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Wave Function Intensity Statistics from Unstable Periodic Orbits

L. Kaplan*

Department of Physics and Society of Fellows, Harvard University, Cambridge, Massachusetts 02138
(Received 5 November 1997

We examine the effect of short unstable periodic orbits on wave function statistics in a classically
chaotic system, and find that the tail of the wave function intensity distribution in phase space is
dominated by scarring associated with the least unstable periodic orbits. In an ensemble average over
systems with classical orbits of different instabilities, a power-law tail is found, in sharp contrast to the
exponential prediction of random matrix theory. The calculations are compared with numerical data,
and quantitative agreement is obtained. [S0031-9007(98)05543-4]

PACS numbers: 05.45.+b, 03.65.Sq

Quantum eigenstates of classically chaotic systemthem all but a few recent references are provided in [11].)
generically exhibit a phenomenon known as scarring, thén this paper, we will apply a result previously obtained
enhancement of intensity along short unstable periodic orin [9] to compute the effect of scarring on the wave
bits for some fraction of the wave functions. Scarring isfunction intensity distribution, a function which has been
a fascinating example of the influence of identifiable clasinvestigated previously for diffusive systems [12].
sical structures on stationary quantum properties and on We first give a general idea of the formalism and
long-time quantum transport in a classically ergodic sysstate the key result of [9] which is relevant to the
tem. The occurrence of scars is in some sense paradoxifesent work. A Gaussian wave pack8t) is initially
cal, because classically, all such short-time information isentered close to a classical periodic orbit and allowed to
destroyed at long times, and a classical probability disevolve. If the instability exponent of the orbit is small,
tribution after being evolved for a sufficiently long time the functionA(r) = (¥|¥(¢)) will (under the linearized
retains no memory of its initial state. Scarring is one ofdynamics) exhibit recurrences on a time scale of one
the most dramatic examples of a departure of quanturperiodT», and the amplitude of these recurrences decays
chaotic systems from the predictions of random matrixon a scaleTp/A. This decay leads to the formation
theory (RMT), according to which wave functions mustof envelopes in the local density of stat8&%), which
be evenly distributed over phase space, up to quantums the Fourier transform of the autocorrelation function.
fluctuations. Scarring has now been observed experimeti-hese envelopes in the energy spectrum have spacing
tally in a variety of systems, including microwave cavitiesii/Tp, width scaling asiA/Tp for small A, and height
[1,2], tunnel junctions [3], and the hydrogen atom in ascaling asA~!. Long-time (nonlinear) recurrences lead
uniform magnetic field [4,5]. to fluctuations multiplying this envelope in the energy

Examples of scarring were observed numerically indomain. Eventually, by the Heisenberg tifig = //A,

[6], and a theory based on the semiclassical evolutionvhere A is the mean level spacing, individual peaks are
of Husimi states near a periodic orbit was provided.resolved in the spectrurfi(E), the heights of the peaks
Later work by Bogomolny [7] and Berry [8] involved being the intensities of the corresponding eigenstates at
calculations in coordinate space and Wigner phase spacihe test stat¢W), S(E) = >, [(n|P)|?8(E — E,).
respectively. All these works were based on the linearized The simplest picture of the nonlinear recurrences as-
dynamics around the unstable periodic orbit, and wersumes that the periods, actions, and homoclinic points
thus, by construction, theories of the short-time behaviocorresponding to the long-time excursions are random
only. Yet to get a true understanding of the properties oind uncorrelated, up to the constraint of unitarity which
individual eigenstates it is essential to understand the longroduces delta-function spectral peaks by the Heisenberg
time quantum dynamics, including returns of amplitudetime. This, when combined with the known short-time
to the original periodic orbit after undergoing excursionsdynamics in the linear regime, can be shown to produce a
into other areas of phase space. In a recent paper [9], i-squared distribution of spectral intensities multiplying
formalism was developed for dealing with these nonlineathe original linear envelope.

contributions to scarring, providing quantitative agreement [Strong, isolated nonlinear recurrences which cannot be
of the theory with numerical results. This work used atreated statistically, as well as correlations between long-
measure of scarring based on Husimi intensities. (Recentiyme excursions modify this simple picture. However,
Fishman, Agam, and others have provided interesting newe will find that for the generalized baker's maps (a
perspectives on the problem of scarring, and have offeregaradigmatic example of hard chaos), the assumptions of
a measure of scarring related to, but somewhat differemandomness beyond the linear decay time lead to results
from ours [10]. A number of other authors have alsowhich are in quite reasonable agreement with numerical
made significant contributions in this area; we cannot lisdata.]
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A key result of the calculations in Ref. [9] is the fol- Ain(q, pr o A 1) = expibot
lowing: Individual spectral lines (overlap intensities) in e coshAr
the local density of states obey the usual chi-squared coshar — 1 { q3 e
(Porter-Thomas) fluctuations, but these are modulated by X T o coshar (; ;)
the Fourier transform of the linearized short-time auto- ) P

correl_ation function. The Iattfe_r can be comput_ed anal)_/ti- _ 4p tanh)tt} _ (4)
cally in terms of the instabilityr of the classical orbit

