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Two-Loop Corrections to the Leptonic Decays of Quarkonium
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Applying asymptotic expansions at threshold, we compute the two-loop quantum chromody
(QCD) correction to the short-distance coefficient that governs the leptonic decayc ! l1l2 of an
S-wave quarkonium state and discuss its impact on the relation between the quarkonium nonre
wave function at the origin and the quarkonium decay constant in full QCD. [S0031-9007(98)05
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Quarkonium decays played an important role in esta
lishing quantum chromodynamics (QCD) as a weakly in
teracting theory at short distances. Calculations of hea
quarkonium decays usually proceed under the assum
tion that the heavy quark-antiquark bound state is no
relativistic and that the decay amplitude factorizes in
the bound state wave function at the origin and a sho
distance quark-antiquark annihilation amplitude. One c
then explain the small width of theS-wave spin-triplet
charmonium stateJyc, because it can decay only through
electromagnetic annihilation or annihilation into at leas
three gluons [1]. Today’s understanding of quarkoniu
bound states has refined this picture and allows us
calculate relativistic corrections systematically at the e
pense of introducing further nonperturbative paramete
that characterize the bound state. Such calculations c
be done most transparently in the framework of a no
relativistic effective field theory (NRQCD) [2,3] that im-
plements the factorization of contributions to the (partia
decay widths from different length scales. Besides p
tentially large relativistic corrections, the size of radiativ
corrections to the quark-antiquark annihilation amplitude
has always been a matter of concern. The one-loop rad
tive corrections to the decaysc ! l1l2 (wherel  e, m)
[4], c ! light hadrons , andc ! g 1 light hadrons [5]
are large and question the practicability of factorizatio
for charmonium and, perhaps, even bottomonium. [He
and in the following we usec as a label for anyS-wave
spin-triplet state, i.e.,Jyc or c 0 for charmonium and
YsnSd for bottomonium.]

In this Letter we address this question and report o
the calculation of two-loop short-distance corrections
the leptonic decayc ! l1l2. This is the first (and also
“easiest”) two-loop matching calculation for quarkonium
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decays, and it can also be used to connect the de
constant of thec meson defined in QCD with the nonrela
tivistic wave function at the origin, which appears i
NRQCD and potential models. In turn, this wave functio
is an important input parameter for the prediction of oth
quarkonium decays and also quarkonium production cr
sections.

We recall thatc decays leptonically through interaction
with the electromagnetic current. The partial decay ra
neglecting the tiny lepton masses, is given exactly by

Gsc ! l1l2d 
4pe2

Qa2
emf2

c

3Mc

, (1)

where Mc is the mass ofc , aem the fine structure
constant, andeQ the electric charge of the heavy quar
in units of the electron charge. Thec decay constant
fc is defined through the following matrix element of th
electromagnetic current:

kcspdjQ̄gmQj0l  s2idfcMcep
mspd . (2)

[emspd is thec polarization vector andp the c momen-
tum.] The leptonic decay rates are known experimenta
[6]. For Jyc we findfJyc  s405 6 15d MeV.

The decay constant parametrizes the strong interac
effects and contains long- and short-distance contrib
tions. For quarkonium the short-distance scale is1yMc

and the long-distance (bound state) scales are1ysMcyd
and 1ysMc y2d, wherey is the (small) characteristic ve-
locity of the c ’s quark constituents. The short-distanc
contributions can be isolated, and calculated in perturb
tion theory, by matching the vector current in QCD onto
series of operators in NRQCD. Up to corrections of ord
y4, the matching relation is given by
kcspdjQ̄gmQj0l  Lmispd
∑

C0

√
as,

mQ

m

!
kcjcysixj0l smd 1

C1

≥
as,

mQ

m

¥
6m2

Q
kcjcy $D2sixj0l smd 1 O sy4d

∏
, (3)
. n
where c (not to be confused with thec meson) and
x denote nonrelativistic two spinors,$D is the spatial
covariant derivative, andmQ is the heavy quark mass
(More details on notation and NRQCD can be found
in Ref. [3]. Note, however, that we use a relativistic
normalization of states also for the matrix elements i
© 1998 The American Physical Society 2535
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NRQCD.) The matrix elements on the right-hand sid
are defined in thec rest frame, andLspd is the matrix
that performs the Lorentz boost into this frame. Th
matching coefficientsC0 and C1 are expressed as serie
in the strong couplingas and account for the short-
distance QCD corrections. The matching coefficients a
matrix elements in NRQCD individually depend on th
factorization scalem. C1 is defined (as in Ref. [7]) such
thatC1  1 1 O sasd and [4]

C0

√
as,

mQ

m

!
 1 2

2CF assmQd
p

1 c2

°
mQym

¢ µ
as

p

∂2

1 . . . , (4)

whereCF  sN2
c 2 1dys2Ncd, andNc  3 is the number

of colors. We now discuss the calculation of the two-loo
matching coefficientc2.

