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Two-Loop Corrections to the Leptonic Decays of Quarkonium
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Applying asymptotic expansions at threshold, we compute the two-loop quantum chromodynamics
(QCD) correction to the short-distance coefficient that governs the leptonic deeay/ ™/~ of an
S-wave quarkonium state and discuss its impact on the relation between the quarkonium nonrelativistic
wave function at the origin and the quarkonium decay constant in full QCD. [S0031-9007(98)05640-3]

PACS numbers: 13.20.Gd, 12.38.Bx

Quarkonium decays played an important role in estabeecays, and it can also be used to connect the decay
lishing quantum chromodynamics (QCD) as a weakly in-constant of they meson defined in QCD with the nonrela-
teracting theory at short distances. Calculations of heaviivistic wave function at the origin, which appears in
quarkonium decays usually proceed under the assumNRQCD and potential models. In turn, this wave function
tion that the heavy quark-antiquark bound state is nonis an important input parameter for the prediction of other
relativistic and that the decay amplitude factorizes intoquarkonium decays and also quarkonium production cross
the bound state wave function at the origin and a shortsections.
distance quark-antiquark annihilation amplitude. One can We recall thaty decays leptonically through interaction
then explain the small width of th§-wave spin-triplet  with the electromagnetic current. The partial decay rate,
charmonium staté /¢, because it can decay only through neglecting the tiny lepton masses, is given exactly by
electromagnetic annihilation or annihilation into at least
three gluons [1]. Today’s understanding of quarkonium Ty —1717) = i
bound states has refined this picture and allows us to 3My
calculate relativistic corrections systematically at the ex-

ense of introducing further nonperturbative arameterwhere My is the mass ofi, aem the fine structure
P . 9 P pare 3onstant, anc the electric charge of the heavy quark
that characterize the bound state. Such calculations ¢

a .
be done most transparently in the framework of a non!H units of the electron charge. Thg decay constant

relativistic effective field theory (NRQCD) [2,3] that im- fy is defined through th.e following matrix element of the
L Lo ._electromagnetic current:

plements the factorization of contributions to the (partial)

dect_';\y widths from Qifferent Ier!gth scales. Besidgs po- (W (p)|0y,.0l0) = (—=i)fyMye,(p). 2)

tentially large relativistic corrections, the size of radiative

corrections to the quark-antiquark annihilation amplitudege,(p) is the polarization vector ang the ¢y momen-

has always been a matter of concern. The one-loop radidadm.] The leptonic decay rates are known experimentally

tive corrections to the decays— [ "1~ (wherel = e, u)  [6]. ForJ/y¢ we findf;/, = (405 = 15) MeV.

[4], & — light hadrons, ands — y + light hadrons [5] The decay constant parametrizes the strong interaction

are large and question the practicability of factorizationeffects and contains long- and short-distance contribu-

for charmonium and, perhaps, even bottomonium. [Her¢ions. For quarkonium the short-distance scalé /i,

and in the following we use as a label for anys-wave and the long-distance (bound state) scales1g(@/,v)

spin-triplet state, i.e.//¢ or ' for charmonium and and1/(M,v?), wherev is the (small) characteristic ve-

Y (nS) for bottomonium.] locity of the ’s quark constituents. The short-distance
In this Letter we address this question and report orcontributions can be isolated, and calculated in perturba-

the calculation of two-loop short-distance corrections tatiion theory, by matching the vector current in QCD onto a

the leptonic decayyr — ["1~. This is the first (and also series of operators in NRQCD. Up to corrections of order

“easiest”) two-loop matching calculation for quarkonium v*, the matching relation is given by

no
(s, %)
2

. C
(¥ (p)lOy* 010y = A’“(p)[Co(as, @><¢|¢T0i)(|0> () + 1
M 6mQ

2 2
47TeQa§mf¢,

(1)

Wyt Doy 10) () + @(vﬂ, 3)

where ¢ (not to be confused with they meson) and! (More details on notation and NRQCD can be found

x denote nonrelativistic two spinord) is the spatial in Ref. [3]. Note, however, that we use a relativistic
covariant derivative, andn, is the heavy quark mass. normalization of states also for the matrix elements in
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NRQCD.) The matrix elements on the right-hand side The matching calculation is considerably simplified, if
are defined in the/ rest frame, and\(p) is the matrix one uses the threshold expansion of Ref. [9] to compute
that performs the Lorentz boost into this frame. Thelocp directly as an expansion im?. The threshold
matching coefficient€y and C, are expressed as series expansion is obtained by writing contributions corre-
in the strong couplinga, and account for the short- sponding to hard(~ mg), soft ( ~ mgv), potential
distance QCD corrections. The matching coefficients andly ~ mov?, I; ~ mgv), and ultrasoft { ~ myv?) re-
matrix elements in NRQCD individually depend on thegions. The contributions from soft, potential, and ultra-
factorization scaleu. C; is defined (as in Ref. [7]) such soft loop momenta can all be identified with diagrams

