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Wave Function Intensity Statistics from Unstable Periodic Orbits
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(Received 5 November 1997)

We examine the effect of short unstable periodic orbits on wave function statistics in a class
chaotic system, and find that the tail of the wave function intensity distribution in phase spa
dominated by scarring associated with the least unstable periodic orbits. In an ensemble averag
systems with classical orbits of different instabilities, a power-law tail is found, in sharp contrast to
exponential prediction of random matrix theory. The calculations are compared with numerical
and quantitative agreement is obtained. [S0031-9007(98)05543-4]

PACS numbers: 05.45.+b, 03.65.Sq
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Quantum eigenstates of classically chaotic syste
generically exhibit a phenomenon known as scarring, t
enhancement of intensity along short unstable periodic
bits for some fraction of the wave functions. Scarring
a fascinating example of the influence of identifiable cla
sical structures on stationary quantum properties and
long-time quantum transport in a classically ergodic sy
tem. The occurrence of scars is in some sense parad
cal, because classically, all such short-time information
destroyed at long times, and a classical probability d
tribution after being evolved for a sufficiently long time
retains no memory of its initial state. Scarring is one
the most dramatic examples of a departure of quantu
chaotic systems from the predictions of random matr
theory (RMT), according to which wave functions mus
be evenly distributed over phase space, up to quant
fluctuations. Scarring has now been observed experim
tally in a variety of systems, including microwave cavitie
[1,2], tunnel junctions [3], and the hydrogen atom in
uniform magnetic field [4,5].

Examples of scarring were observed numerically
[6], and a theory based on the semiclassical evoluti
of Husimi states near a periodic orbit was provide
Later work by Bogomolny [7] and Berry [8] involved
calculations in coordinate space and Wigner phase spa
respectively. All these works were based on the lineariz
dynamics around the unstable periodic orbit, and we
thus, by construction, theories of the short-time behav
only. Yet to get a true understanding of the properties
individual eigenstates it is essential to understand the lon
time quantum dynamics, including returns of amplitud
to the original periodic orbit after undergoing excursion
into other areas of phase space. In a recent paper [9
formalism was developed for dealing with these nonline
contributions to scarring, providing quantitative agreeme
of the theory with numerical results. This work used
measure of scarring based on Husimi intensities. (Recen
Fishman, Agam, and others have provided interesting n
perspectives on the problem of scarring, and have offe
a measure of scarring related to, but somewhat differe
from ours [10]. A number of other authors have als
made significant contributions in this area; we cannot l
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them all but a few recent references are provided in [11
In this paper, we will apply a result previously obtained
in [9] to compute the effect of scarring on the wave
function intensity distribution, a function which has bee
investigated previously for diffusive systems [12].

We first give a general idea of the formalism an
state the key result of [9] which is relevant to the
present work. A Gaussian wave packetjCl is initially
centered close to a classical periodic orbit and allowed
evolve. If the instability exponentl of the orbit is small,
the functionAstd ­ kCjCstdl will (under the linearized
dynamics) exhibit recurrences on a time scale of on
periodTP, and the amplitude of these recurrences deca
on a scaleTPyl. This decay leads to the formation
of envelopes in the local density of statesSsEd, which
is the Fourier transform of the autocorrelation function
These envelopes in the energy spectrum have spac
h̄yTP, width scaling ash̄lyTP for small l, and height
scaling asl21. Long-time (nonlinear) recurrences lead
to fluctuations multiplying this envelope in the energ
domain. Eventually, by the Heisenberg timeTH ­ h̄yD,
whereD is the mean level spacing, individual peaks ar
resolved in the spectrumSsEd, the heights of the peaks
being the intensities of the corresponding eigenstates
the test statejCl, SsEd ­

P
n jknjClj2dsE 2 End.

The simplest picture of the nonlinear recurrences a
sumes that the periods, actions, and homoclinic poin
corresponding to the long-time excursions are rando
and uncorrelated, up to the constraint of unitarity whic
produces delta-function spectral peaks by the Heisenbe
time. This, when combined with the known short-time
dynamics in the linear regime, can be shown to produce
chi-squared distribution of spectral intensities multiplyin
the original linear envelope.

