VOLUME 80, NUMBER 12 PHYSICAL REVIEW LETTERS 23 MRcH 1998

Momentum Transformation Connecting a NN Potential in the Nonrelativistic
and Relativistic Two-Nucleon Schrédinger Equation
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An analytical relation between center of mass momenta in a nonrelativistic and a relativistic two-
nucleon Schrédinger equation is proposed which allows analytically rewriting the two Schrddinger
equations into each other. As a consequen@éVapotential occurring in the relativistic Schrodinger
equation can be gained from a nonrelativistic one by an analytical procedure. S Tinatrices
in the two equations are exactly identical, and therefore the two-nucleon phase shifts are also.
[S0031-9007(98)05586-0]
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Few-nucleon equations and their numerical solutions areorrect relativistic features built in (like an effective poten-
mostly carried out in a nonrelativistic framework. Fit- tial derived from field theory in the Hamiltonian formalism
ting NN potentials taVN data incorporates to some extent [11]) but simply establishing a formal connection among
relativistic features into the nonrelativistic framework; in potentials in the relativistic and nonrelativistic forms of the
other words, relativistic features contained in the data ar&chrddinger equation. The potentials are treated as “black
absorbed in the potential parameters of the nonrelativistiboxes” simply as functions of certain momenta with no ref-
Schradinger equation. This, however, is not sufficient; eserence to whether the potentials originally had some rela-
pecially relativistic effects in systems with more than twotivistic background or not.
particles are not accessible in this manner. As a first step In practice few-nucleon problems are solved mostly
towards a relativistic framework téN system in its cen- in a partial-wave representation. Therefore we formulate
ter of mass (c.m.) frame should have the correct form [1,2]that transformation among the potentials for given angular
which requires that the operator for the kinetic energy isnomentum states. Let, s, and j denote the orbital,
formed out of square roots. The present day so-calletbtal spin, and total angular momenta of tN& system,
realistic NN forces are fitted t&vN data together with the then for a givenj and s the nonrelativistic Schrédinger
nonrelativistic form of the kinetic energy [3—5]. More pre- equation in momentum space reads
cisely a mixed procedure has been applied. These poten{ p? o,
tial models were fitted to the phase shifts and amplitudes | ,, * 2m |i(p) + ;[G dp” X
of the Nijmegen partial-wave analysis [6], whereby rela- / , /
tivistic refatio?ls bgtween the c.m. rr){ome[n]ta and theykineti . p"*Vi(p, pn(p') = Egn(p). (1)
energy and between the differential cross section and th erem is the n_ucleon mass and the sum o/eis present
scattering amplitude have been used. Clearly consiste f not qlependlng os and;j. In E_q. (1) the rest masses
steps would be desirable, as well as refraining altogether which are usuaIIy_ absorbed into _th_e _defmmpn of the
from using the nonrelativisti?Y/ N Schrddinger equation. energy, are sill cqnt'alned. Th"?‘ rel_at|v_|st|c version of the
The question addressed in this paper is whether the péyvo-nucleon Schradinger equation is given by [1,2,10]

tentials have to be refitted to the data once the relativistic 2,/;,2 + p2 ¢,(p) + Z] dp' X
form of the kinetic energy is used instead of the nonrela- 70

tivistic one. A refitting of theNN potential has been p"Uu(p, p"Ypr(p') = Edi(p). (2)
undertaken, e.g., in [7]. In earlier work [8,9] approxi- The question is whether one can find the potential
mate relations among the potentials in the nonrelativistign Eq. (2) once the potentiaV in the nonrelativistic
and relativistic Schrodinger equations were introduced. Ischrodinger equation (1) is given.