thatC; = 1 + O(a;,) and [4] in NRQCD that appear in the calculation drocp-
mo 2CF as(mg) Hence, they drop out of the matching relation Eq. (5) and
Colas,,— | =1~ . it suffices to compute the contribution to the threshold

5 expansion of the diagrams in Fig. 1, where all loop mo-
+ C2(mQ/,U/)<ﬂ> ..., @ menta allr_e hard. (The threshold'e?(pan.sp.n is not only con-
™ venient; it also provides an implicit definition of NRQCD
whereCr = (N> — 1)/(2N,), andN,. = 3 is the number in dimensional regularization. This is necessary, because
of colors. We now discuss the calculation of the two-loopdimensionally regularized NRQCD is not given by the
matching coefficient;. dimensionally regularized Feynman integrals constructed
Since the matching coefficient contains only short-from the vertices and propagators of NRQCD. In order
distance effects, it can be obtained by replacing théo avoid that the cutoff for the effective theory be treated
quarkonium statey on both sides of Eq. (3) by a free as larger tham:y, dimensionally regularized NRQCD has
quark-antiquark pair of on-shell quarks at small relativeto be supplemented by a prescription for expanding the
velocity. In terms of this on-shell matrix element, the Feynmanintegrands This prescription is provided to all
matching equation can be rewritten as orders as part of the diagrammatic threshold expansion
method [9].)
(5) We briefly describe the calculation of the hard contribu-
tions tol'gcp. (Details of the calculational method and a
where Z, are the on-shell wave function renormalization solution to the recurrence algorithm for the two-loop inte-
constants in QCD and NRQCD, ardis the amputated, grals will be given in a long write-up of this Letter.) The
bare electromagnetic annihilation vertices in QCD andspinor structure of the on-shell matrix element in QCD is
NRQCD. The Feynman diagrams fdigcp at two  conventionally parametrized by two form factors, and
loops are shown in Fig. 1. Since the currént ¢fo;x  F,, of which only the combinatior; + F is required
need not be conserved in NRQCD, we allowed for itshere. Since terms of order?> are not needed to deter-
renormalization,/vare = Z;Jren, ON the right-hand side. mine ¢, [see Eq. (5)], we may set the relative momentum
We then obtainC, by calculating all other quantities to zero and compute the form factors directly at threshold.
in Eq. (5) in dimensional regularization and using theThe form factors have Coulomb singularities at threshold
modified minimal subtraction schem®I§ scheme) [8].  and diverge as/v2. However, these singularities appear
only in the soft, potential, and ultrasoft contributions, and
the hard contribution is well defined directly at threshold
2 in dimensional regularization. The loop integrals simplify
considerably, once the relative momentum is set to zero,
since they then depend only on a single scale. We then
project on the form facto¥; + F, and reduce all inte-
grals to integrals without numerators. These integrals can
4 be further reduced to “simple” integrals and two nontriv-
ial two-loop integrals by means of recurrence relations de-
rived from integration by parts in the loop momenta [10].
The solution to the recurrence relations is the difficult part
of the calculation. The remaining nontrivial two-loop in-
Dg — Dy tegrals can be calculated explicitly using standard Feyn-
man parameters.
After summing all the diagrams, multiplying by the
two-loop QCD on-shell wave function renormalization

FIG. 1. Diagrams that contribute tbocp. Symmetric dia- constant [11]’|.anq per;zormlngl (o_r|1|e Ioop) COU[IJIIng and
grams exist forD,3s. The last diagram summarizes vacuum mass renormai |zat|qn, the result S,t' coptalns-po es HS,'
polarization contributions from massless fermiomg)( gluons (4 — d)/2 (whered is the space-time dimension). Since
(D7), ghosts Dg), and the massive fermion with mass, (D). the wave function renormalization constéinrgcep in

Zsqcp Faep = Co Zanraep Z; ' Tnraep + O (v?),
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NRQCD equals 1 up to higher-order terms 41, not Crp = 11 (10)
needed here, these poles are attributed to an anomalous ’ 18°

dimension of/, which first arises at the two-loop order.

