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We present@ (a2) corrections to the cross section fefe~ — y* — Q0 close to threshold. We
assume that the energy of the reaction is such that both the perturbative expansion in the strong
coupling constanty, and expansion in the velocitg of the heavy quarks can be used. We obtain
terms O (a?/B2%, a2/ B, @?) in the relative correction. We demonstrate how an expansion of Feynman
diagrams in the threshold region is constructed. We obtain a matching relation between the vector
current in full QCD and in nonrelativistic QCD. [S0031-9007(98)05637-3]
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Theoretical predictions for the cross section of the retive field theory which should be used to describe physics
actione™e~ — QQ in the energy region close to ti@Q  in the threshold region [2]. In this framework the correc-
threshold are of considerable interest for various phenontions which originate from the scalés~ m can be incor-
ena. They are important for determinations of theand  porated through the so-called matching procedure. This
¢ quark masses, as well as the value of the QCD couplingequires calculations in the full QCD, in order to provide
constanta,(u), with u ~ 1-2 GeV, if one uses the sum the matching conditions. It is expected that, since the in-
rule approach forY andJ/¢ hadrons proposed in [1]; frared behaviors of both QCD and NRQCD are the same,
achievement of thed (a2) accuracy is considered very the matching calculations could be considerably simpli-
important for these quantities. One should also mentiofied. To the best of our knowledge, however, it has not
the ongoing efforts to determine the decay rates of thget been demonstrated how the matching calculations in
heavy quarkonia to leptons with ti@(a?) accuracy [2]. QCD/NRQCD should be organized in order to achieve
Also, for the futuree® e~ or ™ u~ colliders one is con- such simplification in practice.
sidering precision measurements of the top quark proper- For practical reasons it is useful to be able to use
ties by studying its threshold production region. It is wellthe smallness of the relative velocity of the quarks
known that for these and other applications, where th@n the level of individual Feynman diagrams, i.e., to
threshold region is of interest, the fixed order perturbativdormulate a prescription which operates with diagrams
calculations break down and a resummation of the termand subgraphs, rather than with composite operators
singular at threshold is mandatory. In the leading orderand effective field theories. The advantages of such an
such resummation yields the well known Sommerfeld-approach are its transparency and better control over the
Sakharov factor for the threshold production cross sectiorcalculation. Indeed, similar approaches in other kinematic
Aiming at the© (a?) accuracy for the threshold cross sec-situations have recently permitted the completion of many
tion, the first thing to be calculated is the perturbative ex{previously impossible calculations, both in QCD and in
pression for the cross section at the ord@®(a?) in the the electroweak theory (see, for example, [5-7]).

energy region where, < 8 < 1, whereg denotes the In this paper we consider a variant of the asymptotic
quark velocity,8 = /1 — 4m2/s, ands is the total en- expansions which can be used in the threshold region.
ergy squared [3,4]. It allows one to construct an expansion jB of a

From the technical point of view, the problem of per- given Feynman diagram. For the resulting Feynman
turbative calculations in the threshold region has never reintegrals one can construct algorithms which permit their
ceived much attention. On the one hand, it is clear thatalculation in any order i3, and can be encoded in a
a small parameter in which a useful expansion could irsymbolic manipulation language.
principle be constructed-8—is there; on the other hand,  An approach of this type has recently been discussed
it has not been quite clear how to use this parameter sysa [8]. Although its correctness has not been proven,
tematically in order to obtain a significant simplification its construction is analogous to the well established
of the Feynman integrals which should be calculated. Omsymptotic expansions [9—-11].
the conceptual level, the recognition of the existence of Using this approach we calculate tfig«?) correction
small and large scales in the threshold problems was foto the cross section of the reactiefie™ — QQ, up to
mulated as the nonrelativistic QCD (NRQCD), an effec-terms of orderO (BY) relative to the Born cross section.
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In the result the terms with a color factd}z, as well as
the corrections induced by vacuum polarization insertions
due to heavy and light fermions, are identical to the
previously obtained results in the Abelian gauge theory
[4,12]. This provides a nontrivial test of the asymptotic
expansion method applied in the threshold region. The (a) (b) (©)
non-Abelian terms presented below are a new result.
We begin with introducing some notations. The cross
section of the reactioa™ e~ — y* — QQ is written as

