determination
years, the most intensive work has been the quest ttechniques have been based on the solution of the so-
construct an interferometer for atom optics [3]. All of called transport-of-intensity equation [9], which relates
this work is motivated by the sensitivity of phase basedhe irradiance/(7,,z) and phase¢(¥,,z) of a par-
measurements in the context of both fundamental physicaxial monochromatic wave to its longitudinal irradiance
and for the measurement of physical properties. derivative 9I(7,,z)/9z. Note that where the paraxial

Simultaneously, in adaptive optics there has been approximation has been adopted, three-dimensional
substantial effort devoted to the development of rapidunctions will be described in terms of the coordinate
phase determination techniques [4]. This work has theystem(7,,z), wherez denotes position along the op-
aim of developing a sensor for atmospheric wave frontical axis andr, position within a plane normal to the
distortions and building this sensor into an optical systenoptical axis. The transport of the intensity equation is
able to correct the distortions in real time. derived by taking the imaginary part of an expanded

More recently, work has been published on the visualform of the time-dependent paraxial wave equation
ization of phase changes induced in very energetic x ray&/: + 2ikd/0z)JI1(F..z)exdi¢(Fi.z)] =0, where
[5]; this work is of importance in the context of new V, is the two-dimensional gradient operator acting in the
third-generation x-ray sources. Related methods havplane containing,, k = 27 /A, andA is the wavelength.
allowed precise quantitative x-ray phase determinatioiThe resulting expression is [7,9]
using noninterferometric propagation-based techniques [6] -

SO . . al(71,0)
originating in adaptive optics research [7]. —k—2 =

The key feature of interferometry is its ability to quan- 9z
titatively measure the phase of the wave field. HoweverEquation (1) relates the rate of change of irradiance in the
it is now apparent that noninterferometric techniques maylirection of the optical axis to the irradiance and phase of
also allow phase to be measured quantitatively and may ofhe light in a plane perpendicular to the optical axis.
fer a more stable and less technically demanding approach. It has been shown that, in the absence of irradiance
The aim of this Letter is to explore the fundamental ba-zeros, Eq. (1) has a unique solution for the phase [10].
sis of this class of noninterferometric phase measurememhere the irradiance contains spatial variation, the equa-
techniques and to identify those classes of phase that atien is soluble, but the solution has previously appeared
able to be determined without stringent coherence requirde be numerically difficult [11]; this issue is addressed
ments. We find that, under conditions commonly implicitin detail later in this paper. Particularly straightforward
in interferometry, such as a uniform irradiance distribu-solutions are possible in the case of uniform irradiance
tion, the propagation-based approaches are sensitive ordynd this has been demonstrated for hard x-ray phase
to a class of phase we identify here as “scalar phase.” Urimaging [6].
der these conditions interferometry is required to measure In this Letter we use the ideas underlying Eq. (1) to
our “vector phase” component which is topological in ori- explore this approach to phase determination and show that
gin and we conjecture to include the “Berry phase” [8] asit gives rise to a more general framework for phase and
a special case. phase measurement.

The formalism we develop allows the concept of phase Consider a complex free-space scalar waMg, t) as-
to be generalized to include partially coherent radiation andociated with a general polychromatic field. As usual, we

Vi - UFLOVLIo(FL0]. (1)
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define the time-averaged irradiance of the field,ag7) =
(|{U(¥,1)|*), where() denotes an average over time.

V() = “IV - Seon()], (10a)

Poynting’'s theorem in free space, which embodies con-

servation of energy, may be written:
> J R
V.St + EW(r,t)=O, (2)

whereW is the appropriately defined energy density and
is the appropriately defined Poynting vector [12,13]:

. 1 R R
SG.1) =~ [VUGE.0 2 UG

+vwma%Umﬂ. 3)

Now consider a coherent scalar electromagnetic field of

angular frequencw:

U(F, 1) = \Ieon(F) exfli(¢(F) — w1)], 4)

Vgu() = ~ T [V X S (D).

