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The leading nonzero electric moment of the nucleon strange-quark vector current is the mean squ
strangeness radiuskr2

s l. We evaluate the lightest Okubo-Zweig-Iizuka–allowed contribution tokr2
s l,

arising from the kaon cloud, using dispersion relations. Drawing upon unitarity constraints as well a
K1N scattering ande1e2 ! KK cross section data, we find the structure of this contribution differs
significantly from that suggested by a variety of QCD-inspired model calculations. In particular, w
find evidence for a strongf-meson resonance which may enhance the scale of kaon cloud contributio
to an observable level. [S0031-9007(98)05552-5]

PACS numbers: 14.20.Dh, 11.55.Fv, 12.39.Jh, 13.75.Jz
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The reasons for the success of the nonrelativistic qua
model (NRQM) in accounting for the static properties o
low-lying hadrons remains one of the unsolved mysteri
of nonperturbative QCD. It has been postulated that—
far as low-energy observables are concerned—constitu
quarks of the NRQM effectively account for the QCD
degrees of freedom inside hadrons [1]. This suggesti
may be tested, in part, by measuring observables wh
depend only on the sea quarks and gluons, such as
matrix elementkNjsgmsjNl. By now there exists a well-
defined program of parity-violating (PV) electron-nucleu
scattering experiments dedicated to the determination
this matrix element [2]. The theoretical understandin
of this matrix element is much less clear. To date
only two results from the lattice have been reported [3
and they appear to conflict with the recent results fo
the strangeness magnetic form factor reported by t
SAMPLE Collaboration [4]. The use of hadronic effective
theory, in the guise of chiral perturbation theory, is als
limited, as chiral symmetry does not afford an independe
determination of the relevant low-energy constants [5].
third alternative—the use of QCD-inspired models—i
equally problematic, and model predictions for the mea
square strangeness radiuskr2

s l and magnetic momentms

vary considerably in magnitude and sign (for a rece
review of model calculations, see Ref. [5]).

In this Letter, we analyze the strangeness radius usin
fourth approach, namely, dispersion relations (DR’s). O
objective is to identify the hadronic mechanisms whic
govern the leading strangeness moments without relyi
on QCD-inspired nucleon models. To that end, we focu
on the lightest Okubo-Zweig-Iizuko (OZI)-allowed con-
tribution, which arises from the so-called “kaon cloud
or KK intermediate state. A variety of model calcula
tions reported to date have assumed that (a) OZI-allow
processes, in the guise of virtual strange intermedia
states, give the most important contributions to the lea
ing strangeness moments; and (b) these processes are
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equately described by truncating at second order in th
strong hadronic couplings,g. In the case ofkr2

s l, the
resultant predictions are generally smaller than wou
be observable in the parity-violating electron scatterin
experiments. Moreover, kaon cloud predictions are typ
cally an order of magnitude smaller than those obtaine
with DR’s under the assumption of vector meson dom
nance (VMD), which relies on the extraction of a large
fNN coupling from analyses of the isoscalar electromag
netic (EM) form factors [6]. Assumption (a) has been
analyzed elsewhere and shown to be questionable [
Regarding assumption (b), we find that the structure o
the strangeness form factors differs significantly from th
assumptions underlying kaon cloud models, particular
the validity of the second-order approximation. Using th
kaon cloud as an illustrative case study, we show that th
scale of OZI-allowed contributions depends critically on
effects going beyondO sg2d, and that a proper inclusion of
such effects may enhance the scale of OZI-allowed co
tributions to an experimentally detectable level. We als
demonstrate the relationship between resonance [6] a
kaon cloud contributions, resolving a long-standing issu
in this field.

Of the form factors which parametrizekNjsgmsjNl,
we focus on the strangeness electric form factorG

ssd
E ,

for which we obtain our most reliable results. Since
G

ssd
E vanishes atq2 ­ 0, we write a subtracted dispersion

relation for this form factor and its leading, nonvanishing
moment:

G
ssd
E std ­

t
p

Z `

t0

dt0 Im G
ssd
E st0d

t0st0 2 td
, (1)

kr2
s l ­ 6

dG
ssd
E

dt

Ç
t­0

­
6
p

Z `

t0

dt0 Im G
ssd
E st0d

t02 , (2)

where t ­ q2 and t0 begins a cut along the realt axis
associated with a given physical intermediate state. Th
state having the lowest thresholdt0 is the 3p state, whose
© 1998 The American Physical Society 2539
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contribution is nominally OZI violating. The lightest
OZI-allowed contribution arises from theKK state, for
which t0 ­ 4m2