[Strong, isolated nonlinear recurrences which cannot
treated statistically, as well as correlations between lon
time excursions modify this simple picture. However
we will find that for the generalized baker’s maps (
paradigmatic example of hard chaos), the assumptions
randomness beyond the linear decay time lead to resu
which are in quite reasonable agreement with numeric
data.]
© 1998 The American Physical Society
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A key result of the calculations in Ref. [9] is the fol-
lowing: Individual spectral lines (overlap intensities) in
the local density of states obey the usual chi-squar
(Porter-Thomas) fluctuations, but these are modulated
the Fourier transform of the linearized short-time auto
correlation function. The latter can be computed analyti
cally in terms of the instabilityl of the classical orbit
in question [see Eq. (4) below]. More explicitly, in the
case of complex eigenstates, the chi-squared distribut
has 2 degrees of freedom, and in the absence of scar
the probability of having a spectral line height greater tha
x is given byPsxd ­ exps2xd. Herex is normalized to
have a mean value of unity, i.e.,xn ­ NjknjClj2, where
N is the total number of states. Now in the presence
scarring this is modified to

PsE, xd ­ expf2xySlinsEdg (1)

for an eigenstate with energyE. HereSlin is the spectral
envelope given by the Fourier transform of the linearize
dynamics[Eq. (4) for the case treated in the present pape

In the following discussion we will for simplicity con-
sider the case of scarring by a fixed point of a discrete-tim
map. (The generalization of the results to orbits of perio
greater than one and to continuous time systems is straig
forward [9].) So let us consider without loss of generalit
a hyperbolic fixed point at the origin of a compact phas
space, with exponentl, and stable and unstable manifold
oriented along thep andq axes, respectively. The equa
tions of motion near the fixed point are then given by

q0 ­ q expsltd ,

p0 ­ p exps2ltd .
(2)

In the presence of shearing, e.g.,≠q0y≠p fi 0, or for
nonorthogonal stable and unstable manifolds, or in the c
where the manifolds are not oriented along thep and q
axes, a canonical transformation would first need to
performed to get the equations of motion into the for
above. Now we define our test state to be a Gaussian w
packet centered atsq0, p0d, with horizontal widths and
vertical width sp ­ h̄ys. In coordinate representation
this is given by

Csqd ­ s4ps2
pd1y4 expf2sq 2 q0d2y2s2

1 ip0sq 2 q0dyh̄g . (3)

In situations described above where the local equatio
of motion do not have the form of Eq. (2) in the natura
coordinates, an optimal test state would have a comp
width s in those coordinates, as can be seen by perform
a canonical transformation of the Gaussian of Eq. (3).

We now allow the wave packet to evolve unde
the linearized dynamics, stretching each time step by
factor of el in the q direction and shrinking by the
same factor in thep direction. The linearized quantum
autocorrelation function after timet is given by
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Alinsq, p, s, l, td ­
expiu0t
coshlt

3 exp

"
2

coshlt 2 1
2 coshlt

√
q2

0

s2
1

p2
0

s2
p

!
2

iqp
h̄

tanhlt

#
. (4)

Here u0 is the phase associated with one iteration of th
periodic orbit, given by the classical action in units of
h̄, plus any Maslov indices associated with caustics i
the classical dynamics.u0 determines the location of the
peak in the spectral envelopeSlinsEd, defined to be the
Fourier transform ofAlinstd. Since we will be interested
in performing an energy average, we freely setu0 ­ 0.

Now the expression in Eq. (4) can be inserted into
Eq. (1) to obtain the distribution of wave function in-
tensities at a given energy. Because we wish here
consider all eigenstates, independent of energy, we th
perform an energy averaging, remembering that for a ma
the quasienergy is defined to lie between0 and2p only.
We also notice that the tail of the intensity distribution
will be dominated by the peak of the spectral envelope a
E ­ 0, and we therefore can use a saddle-point approx
mation, obtaining

Psq, p, s, l, xd ­
1

2p

Z
dE Psq, p, s, l, E, xd

ø
1

p
2p

expf2xySlinsq, p, s, l, E ­ 0dgq
2x

Slins0d2
≠2Slin

≠E2

,

(5)

where the expression obtained is an asymptotic form vali
for largex. For smalll, the sum over time steps can be
replaced by an integral, and we have atq0 ­ p0 ­ 0

SlinsEd ­
Z

dt
e2iEt

p
coshlt

. (6)

Now by dimensional analysis,Slins0d ­ Qyl and
≠2Slin

≠E2 s0d ­ 2Wyl3, where Q and W are numerical
constants. We thus obtain the first result of this pape
the tail of the intensity distribution for a wave packet
centered on a periodic orbit,

Psq0 ­ 0, p0 ­ 0, s, l, xd ­
1

p
2p

Q
p

W
lsxld21y2e2xlyQ .