0'e+e—_,QQ = O'(O)|:1 + Cp<ﬁ>A(l)
T

+C <ﬁ>2A(2>} 1

ae= - @ (&) (¢) (f)
where
_ 2
o O(s) 4m a—NC 2Q.3(3 . B )’
2 )
p=y1—

s .
s is the total energy squared of the reactisnis the mass (8) () (1)

of the heavy quark), N. = 3 is the number of colors, FIG. 1. Two-loop QCD corrections to the quark pair produc-
andeg is the charge of the quar® in units of the electric tion; (a) is the one-loop vertex correction; (b)—(i) are the two-

charge. We also always usg = a,(m) in the modified l0op gluonic and fermionic corrections.
minimal subtraction schemeS scheme) and the on-

shell renormalization for the heavy quark propagators. . . ) )
The termsA® and A® represent, respectively, the (3) potential region, where, ~ mB*and|k| ~ mp; and
(4) ultrasoft regionk ~ mB2?. One should construct all

one- and two-loop corrections. Vertex corrections which X . L
contribute at these orders are shown in Fig. 1. Th ossible subgrgphs .Of a given 'graph assigning the above
abels to the lines in all possible combinations. After

term A® is known in exact form as a function g8. Hass - o ot th hould sat
Near the threshold we are interested in the expressior‘%JC assignment, the routing of the momenta should satisfy

for both A(12) up to and including term® (8°). (The the “scale conservation.” Namely, two ultrasoft lines, for
term ©(B) in A can also be used for the.matching instance, cannot produce a potential line. On the contrary,
on nonrelativistic resummed cross section. This ternfWo Potential lines can produce an ultrasoft line and so on.

. ! . . (1 i
represents a kinematical correction and leads, essentlally, To ca_l(;:ulatiA toI necessfar;;l order 'I'ﬁ’ one has_
to the replacementr2/(28) — #2(1 + B2)/(2B); see W© chon3| er t e rea parth_o dt' e one- 0(|)p corre(_:tllon
[3,4]) We note that up to this order i there is no [ the vertexy"QQ. In this diagram only potentia

need to consider radiation of real gluons in the process giNd hard regions contribute. The other two regions
interest. With this restriction the expression fo) reads  9enerate massless tadpoles which vanish in dimensional

5 regularization, which we use throughout this calculation.
A =T 4y 0P). (3)  The potential subgraph gives rise to a finite contribution
2B w2/2B. The hard subgraph [which to the ordér(s°)

The two terms in this expression are known to be of ratheis obtained by simply considering the vertex correction
different origins. The term proportional to the inverseat the points = 4m? in dimensional regularization] gives
power of B is the so-called Coulomb correction, while the constant term-4, if combined with the ultraviolet
the second term is known to be a hard correction. Letenormalization of the Born cross section.
us demonstrate how these corrections could be calculated To see the importance of this classification we recall
using asymptotic expansions. the following fact. The above result fax" is valid in

In this approach for each diagram one has to identifithe region8 > «,, where perturbative calculations are
those regions of the integration momenta which can givestill justified. When one approaches the region of small
nonvanishing contributions at the given ordergn In B, one should perform a resummation of all terms of
the calculations close to threshold, one should distinguisthe form «”/B". Such resummation results in the well
four different regions (the following description applies to known Sommerfeld-Sakharov factor, which is the modulus
the center of mass frame of th@Q pair) [8]: (1) Hard  square of the fermion wave function at the origin, when
region, where the momenta of the quanta are of thé¢he Coulomb interaction between nonrelativistic and
order ofk ~ m; (2) soft region, wherey ~ |k| ~ mB;  Q is taken into account exactly. It is also believed that
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part of the subleading terms of the fort "' /8" can be Various contributions taA® are
resummed by multiplying the Sommerfeld-Sakharov factor
by the so-called hard correction, AD — 7t _ 277_2 i 77_4
N 4 B2 B 6
o= 0'(0)<1 - 4cF—S> ¥ (0)], 35 2 4 39
aT 2
+7T<————Inﬁ+—ln2>+——{3,
, Z Cra,m 4 18 3 3 4
Yol = ————. z= —. (6)
1 — exp(—2) B
It is interesting that this hard renormalization constant for w2 /31 11
the Sommerfeld-Sakharov factor, which has been knowr\Na = E(ﬁ T I ﬂ)
already for a long time, is the same as the contribution
of the hard subgraph of the one-loop vertex correction + Tﬂ(@ —Ing - 8 In 2) _ 1t 13 -
and the ultraviolet renormalization. This is, of course, 72 3 36 2
not accidental. If the approach based on asymptotic (7
expansions in the threshold calculations is to be trusted,
it is fairly clear that the above formula is correct and ,@ _ 7 <l n2g — i) L1 (8)
the one-loop hard correction does indeed provide the 3 18 9’