K . Following the analysis of Ref. [8], we
express theKK contribution to the absorptive part of
the electric form factor as a product of the appropria
KK ! NN partial wave and the kaon strangeness vect
current form factor:

Im G
ssd
E std ­ Re

Ωµ
Q

4mN

∂
b

1y2, 1y2
1 stdFssd

K stdp

æ
. (3)

Here, Q ­
q

ty4 2 m2
K , F

ssd
K parametrizes the matrix

element k0jsgmsjKsk1dKsk2dl, and b
l,l0

1 is the J ­ 1
partial wave forKK to scatter to the statejNsldNsl0dl
with l, l0 denoting the corresponding helicities.

The problem now is to determineb
1y2, 1y2
1 and F

ssd
K as

reliably as possible. Fort $ 4m2
N , the physicalNN pro-

duction threshold, one may in principle useKK ! NN
data to determine the scattering amplitude. Alternativel
we note that in this kinematic region, the unitarity of the
S matrix implies thatjb

l,l0

1 j # 1 [8]. Given the present
quality of KK ! NN scattering data, it turns out to be
more effective to insert the unitarity bound onb

1y2, 1y2
1

into Eq. (3). The corresponding bound on the contribu
tion from t $ 4m2

N to the dispersion integral of Eq. (2) is
negligible (see Table I).

To evaluateb
1y2, 1y2
1 in the unphysical region4m2

K #

t # 4m2
N , one must rely on some method of analytic con

tinuation. TheO sg2d (one-loop) model calculations of
G

ssd
E implicity rely on an analytic expression to effect this

continuation. The one kaon-loop approximation is equiv
alent to using a DR in which theb

l,l0

1 are computed in
the Born approximation (BA) and the kaon strangene
form factor taken to be pointlikefFssd

K std ; 21g [8]. The
BA calculation yields an analytic expression forb

1y2, 1y2
1 ,

which may be analytically continued to unphysical value
of t. When computed in this approximation, however, th
b

l,l0

1 violate the unitarity bound by a factor of 4 or more
for t $ 4m2

N [8]. This violation reflects the omission
of important kaon rescattering and other short-distan
hadronic mechanisms which render the scattering amp
tude consistent with the requirements of unitarity. Give

TABLE I. Kaon cloud prediction forkr2
s l for the two sce-

narios discussed in the text. Second and third columns gi
contributions to the dispersion integral of Eq. (2) from inte
gration regions corresponding to unphysical (second colum
and physical (third column)t-channel scattering amplitudes. In
both scenarios, the unitarity bound onb

1y2, 1y2
1 is imposed for

t $ 4m2
N .

Moment Scenario 4m2
K # t # 4m2

N 4m2
N # t Total

kr2
s l ffm2g O sg2d 20.017 20.007 20.024

jkr2
s lj ffm2g ACyGS 0.065 0.001 0.066
2540
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the magnitude of the unitarity violation at the phys
cal threshold, one would infer that the BA represents
rather drastic approximation in the unphysical region a
that truncation atO sg2d is questionable.

An alternate strategy, which we follow here, is t
perform a fit to experimentalK1N scattering amplitudes
and analytically continue the results for the fit int
the unphysical region. The success of this approa
depends on the quality of the data, the kinematic ran
over which it exists, and the stability of the fit. It is
advantageous to considerK1N (s-channel) amplitudes,
since the analytic continuation may be performed witho
encountering problematic singularities occurring in th
u-channel reactionK2N . As experimental input, we use
the recent phase shift analysis of the VPI group [9
The requisiteK1N amplitudes of sufficient quality exists
over the range28m2

K & t , 0. We correspondingly
expect our continuation to yield a credible estimate
the scattering amplitude for0 # t & 8m2

K . Although this
range does not include the entire unphysical region ov
which one must compute the dispersion integral, it
sufficiently broad for our present purposes. Indeed, t
structure we find in the continued amplitude in this regio
appreciably affects the kaon cloud contribution tokr2

s l.
We carry out the continuation by using backwar

dispersion relations. This method relies on the coin
dence ofs- and t-channel amplitudes in the kinematic
domain: cosus ­ cosut ­ 21 for a given value oft,
whereus andut are the c.m. scattering angles. Thus, w
may continue thes-channel amplitude to the unphysica
region in t, and equate this amplitude with the corre
spondingt-channel amplitude:Ascosus ­ 21, tphysd !