(7)

Notice that the exponential tail has been effectively
stretched by a factor ofQyl, corresponding to the
increased height of the peak of the linear envelope a
small l. There is also a linear suppression factor ofl,
corresponding to the width of the peak inSlinsEd, and
indicating that only a fraction scaling asl of all the
eigenstates are effectively scarred. The remainder of th
eigenstates are typically “antiscarred,” having on averag
a lower intensity at the periodic orbit than would be
expected based on RMT. This distribution will have a
2583
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nontrivial inverse participation ratio (IPR), scaling as th
inverse of the width of the linear envelope, i.e., as1yl.

The region of validity of Eq. (7) is
1 ø l21 ø x ø N . (8)

The first inequality ensures that many iterations of th
periodic orbit contribute (so the sum over iterations ca
be replaced by an integral) and the scarring is stron
In fact, however, because of the large value of th
numerical constantQ, the formula works well even
for exponents as small as ln2, as will be seen in the
numerical study below. The second inequality says th
we are in the tail of the distribution and the event
are all coming from the peak of the linear envelope
The third inequality is a unitarity constraint—obviously
our assumption of random fluctuations breaks down f
intensities of order unity, when the entire wave functio
would be concentrated in a phase space area of orderh̄.

Now we go on to perform a similar analysis integratin
over the phase space variablesq0 andp0. As before, we
take the exponential expf2xySlinsq0, p0, . . .dg and expand
to second order inq0, p0 around the maximumq0 ­
p0 ­ 0. Then upon integration by stationary phase w
pick up a determinant factor of

2pfSlins0dg2

x
1r

≠2Slin

≠q2
0

≠2Slin

≠p2
0

. (9)

Here we have taken the classical phase space volume
be unity for simplicity. Now for smalll,

≠2Slin

≠q2
0

s0d ­
2

s2

2Z
l

, (10)

whereZ is yet another numerical constant, and similarl
for p0, with s replaced bysp ­ h̄ys. So the total factor

resulting from the phase space integration isp h̄
sxld

Q2

Z , again
independent ofs. Combining this with the expression
in Eq. (7) above, we obtain the second result, for th
distribution of overlap intensities after energy and pha
space averaging,

Psl, xd ­

r
p

2
Q3

Z
p

W
h̄lsxld23y2 exps2xlyQd . (11)

Here we have picked up a factor ofh̄ from the factor
of s in Eq. (10) and the corresponding factor ofsp ­
h̄ys associated with the falloff inSlin in the momentum
direction. This indicates that the tail is coming entirel
from the region near the periodic orbit, specifically from
wave packets that have large classical probability dens
right on the orbit. (Thus, a measure like the IPR for
generically placed wave packet will not see the effe
of scarring by an individual periodic orbit, when the
semiclassical limit has been taken.) The result
Eq. (11) is valid in the regime

maxsln N , l21d ø x ø N . (12)

Here lnN is the value ofx near which the RMT exponen-
tial decay law reaches values of orderh̄ ­ 1y2pN. In
2584
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this region, a crossover occurs between the head of t
distribution, which is dominated by a nonscarred regio
of phase space and approaches the Porter-Thomas (RM
prediction, and the tail, dominated by scarring, given b
the expression above. The expression Eq. (11) holds a
for an ensemble of systems, all having an orbit with insta
bility l. In principle, we should, of course, do a sum ove
all periodic orbits; however, the tail will clearly always be
dominated by the orbit with the smallestl.

Finally, we now consider an ensemble of system
where the value of the smallest exponent varies fro
system to system, with distributionP sld ­ Cla for
small l. Then using Eq. (11) and integrating overl we
obtain

Psxd ­ C

r
p

2
Q3

Z
p

W
Qa11y2Gsa 1 1y2dh̄x2s21ad.