Ref. [10] relations among the squares of the interacting and We propose the use of two types of momenta and
the free mass operators are used to find formal relations bgenote the momenta in the nonrelativistic Eq. (1) Jy
tween the relativistic and nonrelativistic Schrodinger equawe define the following relation between the momenta
tion. However, these formal relations do not allow one toin Eq. (1) andp in Eq. (2):

write the potential in the relativistic Schrédinger equation q*

explicitly in terms of the potential in the nonrelativistic Wm* + p* =2m + e 3)
Schrédinger equation. We want to propose here a prorpis relation can be solved either fpror for ¢

cedure providing an exact analytic relation between those ’

potentials. Before, however, we would like to emphasize ol q* 4
that we are not generating\&V potential which has all the P =4 4m? (4)
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and
2 2
y = EE . & Vilad) - J(l PN
where we defingE, = \/m? + p2. For small values of
p Or g one obtains 4 i
q2 ><Ull’ q2+q—2, q/2+ qz
p=q|l+ = (6) 4m 4m
8m?
and q/2 q/2
) X 1+ 7= ]/l + —. (16)
P 2m? 4m?
g=~p\1 =355 (7)
Correspondingly, the relativistic wave function expressed
whereas for large values pf andg one gets in terms of the nonrelativistic one is given by
2
~ 4 V2m
o ® ) = b(V2mVE, —m).
. . - . . . \2m? + 2mE, \JE,
With these definitions it is possible to rewrite Eq. (1) into (17)

Eqg. (2) and vice versa. Using Egs. (3) and (4) one obtains
The transformation of the wave function given in Eq. (12)

) 5 q? q2 conserves the norm. We have
p’dp = ¢*dgy1 + 7= |1+ 7=
4m? 2m?

= q’dgh*(q), ©) fo dp p*¢i(p) :]0 dq ¢*h*(q)$7(p)

with

- [0 dq P92 (q). (18)

q? q?
h(g) =All1+ == K/l + . 10
@) J( 2m2> 4m? (10) Let us now consider the Lippmann-Schwinger equa-
Then Eq. (2) turns into tions for the partial-wave projected half-shelmatrices.

5 . The relativistic version is given by
q !/ o0
2+ L)gup)+ 3 [ g’ x
( m) zz 0 Tu(p.p') = Unp(p,p') + Zfo dp" p"*Uy(p, p")

g1 (@ Uu(p, p"Yu(p') = Edi(p). (11) | a

i X Ty ”, ! . 19
If we define 2E, — 2E,  ie mr(p”,p’). (19)
#i(q) = h(q)éi(p) (12) _ -
and Using Egs. (9) and (13) and defining
Virlg, q') = h(Q)Uw(p, ph(q'), (13) t(q,q") = M@)Tu(p, p h(q'), (20)
we arrive at we obtain from Eq. (19)
2 )
q / *
(2’" i Z)"/”(‘I) i ZZ]O dq X t(q.q") = Vir(q.q") + Zfo dq" q"*Vir(q.q")
ZII
q"*Vulq,q"Vi(q') = Epi(q), (14) 1 .
which is the nonrelativistic Eq. (1). Thus Egs. (12) and e ) @
(13) provide the desired relations between the wave func- " " o )
tions and the potentials. Explicitly written, the potentiaf Nis is the standard nonrelativistic Lippmann-Schwinger
U results fromV via equation.

Equation (20) also provides a relation between the

N — -1 / -1 /
Unp.p) =k (@Vulg.q)h(q) phase shifts evaluated through the relativistic and non-

— V2m relativistic Lippmann-Schwinger equations. The unitarity
\/Ep am® + 2mE, relations resulting from Egs. (19) and (21) are given by
V2 Vauy mTu(p.p) = — 2L Tu(pp)P (22
X Vipe(N2mvE, — m,N2m+E, — m) mTu(p,p) = 2 21T P p (22)
V2m and