Ascosus ­ 21, tunphysd ­ Ascosut ­ 21, tunphysd. In
performing the continuation of the backwards-channel
amplitude, we follow conventional procedures [10,11
and work with the discrepancy function,DA:

DAstd ­ Astd 2 Apolestd 2
P

p

Z tP

0
dt0 Im Aexpst0d

t0 2 t

2
1
p

Z 2`

tp

dt0 Im Amodelst0d
t0 2 t

, (4)

where data exist in the rangetp # t # 0, Aexpstd gives
the experimental amplitude in this range,Amodelstd gives
a model for the high-energy part of the amplitude, an
Apolestd denotes theL, S pole terms, which are known
exactly (the dependence on cosus is implicit). The
function DA is analytic for real values oft in the range
tp # t # 0, whereas the full amplitude has a cut in thi
region. ForAmodel, we use a Regge exchange model
[12]. The inferred high-t behavior is Amodelstd ~ jtja ,
with a ­ 21.2, and the constant factor is determine
from the highest-energy experimental point.

The continuation proceeds by replacingAstd !
ReAexpstd in Eq. (4) and performing a fit to the experi
mental values forDA in the rangetp # t # 0. This
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fit is most easily accomplished by first carrying out
conformal mapt ! zstd, transforming the domain of
analyticity for DA into a circle of unit radius [13]. A
convergent expansion of the amplitude is then mad
using Legendre polynomials,Pkszd, and the coefficients
determined from a fit to the experimental values forDA.
In practice, we fitgszstdd ­ DAyjtja , which divides out
the high energy behavior ofDA and improves the stability
of the continuation. The discrepancy function—and, vi
Eq. (4), the full backward amplitude—is then obtaine
in the unphysical region by evaluating the Legendr
expansion forz ­ zstunphysd.

The final step in obtainingb
1y2, 1y2
1 is to expand

Ascosut ­ 21, tunphysd in partial waves, using the helic-
ity basis as in Refs. [8,11]. Since the amplitude is know
only for one value ofut , a separation of theb

l,l0

1 from the
b

l,l0

Jfi1 relies on several additional observations: (a) Th
only significant enhancements of theJ $ 2 partial waves
occur via resonances, (b) the lightestJ . 1, I ­ 0 reso-
nance having a non-negligible branching ratio to theKK
state is thef2s1270d, whose mass lies near the upper en
of the range in

p
t for which we expect our continuation

to be valid, and (c) the use of a realistic parametrizatio
for F

ssd
K in Eq. (3) dramatically suppresses contribution

for
p

t * 1.4 GeVyc. We thus expect little contamina-
tion from the f2s1270d and higher-lying resonances in
the region near theKK threshold, which gives the domi-
nant contribution tokr2

s l, and we correspondingly omit the
J $ 2 partial waves.

The remainingJ ­ 0 andJ ­ 1 partial waves may be
separated by drawing on the work of Refs. [11,14]. I
those analyses, the strength and approximate peak posi
of theJ ­ 0 partial wave were determined fromKN phase
shift analyses using backward dispersion relations and
generalization.

As a check on our general procedure, we reprodu
the results of Ref. [10] for thepN case. Furthermore,
we have tested the sensitivity of our results forkr2

s l
to changes of the high-energy parametera and the
truncation point of the fitted Legendre series,n. We find
that the structure of the continued amplitudes and resulta
value ofkr2

s l change by&15% asa andn are varied over
reasonable ranges. We obtain the results shown in Fig
and Table I usingn ­ 6 and the value fora taken from
the Regge model fit [12],a ­ 21.2.

The results of this analysis are displayed in Fig. 1(a
where we plot the kaon cloud contribution to the spectr
function for kr2

s l as a function oft. We give the spectral
function computed using a pointlike form factor (PFF) fo
F

ssd
K and two scenarios forb

1y2, 1y2
1 : (I) the BA, and (II)

analytic continuation (AC) ofK1N scattering amplitudes.
We also show the upper limit on the spectral functio
generated by the unitarity bound onb

1y2, 1y2
1 for t $ 4m2

N .
The curve obtained in scenario (II) contains a peak
the vicinity of thefs1020d meson, presumably reflecting
a
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FIG. 1. KK contribution to the spectral function forkr2
s l in

units of sGeVycd24. Short-dashed curve (a) gives results fo
O sg2d calculation. Solid curve [(a),(b)] gives ACyPFF results,
while long-dashed curves show unitarity bound fort $ 4m2

N
using PFF (a) and GS form factor (b). Dash-dotted curve giv
ACyGS spectral function (b). Dotted vertical line indicate
physicalNN production threshold.