(13)

Note that this is an uncontrolled approximation becaus
we have integrated overl after having assumedxl

was large. However, if we had included higher-orde
corrections insxld21 in Eq. (11), the scaling ofPsxd
would remain unchanged, i.e.,

Psxd ­ Cfsadh̄x2s21ad, (14)

with the dimensionless functionfsad somewhat different
from that given in Eq. (13). An important point is that
the tail displays power-law behavior in the intensityx,
a strong deviation from the exponential prediction o
RMT. As with Eq. (11), this asymptotic form is valid for
values ofx large compared to lnN and small compared
to N. For smallx we again expect a crossover to the
Porter-Thomas form. For largex we expect a downward
correction away from thex2s21ad form, with a breakdown
of the approximation occurring at some fraction ofN,
depending ona.

Now, we proceed to test numerically these prediction
of the nonlinear scarring theory. The system we use f
this purpose is the generalized three-strip baker’s ma
described in some detail in [9]. This system is simila
to the original baker’s map, except that the two strip
are replaced by three, with widths generally unequal, b
normalized to

P2
i­0 wi ­ 1. There is a fixed point of

the classical dynamics associated with the middle stri
and the instability associated with this orbit is given by
l ­ j ln w1j. So we choosew1 ­ 1y2, setN ­ 200, and
find numerically the wave function intensity distribution
at the fixed point after ensemble averaging over th
widths w0,2. (The predictions are expected to hold for
individual systems as well, at sufficiently large values o
N . However, for the matrices which we can efficiently
diagonalize,N is not large enough to obtain good statistic
in the tail without ensemble averaging.) A circular
wave packet of widths ­

p
h̄ is used. The results are

compared in Fig. 1 (upper thick curve) with the prediction
of Eq. (7), plotted as a dashed curve. The RMT predictio
is shown as a dotted line. Note that the theoretic
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FIG. 1. Cumulative wave function intensity distribution (up
per curves) as measured by a test state centered on a p
odic orbit with instabilityl ­ ln 2, plotted as the upper thick
curve with scarring theory prediction given by dashed curv
and (lower curves) averaged over the entire phase space of
200h, plotted as the lower thick curve with theory given by
solid curve. The dotted line is the Porter-Thomas law.

prediction of Eq. (7) has no free parameters and ish̄
independent, depending only on the exponentl of the
periodic orbit in question.

Next, we perform a phase space average for the syste
described above, collecting statistics for wave packe
uniformly distributed over the entire phase space. Th
resulting statistics are also plotted in Fig. 1 (lower thic
curve), where the theoretical prediction for the tail, give
by Eq. (11), is shown as a solid curve. Again, the Porte
Thomas distribution appears as a dotted line. We see
crossover between the two regimes at a value ofx of order
ln N.

Finally, we want to construct an ensemble which wi
contain systems with orbits of different instability expo
nentsl. For this purpose, we take a uniform distribu
tion of strip widthsw0 andw2, each in the rangef0, 1y4g.
The fixed point in the middle strip, with exponentl ­
j lns1 2 w0 2 w2dj, is always the least unstable periodi
orbit. This ensemble has powera ­ 1 andC ­ 42 ­ 16
in the notation of Eq. (13). Averaging over100 systems,
we obtain the statistics plotted in Fig. 2. The power-la
prediction given by Eq. (13) is plotted as a solid line on th
log-log scale, with the RMT prediction as a dotted curve
Once again, we see a crossover between the two regim
for x of order lnN ø 5.3. We also see a gradual break
down of the approximation asx approaches values com-
parable toN ­ 200. Note that the quantitative agreemen
is in spite of the fact that an uncontrolled stationary pha
approximation was used in obtaining the overall consta
in front of Eq. (13), as explained above. The importan
thing to notice here is the power-law behavior of the ta
in agreement with the theory, and the dramatic deviatio
from the predictions of RMT. Byx ­ 100, where the ap-
proximationx ø N is clearly beginning to break down,
the measured probability is still within a factor of4 of our
prediction and is enhanced by1037 over the Porter-Thomas
value.
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FIG. 2. Cumulative wave function intensity distribution after
ensemble averaging over systems with classical orbits
different instability exponents. Here againN ­ 200, and the
dotted curve is the RMT prediction.

We have also checked the linearh̄ dependence of the
phase-space averaged results Eqs. (11) and (13) by rep
ing the preceding numerical analysis with larger matr
ces (N ­ 500, 1000). In addition, we have constructed
an a ­ 0 ensemble by imposing the restrictionw0 ­ w2
and have observed ax22 power-law behavior in accor-
dance with Eq. (13).
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