Thus, these two functions are related to the Poynting
vector and thereby to the phase of the wave via [14]

_l V- gvcoh(;/)

(10b)

¢s(7) = s = dF
) [F — 7|
1 Vip(F') 5.
= —E md r/, (113)
> X 3 !
() =+ [ TSl g
1) |F — 7|
I [ VXVGF) 5.
= E Wd r/. (llb)

wherel o, (7) ande (7) are, respectively, the irradiance and These are the fundamental quantities discussed in this
phase associated with the coherent field. The energy deR2Per- - o _
sity W of a strictly monochromatic field is time invariant, _ Note that ¢v(r) =0, if V X V¢(r) = 0. That is,

and therefore the coherent version of (2) is

2 §coh(;) =0, (5)

where the subscript on the Poynting vector indicates
coherent field. Substitute (4) into expression (3) for the

Poynting vector to obtain
> 1

Scoh(;) = A Icoh(;)wv¢(;) > (6)
so that Eq. (5) becomes
V- Ueon(F)Ve(F)] = 0. (7)

¢év(r) = 0, if the phase of the coherent wave is single
valued and continuous. The vector phase component is
clearly topological in origin and we believe it is very
losely related to the Berry phase [8]; this relationship will
e explored in another paper.

With the notation introduced, the coherent Poynting
theorem may be rewritten:

V  Teon(AVhs(P)] + Vien(F) - [V X ¢v(7)] = 0.
(12)

Thus, if the phase is continuous and single valued, then
¢y(¥) = 0, and we recover the standard transport-of-

This is identical to the coherent (nonparaxial) transportintensity equation wherebs(7) reduces to the conven-
of-intensity equation of Teague [9], although this equatiortional phase of the optical field. This result identifies

first appears in the earlier paper of Green and Wolf [12].

We define thenormalizedPoynting vector as

$3) = lim 3G)/11G) + ). ®)

If we are sufficiently removed from sources, the vector

field S(7) is continuous and bounded. However,es»

0 the normalized vector field(7) may be discontinu- holds
ous across any zeroes of average irradiance that may )

present.

. Consider the coherent normalized Poynting vector
According to the Helmholtz decomposition
theorem for vector fields, this field may be represented a;

5:coh(;'))-

the sum of the gradient of a scalar functign(r), and the
curl of a divergence-free vector functiahy, (7):

Seoh(F) = (0/4m) [Vhs(F) + V X dy(P].  (9)

We introduce the termscalarandvector phasdor the
two functions¢g and ¢y, respectively. They obey the
differential equations:

the nonuniqueness foreshadowed in earlier discussions of
phase recovery using the transport-of-intensity equation
approach [10]. )

If, however, ¢y (¥) # 0 then there are no measurable
consequences to the flow of energy if the condition

Vieon(7) - [V X ()] =0 (13)
If this condition is not obeyed, then there will, in

liﬁ(ft:neral, be observable effects on the energy flow.

We conjecture that this discussion is related to the
well-known Aharonov-Bohm effect [15], where quantum
mechanical waves are passed perpendicular to a line of
Current. As the vector phase associated with such an ex-
periment will be aligned with the line of current, Eq. (13)
will be obeyed. Propagation-based phase determination
will fail to detect the phase and so interferometry is needed
to observe any phase shift.

Consider now a partially coherent field. In this case, the
Poynting vector varies with time and the average energy
flow is described by the time-averaged Poynting vector.
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If the average Poynting vector field is normalized by the V2 4(7,.0) _ck? 9I(FL,0)
time-averaged irradiance to giv,.(¥), we have a well- L7 47 iz

defined vector field which may be Helmholtz decomposedrhe phase may then be directly recovered using, for
into the partially coherent analog of (9): example,

SweP) = (@/4m) [Vos(F) + V X dy(P].  (14)

(20)

- - 1 _,01(71,0)
: _ ,0=—kV2V-[e A }
where @ is the mean angular frequency. The time- $(1,0) = [ + I(r,,0) LN 0z
averaged form of Poynting’s equation becomes (21)
V - Save(?) = V - [Lve(F)Ves(7)] whereV? is the universe Laplacian calculated by what-

. - ever appropriate method. This reduces to the previously
+ Vine(r) - [V X ¢v(F)] = 0, (15) published form [6] in the case that the field is quasi-

which is identical to Eq. (12). Note that in this case theremonochromatic and the irradiance is uniform and given

is no clear criterion for the existence of a nonzér@; it by 7o
may be shown that the vector phase may be present even . 1 __, aI(7,0)
where there are no irradiance zeros. ¢ (7,0) = —k A Vi ———.