in question [see Eq. (4) below]. More explicitly, in the

case of complex eigenstates, the chi-squared distributioriere 6y is the phase associated with one iteration of the
has 2 degrees of freedom, and in the absence of scarrifgriodic orbit, given by the classical action in units of
the probability of having a spectral line height greater thai, plus any Maslov indices associated with caustics in
x is given byP(x) = exp(—x). Herex is normalized to the classical dynamics6, determines the location of the
have a mean value of unity, i.e, = N|(n|¥)|?, where peak in the spectral envelog;,(E), defined to be the
N is the total number of states. Now in the presence ofourier transform ofd;;, (). Since we will be interested

scarring this is modified to in performing an energy average, we freely égt= 0.
Now the expression in Eq. (4) can be inserted into
P(E,x) = exfl—x/Syn(E)] (1) Eq. (1) to obtain the distribution of wave function in-

tensities at a given energy. Because we wish here to
Oconsider all eigenstates, independent of energy, we then
perform an energy averaging, remembering that for a map
the quasienergy is defined to lie betwekeand 27 only.

sider the case of scarring by a fixed point of a discrete—timé(v.ﬁ t?lsg thIC? :jhst me tail Ef :‘htﬁ mtenstltyldlstrltl)utlon ¢
map. (The generalization of the results to orbits of perioow'_ g orglna Ff[h yf € peak ot the S%?jtl: ra gnt\/e ope a
greater than one and to continuous time systems is straight- : ' anbt we therefore can use a saddie-point approxi-
forward [9].) So let us consider without loss of generalityma lon, obtaining

a hyperbolic fixed point at the origin of a compact phase _ Lf

space, with exponerni, and stable and unstable manifolds P(g,p, o . x) 27 dEP(g,p, o, A E,x)

for an eigenstate with enerdy. Here Sy, is the spectral

envelope given by the Fourier transform of the linearize

dynamicqEq. (4) for the case treated in the present paper]
In the following discussion we will for simplicity con-

oriented along the andg axes, respectively. The equa- 1 exd—x/Sin(g, p,0, A, E=0)]
tions of motion near the fixed point are then given by N —x  Sm ’
Siin (0> 9E? 5
q' = gexp(Ar), @ ®)
p = pexp(—Ar). where the expression obtained is an asymptotic form valid

for largex. For small), the sum over time steps can be
In the presence of shearing, e.@q’/dp # 0, or for  replaced by an integral, and we havejat= py = 0
nonorthogonal stable and unstable manifolds, or in the case
where the manifolds are not oriented along thend ¢ Sin(E) = | dt —. (6)
axes, a canonical transformation would first need to be J/coshat
performed to get the equations of motion into the form i i i
above. Now we define our test state to be a Gaussian wal$oW by dimensional analysis,Si,(0) = ¢/A and

—iEt

packet centered d¥, po), with horizontal widtho and E(0) = —W/A3, where 0 and W are numerical
vertical width o, = /i/o. In coordinate representation constants. We thus obtain the first result of this paper,
this is given by the tail of the intensity distribution for a wave packet
centered on a periodic orbit,
W(g) = @mo) " exd—(g — qo0)/207 P(q0=0,po=0,0,A,x)= \/;_ \/% A(xA)~12emxMQ,
+ipolg — q0)/H].  (3) i @

In situations described above where the local equationSlotice that the exponential tail has been effectively
of motion do not have the form of Eq. (2) in the natural stretched by a factor ofQ/A, corresponding to the
coordinates, an optimal test state would have a complekcreased height of the peak of the linear envelope at
width ¢ in those coordinates, as can be seen by performingmall A. There is also a linear suppression factoriof
a canonical transformation of the Gaussian of Eq. (3). corresponding to the width of the peak #,(E), and

We now allow the wave packet to evolve underindicating that only a fraction scaling as of all the
the linearized dynamics, stretching each time step by aigenstates are effectively scarred. The remainder of the
factor of ¢! in the ¢ direction and shrinking by the eigenstates are typically “antiscarred,” having on average
same factor in the direction. The linearized quantum a lower intensity at the periodic orbit than would be
autocorrelation function after timeis given by expected based on RMT. This distribution will have a
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nontrivial inverse participation ratio (IPR), scaling as thethis region, a crossover occurs between the head of the

inverse of the width of the linear envelope, i.e.,1dq. distribution, which is dominated by a nonscarred region
The region of validity of Eq. (7) is of phase space and approaches the Porter-Thomas (RMT)
l< A T<x<N. (8)  prediction, and the tail, dominated by scarring, given by

The first inequality ensures that many iterations of thehe expression above. The expression Eq. (11) holds also
periodic orbit contribute (so the sum over iterations carfor an ensemble of systems, all having an orbit with insta-
be replaced by an integral) and the scarring is strongility A. In principle, we should, of course, do a sum over
In fact, however, because of the large value of theall periodic orbits; however, the tail will clearly always be
numerical constantQ, the formula works well even dominated by the orbit with the smallest

for exponents as small as In as will be seen in the  Finally, we now consider an ensemble of systems
numerical study below. The second inequality says thathere the value of the smallest exponent varies from
we are in the tail of the distribution and the eventssystem to system, with distributiol’(A) = CA* for

are all coming from the peak of the linear envelope.smallA. Then using Eq. (11) and integrating ovemwe