Since the matching coefficient contains only shor
distance effects, it can be obtained by replacing th
quarkonium statec on both sides of Eq. (3) by a free
quark-antiquark pair of on-shell quarks at small relativ
velocity. In terms of this on-shell matrix element, the
matching equation can be rewritten as

Z2,QCD GQCD  C0 Z2,NRQCD Z21
J GNRQCD 1 O sy2d ,

(5)

whereZ2 are the on-shell wave function renormalizatio
constants in QCD and NRQCD, andG is the amputated,
bare electromagnetic annihilation vertices in QCD an
NRQCD. The Feynman diagrams forGQCD at two
loops are shown in Fig. 1. Since the currentJ  cysix

need not be conserved in NRQCD, we allowed for i
renormalization,Jbare  ZJJren, on the right-hand side.
We then obtainC0 by calculating all other quantities
in Eq. (5) in dimensional regularization and using th
modified minimal subtraction scheme (MS scheme) [8].

FIG. 1. Diagrams that contribute toGQCD . Symmetric dia-
grams exist forD2,3,5. The last diagram summarizes vacuum
polarization contributions from massless fermions (D6), gluons
(D7), ghosts (D8), and the massive fermion with massmQ (D9).
2536
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The matching calculation is considerably simplified,
one uses the threshold expansion of Ref. [9] to compu
GQCD directly as an expansion iny2. The threshold
expansion is obtained by writing contributions corre
sponding to hard (l , mQ), soft (l , mQy), potential
(l0 , mQy2, li , mQy), and ultrasoft (l , mQy2) re-
gions. The contributions from soft, potential, and ultra
soft loop momenta can all be identified with diagram
in NRQCD that appear in the calculation ofGNRQCD .
Hence, they drop out of the matching relation Eq. (5) an
it suffices to compute the contribution to the thresho
expansion of the diagrams in Fig. 1, where all loop m
menta are hard. (The threshold expansion is not only co
venient; it also provides an implicit definition of NRQCD
in dimensional regularization. This is necessary, becau
dimensionally regularized NRQCD is not given by th
dimensionally regularized Feynman integrals construct
from the vertices and propagators of NRQCD. In ord
to avoid that the cutoff for the effective theory be treate
as larger thanmQ, dimensionally regularized NRQCD has
to be supplemented by a prescription for expanding t
Feynmanintegrands. This prescription is provided to all
orders as part of the diagrammatic threshold expans
method [9].)

We briefly describe the calculation of the hard contribu
tions toGQCD. (Details of the calculational method and
solution to the recurrence algorithm for the two-loop inte
grals will be given in a long write-up of this Letter.) The
spinor structure of the on-shell matrix element in QCD
conventionally parametrized by two form factors,F1 and
F2, of which only the combinationF1 1 F2 is required
here. Since terms of ordery2 are not needed to deter-
mineC0 [see Eq. (5)], we may set the relative momentu
to zero and compute the form factors directly at thresho
The form factors have Coulomb singularities at thresho
and diverge as1yy2. However, these singularities appea
only in the soft, potential, and ultrasoft contributions, an
the hard contribution is well defined directly at thresho
in dimensional regularization. The loop integrals simplif
considerably, once the relative momentum is set to ze
since they then depend only on a single scale. We th
project on the form factorF1 1 F2 and reduce all inte-
grals to integrals without numerators. These integrals c
be further reduced to “simple” integrals and two nontriv
ial two-loop integrals by means of recurrence relations d
rived from integration by parts in the loop momenta [10
The solution to the recurrence relations is the difficult pa
of the calculation. The remaining nontrivial two-loop in
tegrals can be calculated explicitly using standard Fey
man parameters.

After summing all the diagrams, multiplying by the
two-loop QCD on-shell wave function renormalizatio
constant [11], and performing (one-loop) coupling an
mass renormalization, the result still contains poles ine 
s4 2 ddy2 (whered is the space-time dimension). Sinc
the wave function renormalization constantZ2,NRQCD in
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NRQCD equals 1 up to higher-order terms iny2, not
needed here, these poles are attributed to an anoma
dimension ofJ, which first arises at the two-loop order
As a consequence the matrix elementkcjcysixj0l smd
is factorization scale dependent. We define it in th
MS scheme and obtain the anomalous dimension for t
NRQCD vector currentJ:

gJ 
d lnZJ

d lnm
 2CFs2CF 1 3CAd

p2

6

µ
as

p

∂2

1 O sa3
s d .

(6)

The scale dependence is compensated by the scale
pendence of the two-loop matching coefficientc2smQymd
in Eq. (4). Separating the different color group fac
tors CF  4y3, CA  3, TF  1y2, the final result for
c2smQymd in theMS scheme is

c2smQymd  C2
Fc2,A 1 CFCAc2,NA 1 CFTFnfc2,L

1 CFTFc2,H , (7)

c2,A  p2

"
1
6

ln

√
m2

Q

m2

!
2

79
36

1 ln 2

#

1
23
8

2
z s3d

2
, (8)

c2,NA  p2

"
1
4

ln

√
m2

Q

m2

!
1

89
144

2
5
6

ln 2

#

2
151
72

2
13z s3d

4
, (9)
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.

e
he

de-

-

c2,L 
11
18

, (10)

c2,H  2
2p2

9
1

22
9

. (11)

Here z s3d  1.202 . . . , and we have taken all fermions
with masses less thanmQ as massless, which is a goo
approximation even formQ  mb , the bottom quark
mass, in which case we neglectmc, the charm quark
mass. The massive (light) quark vacuum polarizati
contributionsc2,H (c2,L) agree with earlier calculations in
Refs. [12,13] and [7,13,14], respectively. Note also th
the C2

F term of the form factorsF1,2 close to threshold
has been calculated by Hoang [15], using the absorpt
parts of the form factors obtained in Ref. [16]. Becau
the result in Ref. [15] contains hard and soft (potentia
ultrasoft) contributions, it is not possible to extract th
matching coefficientc2,A from Ref. [15]. (The structures
in c2,A that cannot arise from the small-loop momentu
regions agree with Hoang’s result.)