0
We see from Eqg. (14) that the scalar and vector phases . ¢ .
may be rigorously defined purely in terms of the normal-Thus, we have a practical approach for recovering both the

(22)

ized time-average Poynting vector via amplitude and the phase, as defined here, of an arbitrary
| v. § ) wave field. The_ solution is unique to within a phase
bs(f) = —— | 2wl ) sy (16a) Ccomponent obeying Eq. (13).
1) [F — 7| To briefly demonstrate this approach to phase recov-
N | VX3 ) ery we ran a simulation of the object in Fig. 1 being il-
oy(F) = = >, (16b) luminated by a plane polychromatic x-ray wave. The

@ 7 =7 image was taken to be 1 mm square and consisted of
and correspond to the previously defined phases [Eq. (11%56 X 256 pixels. The illumination was assumed to be in
in the coherent limit. We thus have a generalized defithe x-ray band with a minimum wavelength @b A and
niton of phase that is appropriate in the context ofa maximum ofl.5 A, and the irradiance reduced linearly
propagation-based phase determination. For the rdrom a maximum ati.5 A to 50% of this value a0.6 A.
mainder of this Letter we will drop any subscripts on The phase object was taken to have the properties of carbon
the irradiance and Poynting vector in Eq. (15) as thewith a thickness varying from O t80 uwm. This produced
expressions are valid whether the light is fully coherenia wavelength-dependent maximum phase shift of between
or not. 1.837 and4.597. Any absorption by the carbon was ig-
We now turn to the problem of solving for the general-nored for the purpose of the simulation. The absorption
ized phase of the wave field. It is straightforward to showcomponent of the object consisted of eithenm of gold
that in the paraxial approximation Eq. (15) becomes or void. The transmission of the gold section thus varied
- from 71% to 88% over the spectrum. Any phase effects in-
—k AL0) _ V. - [UF.L,0V,¢s(F,0)] + V, I(7,0) ducedby the gold were ignored so as to provide a clear dif-
0z . ference between the phase and the absorption components
VX vl A7) ofthe object. The wave field was numerically propagated
wherek is the appropriately averaged value for the waveto planes at a 5.0 cm distance on either side of the object.
number. In the absence of vector phases this is identicdlhe longitudinal irradiance derivative was then estimated
in form to the paraxial form of the coherent transport-of-by simply taking the difference between the irradiance dis-
intensity equation. tributions on either side of the plane of interest, as would
Consider the Helmholtz decomposition of the Poyntingbe done in an experiment. The phase and amplitude were
vector and let us discard the rotational component. Onlghen recovered via a fast-Fourier-transform implementa-
in the case of uniform irradiance is this equivalent totion of Eq. (21), and took approximately one minute on an
assuming the absence of vector phase components. Undetel Pentium Pro 200 MHz based personal computer. The

this condition we may write results are shown in Fig. 2 and are identical, to within nu-
. . merical accuracy, to the original phase/amplitude screen.
S(F) = Vi(r), (18)  Note that only the recovered phase is shown as the ampli-
for some ¢(7). The time-averaged Poynting theorem tude transmission is determined directly. _
becomes In conclusion, then, we have shown that propagation-
- based phase determination techniques may, in many cases,
V24 (7) = 0. (19) P d y y

be used in place of interferometry and, therefore, may al-
Let us adopt the paraxial approximation so that we mayow great simplification of experiments hitherto thought
write to require interferometry. Propagation-based approaches
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(a)

FIG. 2. Recovered thickness distribution using approach
described in the text. It is indistinguishable from the input
thickness variation.

(b)

phase determination approach. It is hoped, therefore, that
this paper yields some useful insights for fundamental ex-
periments of this form.
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