The third inequality is a unitarity constraint—obviously obtain

our assumption of random fluctuations breaks down for _ T Q  aiip —(2+a)
intensities of order unity, when the entire wave function Plx) =C 2 ZJW Q Ta + 1/2)hx '
would be concentrated in a phase space area of arder (13)

Now we go on to perform a similar analysis integrating
over the phase space variablgsand p,. As before, we Note that this is an uncontrolled approximation because
take the exponential ekp x/Siin (g0, po,...)] and expand Wwe have integrated ovea after having assumedA

to second order ingo, po around the maximumy, = Was large. However, if we had included higher-order
po = 0. Then upon integration by stationary phase wecorrections in(xA)~" in Eq. (11), the scaling of(x)
pick up a determinant factor of would remain unchanged, i.e.,
27[ S (0)] 1 ©) P(x) = Cf(a)hx~ @+, (14)
* [ i 2Sin with the dimensionless functiofi(a) somewhat different
Odoopo from that given in Eq. (13). An important point is that
Here we have taken the classical phase space volume tie tail displays power-law behavior in the intensity
be unity for simplicity. Now for small, a strong deviation from the exponential prediction of
028 in 2 -7 RMT. As with Eq. (11), this asymptotic form is valid for
a—q%( ) = o2 A (10)  values ofx large compared to IN and small compared

to N. For smallx we again expect a crossover to the
whereZ is yet another numerical constant, and similarly pgorter-Thomas form. For largewe expect a downward
for po, with o replaced byr, = /o So the total factor  correction away from the~*®) form, with a breakdown
resulting from the phase space integratior?g—% %, again of the approximation occurring at some fraction &f
independent ofr. Combining this with the expression depending onx.
in Eq. (7) above, we obtain the second result, for the Now, we proceed to test numerically these predictions
distribution of overlap intensities after energy and phasef the nonlinear scarring theory. The system we use for
space averaging, this purpose is the generalized three-strip baker’s map,
T 03 32 described in some detail in [9]. This system is similar
P(A,x) = \/;m RA(xA)"“exp(—xA/Q). (11)  to the original baker's map, except that the two strips
are replaced by three, with widths generally unequal, but
normalized tOZiZ=0 w; = 1. There is a fixed point of
the classical dynamics associated with the middle strip,

hi/o associated with the falloff itS, in the momentum 5nq the instability associated with this orbit is given by
direction. This indicates that the tail is coming entirely ) _ lInw,|. So we choose; = 1/2, setN = 200, and

from the region near the periodic orbit, specifically from g nymerically the wave function intensity distribution
wave packets th.at have large classical _probablllty density; the fixed point after ensemble averaging over the
right on the orbit. (Thus, a measure like the IPR for ayqihg . ,. (The predictions are expected to hold for
generically placed wave packet will not see the effec,qiyiqual systems as well, at sufficiently large values of
of scarring by an individual periodic orbit, when the However, for the matrices which we can efficiently
semiclassical limit has been taken)  The result ingizgonalize is not large enough to obtain good statistics
Eq. (11) is valid in the regime in the tail without ensemble averaging.) A circular
wave packet of widthr = /7 is used. The results are
compared in Fig. 1 (upper thick curve) with the prediction
Here InN is the value ofc near which the RMT exponen- of Eq. (7), plotted as a dashed curve. The RMT prediction
tial decay law reaches values of order= 1/27N. In is shown as a dotted line. Note that the theoretical
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FIG. 1. Cumulative wave function intensity distribution (up- FIG. 2. Cumulative wave function intensity distribution after

per curves) as measured by a test state centered on a pefisemble averaging over systems with classical orbits of

odic orbit with instability A =In2, plotted as the upper thick different instability exponents. Here agai = 200, and the

curve with scarring theory prediction given by dashed curvedotted curve is the RMT prediction.

and (lower curves) averaged over the entire phase space of size

2004, plotted as the lower thick curve with theory given by

solid curve. The dotted line is the Porter-Thomas law. We have also checked the lineardependence of the

o . phase-space averaged results Egs. (11) and (13) by repeat-

prediction of Eq. (7) has no free parameters andiis jng the preceding numerical analysis with larger matri-

independent, depending only on the expongnof the  ces (v = 500,1000). In addition, we have constructed

periodic orbit in question. ana = 0 ensemble by imposing the restriction = w,
Next, we perform a phase space average for the systemg,g have observed a2 power-law behavior in accor-

described above, collecting statistics for wave packetgance with Eq. (13).

uniformly distributed over the entire phase space. The This research was supported by the National Science

resulting statistics are also plotted in Fig. 1 (lower thickpgundation under Grant No. CHE-9321260. ltis a plea-

curve), where the theoretical prediction for the tail, givengre to thank E. J. Heller for many stimulating and useful
by Eq. (11), is shown as a solid curve. Again, the Porteryiscussions.

Thomas distribution appears as a dotted line. We see a

crossover between the two regimes at a value of order
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