The size of the two-loop correction toC0 [Eq. (4)]
given by Eqs. (7)–(11) is enormous. We define th
(scale-dependent) nonrelativistic decay constant as

kcjcysixj0l smd  s2idfNR
c smdMcep

i , (12)

in analogy with Eq. (2). The nonrelativistic decay con
stant is related to thec wave function at the origin by
Mc sfNR

c d2  12 jCs0dj2. Using Eq. (3), we obtain
fc 

√
1 2

8assmQd
3p

2 s44.55 2 0.41nfd
µ

as

p

∂2

1 . . .

!
fNR

c smQd . (13)
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With assmcd ø 0.35 and assmbd ø 0.21, the second-
order correction exceeds the first-order correction eve
for the bottomonium states. For charmonium, the secon
order term is almost twice as large as the already sizab
first-order correction. [Note that the Brodsky-Lepage
Mackenzie (BLM) estimate of the two-loop correction
[7,14,17] is far off the exact two-loop result.] Perturbative
matching at the scalem  mQ does not seem to work.
Can the factorization of short- and long-distance effec
still be useful?

A novel, and perhaps unexpected, aspect at the two-lo
level is the factorization scale dependence of the nonre
tivistic decay constant and, hence, the quarkonium wa
function at the origin. The scale dependence is large, e
pecially due to the non-Abelian term in Eq. (6). This scal
dependence of the wave function indicates the limitatio
of the nonrelativistic potential model approach already a
leading order iny2, since the wave functions obtained from
solving the Schrödinger equation are scale independe
Despite this shortcoming it may be argued that the wav
functionynonrelativistic decay constant obtained from po
tential models corresponds—if to anything—to the wav
function evaluated at a scale typical for the bound state a
n
d-
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ts

op
la-
ve
s-

e
n
t

nt.
e
-
e
nd

notmQ . This point of view is also evident if the wave func
tion is computed nonperturbatively using lattice NRQC
in which case the ultraviolet cutoffyfactorization scale is
also much smaller thanmQ. We considerm  1 GeV as
an adequate bound state scale for bottomonium and c
monium, as the applicability of perturbation theory pr
vents us from taking yet smaller scales. We then find,
bottomonium (mb  5 GeV, nf  4),

fYsnSd 

∑
1 2

8assmbd
3p

2 1.74

µ
assmbd

p

∂2

1 . . .

∏
3 fNR

YsnSds1 GeVd

ø 0.81fNR
YsnSds1 GeVd . (14)

The numerical factor 0.81 is stable against variations of
scale of the coupling at fixed factorization scale 1 Ge
At this factorization scale the second-order correcti
is numerically insignificant. Although we do not know
whether the three-loop correction would also be smal
the low factorization scale, we tend to consider Eq. (14)
an accurate prediction. This prediction could be tested
fNR

YsnSds1 GeVd were accurately known, for example, from
NRQCD lattice simulations. The large scale depende
2537
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raises the theoretical question (the answer to which w
postpone to the long write-up) as to whether it is necessa
to resum the logarithms lnsm2

Qym2d to all orders.
The situation is less favorable for charmonium state

Since mc ø 1.5 GeV, the size of the second-order cor
rection is altered little for scalesm . 1 GeV. We have
not succeeded in finding a trustworthy interpretation o
Eq. (13) and conclude that the factorization of shor
distance and long-distance effects may not be useful
practice for charmonium. Since the leptonic decay is th
simplest conceivable decay, this puts into question t
possibility of obtaining universal relations between var
ous charmonium decays and production processes thro
the use of NRQCD [3,18]. This pessimistic conclusio
may be biased by our use of theMS factorization scheme.
It is conceivable that other factorization schemes or rel
tions between physical observables, from which the wa
function at the origin is eliminated, exhibit better conver
gence properties of their perturbative series. A definitiv
conclusion on this issue can be obtained only once a s
ond quarkonium decay is computed to two-loop order.

We thank G. Buchalla for useful discussions an
A. Hoang for correspondence. V. S. has been suppor
by the Russian Foundation for Basic Research, Proje
No. 96-01-00726, and by INTAS, Grant No. 93-0744.

Note added.—While this paper was being written,
Czarnecki and Melnikov [19] also considered the two
loop matching of the electromagnetic current, also usin
the asymptotic expansion method of [9]. After correctio
of a trivial normalization error [20], their result agree
with ours.
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