As a consequence the matrix elemépyto; x10) (u) 2w 22

is factorization scale dependent. We define it in the C2H = Ty + 9 - (11)

MS scheme and obtain the anomalous dimension for th

NRQCD vector current’: ﬁere /(3) = 1.202..., and we have taken all fermions

5 5 with masses less tham, as massless, which is a good
_ dinz, — —Cr(2Cr + 3C )W_<ﬂ> + 0 approximation even formgy = my, the bottom quark
dinu FAmr 4 . mass, in which case we negleet., the charm quark
(6) mass. The massive (light) quark vacuum polarization
The scale dependence is compensated by the scale dmntributionsc, i (c2,.) agree with earlier calculations in
pendence of the two-loop matching coefficientm,/u)  Refs. [12 13] and [7,13,14], respectively. Note also that
in Eq. (4). Separating the different color group fac-the C# term of the form factordF;, close to threshold
tors Cr = 4/3, C4 = 3, Tr = 1/2, the final result for has been calculated by Hoang [15], using the absorptive
c2(mg/ ) in theMS scheme is parts of the form factors obtained in Ref. [16]. Because
the result in Ref. [15] contains hard and soft (potential,
ultrasoft) contributions, it is not possible to extract the

YJ

ca(mg/p) = Crean + CrCacana + CrTrngear

+ CrTrcon, (7)  matching coefficient, 4 from Ref. [15]. (The structures
5 in ¢4 that cannot arise from the small-loop momentum
1 m 79 i i '
_ o L fmo) _ 7 regions agree with Hoang'’s result.)
24— T |: In( M2> 36 * Inz} The size of the two-loop correction t@y [Eq. (4)]
23 (3) given by Egs. (7)—(11) is enormous. We define the
+ ? - T’ (8) (scale-dependent) nonrelativistic decay constant as
mp 89 5 Wlptoixl0y(n) = (DR (wMye;,  (12)
CQNA:W | 2 +m—g|n2 . )
o in analogy with Eq. (2). The nonrelativistic decay con-
151 13£(3) stant is related to the¢ wave function at the origin by
T T T4 (9) | My (f3")? = 12| (0)>. Using Eqg. (3), we obtain
8as(m ) A 2
fo= (1 - 3—779 — (4455 — 0.41nf)<;> + ...)f},jR(mQ). (13)

With a,(m.) = 0.35 and a,(m;) = 0.21, the second-I notmg. This point of view is also evident if the wave func-
order correction exceeds the first-order correction evetion is computed nonperturbatively using lattice NRQCD,
for the bottomonium states. For charmonium, the secondn which case the ultraviolet cutoffactorization scale is
order term is almost twice as large as the already sizablalso much smaller tham,. We considew = 1 GeV as
first-order correction. [Note that the Brodsky-Lepage-an adequate bound state scale for bottomonium and char-
Mackenzie (BLM) estimate of the two-loop correction monium, as the applicability of perturbation theory pre-
[7,14,17] is far off the exact two-loop result.] Perturbativevents us from taking yet smaller scales. We then find, for
matching at the scalgg = my does not seem to work. bottomonium {1, = 5 GeV,n; = 4),

Can the factorization of short- and long-distance effects 8a,(my) a (mp)\?

still be useful? FY@ms) = [1 - —2 174 <S—> + }
A novel, and perhaps unexpected, aspect at the two-loop 3 ™

level is the factorization scale dependence of the nonrela- X f?&s)(l GeV)

tivistic decay constant and, hence, the quarkonium wave . NR
function at the origin. The scale dependence is large, es- ~ 081fx(us)(1 GeV). (14)
pecially due to the non-Abelian term in Eq. (6). This scaleThe numerical factor 0.81 is stable against variations of the
dependence of the wave function indicates the limitatiorscale of the coupling at fixed factorization scale 1 GeV.
of the nonrelativistic potential model approach already afAt this factorization scale the second-order correction
leading order in/?, since the wave functions obtained from is numerically insignificant. Although we do not know
solving the Schrodinger equation are scale independentvhether the three-loop correction would also be small at
Despite this shortcoming it may be argued that the wavé¢he low factorization scale, we tend to consider Eq. (14) as
function/nonrelativistic decay constant obtained from po-an accurate prediction. This prediction could be tested, if
tential models corresponds—if to anything—to the WavefY(,,S)(l GeV) were accurately known, for example, from
function evaluated at a scale typical for the bound state anNRQCD lattice simulations. The large scale dependence
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