X , (15)
VE2mE + 2mE,

mgm 2
Imt(q,q) = ———— D ltuw(q, )| 23
and the potentiaV’ results fromU via n(d.4) 2 ;l wig.q)| @3)
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FIG. 1. The relation between the relativistic momentarand ~ FIG. 2. The absolute values of the relativistic and nonrela-
the nonrelativistic momentum as given in Eq. (4). tivistic wave functions¢(p) and(q) for the deuteron bound

state. Thes-wave componentg(p) (solid curve) andy(q)
A e . . b (short dashed curve) and thiewave componentg,(p) (long
S a consequence tifematrices given by dashed curve) and,(¢) (dotted curve) have large differences at

Sw(p) = 6w — impE,Ty(p, p) (24) higher momenta.
and

sulq) = 8y — imgmty(q.q) (25) refitting parameters when the nonrelativistic operator of
. " q " qmtug. 4 . kinetic energy is replaced by the relativistic square root
are unitary. Using Eq. (20) and the relations (3) and (4lexpressions.
one obtains The potentialU can be used in few-nucleon systems
su(q) = 8w — imqmh(q)Tuw(p, p)h(q) with A>2as done in the studies [7,8].

This work was supported by the Research Contract

q? q° No. 41324878 (COSY-044) with the Forschungszentrum
=&y —imgm|l + =1 + = |Tuw(p,p) ;
i q 4m? om2 TP P Julich, Germany. The authors would like to thank
Ch. Elster for critically reading the manuscript.

. p 1 g
= O — imqm — — (Zm + q—>Tll’(P,P)
q 2m m

= 0w — impE,Tu(p,p) = Su(p). (26) *Present address: Institut fiir Kernphysik, Fachbereich 5 der
From Eqg. (26) we see that th® matrices are identical, Technischen Hochschule Darmstadt, D-64289 Darmstadt,
and as a consequence the scattering phase shifts and Germany.
mixing parameters are identical. Though the momentalll B. Bakamijan and L.H. Thomas, Phys. Re®2, 1300

g and p for the nonrelativistic and relativisti§ matrices (1953). q h h Ph
are different, the related energies are the same, namelyl?! I(:;.ggz)ng and J. Sucher, J. Math. Phys. (N.%,) 596
= 2 — 9 [m2 2 .
E =2m + ¢*/m = 2ym* + pZ. [3] R. Machleidt, F. Sammarruca, and Y. Song, Phys. Rev. C

In Fig. 1 we sh_ow the relation_between .the momenta "~ 53 R1483 (1996).
p andq as given in Eq. (4). In Fig. 2 we display the 141 v.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggan, and
and d-wave components of the deuteron wave function. J.J. de Swart, Phys. Rev.43, 2950 (1994).
We show these wave function components as a function[s] R.B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev.
of their respective momentg in the relativistic case C 51, 38 (1995).
and ¢ in the nonrelativistic case. The underlyifgVv [6] V.G.J. Stokset al., Phys. Rev. G18, 792 (1993).
potential was arbitrarily chosen as the charge dependent?] J. Carlson, V.R. Pandharipande, and R. Schiavilla, Phys.
(CD) Bonn potential [3]. The minima for the- and Rev. C47, 484 (1993);.J..L. Forest, V.R. Pandharipande,
d-wave components are shifted towards larger momenta, . J- Carison, and R. Schiavilla, Phys. Rev5Z 576 (1995).

in the relativistic case. The effects are large above about®l W: Glockle, T.-S.H. Lee, and F. Coester, Phys. ReS.
St 709 (1986).

.. . . 9] F. Coester, S.C. Pieper, and F.J. Serduke, Phys. Rev. C
Summarizing, we have shown th&ltV potentials fitted (%] 11, 1 (1975). P 4

to NN data in a nonrelativistic framework can be analyti- 110} B. D. Keister and W. N. Polyzou, Adv. Nucl. Phy20, 225
cally rewritten by a scale transformation in the momenta ~ (1991).

such that they lead to the sanfematrix when used in [11] A. Kriiger and W. Gléckle, Report No. nucl-th/9712043
a relativistic Schrédinger equation. There is no need for  (to be published).

2549