the presence of aKK $ f resonance in the scattering
amplitude. This structure enhances the spectral funct
over the result obtained atO sg2d near the beginning of the
KK cut. As t increases from4m2

K , the spectral function
obtained in scenario (II) falls below that of scenario (I
ostensibly due toKK rescattering which must eventually
bring the spectral function below the unitarity bound fo
t $ 4m2

N . As observed previously in Ref. [8], and a
illustrated in Fig. 1(a), theO sg2d approximation omits
these rescattering corrections and consequently violates
unitarity bound by a factor of 4 or more even at threshol

Turning to the kaon strangeness form factor, we no
that the assumption of pointlike behaviorfFssd

K std ;
21g is poorly justified on phenomenological grounds
Data for e1e2 ! KK indicate that the kaon EM form
factor is strongly peaked fort ø m2

f and falls off
sharply from unity fort * 2 sGeVycd2. Although there
exist no data forF

ssd
K std, one expects it to behave

in an analogous fashion toFEM
K std [8]. We therefore

follow Ref. [8] and employ a Gounaris-Sakurai (GS
parametrization forF

ssd
K , which produces the correct

normalization att ­ 0 and a peak in the vicinity of the
f meson. The corresponding spectral function is show
in Fig. 1(b), where comparison is made with the spectr
function computed using a pointlikeF

ssd
K . The use of
2541
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the GS parametrization significantly enhances the spe
tral function near the beginning of theKK cut as
compared with the pointlike case, while it suppresses t
spectral function fort * 2 sGeVycd2. We note that other
parametrizations forF

ssd
K , such as a simplef-dominance

form, yield similar results for the spectral function.
The numerical consequences of using experimen

K1N amplitudes to determineb
1y2, 1y2
1 and of employing

a realistic kaon strangeness form factor are indicat
in Table I. The first line gives theO sg2d kaon cloud
prediction for kr2

wl, using a pointlikeF
ssd
K and b

1y2, 1y2
1

computed in the BA. The second line gives results whe
the GS form factor and analytically continued fit toK1N
amplitudes forb

1y2, 1y2
1 are used (ACyGS). In both cases

the unitarity bound onb
1y2, 1y2
1 is imposed fort $ 4m2

N .
The ACyGS results were obtained by extendingb

1y2, 1y2
1

to 4m2
N . Although we believe the continuation to be

trustworthy only fort & 8m2
K , and although the continued

b
1y2, 1y2
1 amplitude exceeds the unitarity bound fort !

4m2
N , the GS form factor suppresses contributions fo

t $ 8m2
K , rendering the overall contribution from8m2

K #

t # 4m2
N negligible. Since we are presently unable t

determine the relative phases ofF
ssd
K and b

1y2, 1y2
1 as a

function of t, the ACyGS results represent an upper boun
on jkr2

s lj and carry an uncertain overall sign [8]. Hence
we give only the magnitude in Table I.

With these caveats in mind, we observe that the use
a realistic, nonperturbativeKK spectral function increases
the kaon cloud contribution tokr2

s l by roughly a factor of
3 as compared to theO sg2d calculation. Moreover, the
nonperturbative result approaches the scale at which
PV electron scattering experiments are sensitive, where
the O sg2d prediction is too small to be seen. The
enhanced scale of the kaon cloud depends critically
the presence of the resonance structure neart ­ m2

f

in both b
1y2, 1y2
1 and F

ssd
K (Fig. 1). This structure—

obtained without relying on thea priori assumption of
pole dominance inG

ssd
E or GI­0

E —demonstrates how the
resonance contribution arises out of theKK continuum
and yields a kaon cloud result similar in magnitude t
pure VMD predictions [6].

Although the kaon cloud is only one of the virtua
hadronic states through whichss pairs may contribute to
the strangeness form factors, our result illustrates the im
portance of including effects to all orders ing when com-
puting any of these hadronic contributions. In particula
we speculate that the results of the NRQM calculation r
ported in Ref. [15], which includes contributions from a
2542
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tower of OZI-allowed intermediate states, will be signifi
cantly modified when effects beyondO sg2d are included.
Our analysis suggests that these effects, in the guise
resonant and nonresonant meson rescattering, determ
the structure and scale of OZI-allowed contributions. Th
presently available scattering data are not likely to a
ford a model-independent, all-orders treatment of highe
mass contributions. Nevertheless, any model estimate
the higher-mass content ofss spectral functions must be
evaluated by comparing its kaon cloud prediction with th
results of the analysis reported here.
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