the coupling constant. The simplest way to see this is toAg) = - —. C)]
say that the contribution of the hard subgraph provides a
renormalization of the NRQCD vector current in order to @) o ) )
match it on the complete vector current in QCD (see a mord € terms A4 5 coincide with the results obtained
detailed discussion below). in QED. The non-Abelian pieceAf@), was studied
One can hope that the knowledge of the contributionsiumerically in [13], where Padé approximation was used
coming from hard subgraphs at ord@(«;) would permit  to obtainA'?} as a function of8. A comparison of our
a determination of the two-loop renormalization of the agyit for A@ with the results for the similar quantity

Coulomb ladder. _ _ presented in [13] shows that foB < 1 there is a
We now turn to the consideration of the second orde{ss50nable agreement.

correction, described by the tertd®. It is convenient The details of the derivation of the above results
to decompose_it into terms proportional to various SU(3)sgnnot be presented here for lack of space. We only
color factors [in SUB)Cr = 4/3, Ca =3, Tk = 1/2,  priefly explain how they are obtained using the asymptotic
andN, y are the numbers of quark flavors of mass 0 andyypansion in the threshold region. The contributions of
m, respectively], all momenta regions, relevant for this calculation, are
) ) ) ) separated according to a classification given above, and

AP = CrAL" + Calua + NLTRAL + NuTrhu thep integrands of tr?e loop integrations %re expanded in
(5) the respective small parameters (which vary from one

The only unknown term in this expressionAs,, which ~momentum region to another). All divergences which
arises in the non-Abelian theoryAf,)H,L are the same in af1se N the course .Of t_h|s procedure are regulated using
the Abelian and non-Abelian theory. In the frameworkQl'r71e'.15'().nal .regularlzatlon. _The calculation of the hard
)} . . . contribution is done by solving a system of recurrence
of QED Ay was obt{;uned n .[4] in the thres_hold relations which allows one to reduce any hard integral
region. The terms Wh'c_h descrlbez the contribution Ofto a limited set of master integrals. All integrals, where
both massless and massive f_ermldfgﬂ were calculated  only potential lines are involved, are similar in their form
in an analytical form for arbitrary3 in [12]. Also, we o the integrals which one encounters in the nonrelativistic
would like to mention that the leadin@ (¢;/B) terms  perturbation theory and can be done easily. When some
in A}&), were predicted in [13] using the observationlines of a given diagram are either soft or ultrasoft, the

that similar terms inAY are directly related to the calculation can be performed loop by loop. For this, the
contribution of light fermions to the Coulomb-like QCD results for the one-loop eikonal integrals [14] are useful
interaction potential between heavy quark and antiquarlk@s Well as some results obtained in [15].

These terms can also be extracted from the expressionLet us elucidate the origin of various terms in the
for the cross section foe* e~ — QQ, which includes above expressions fdrf) andAE@),. The most interesting

the resummation of the ternth”“)/ﬁ”. Our calculation  contributions come from the hard subgraphs, because these
confirms these r%ults and allows a determination of theontributions could be used to discuss the renormalization
0 (B°) terms inAyy, which is the main new result of the of the Sommerfeld-Sakharov factor at the next-to-leading
present paper. order as well as a matching of the NRQCD quark-antiquark

2

loog : B
renormalization of the Coulomb ladder to all orders in 44 472

9
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vector current on the full QCD vector current at ordergeneralization of a similar expansion, discussed in [14]

O (a?) and the leading order ih/m. in the context of heavy quark decays.

We note the following: in bOthAfsz the terms In conclusion, we have calculated tfig «2) correction
which are not accompanied by powers mfcome from  to the heavy quark production cross sectior fre~ anni-
hard subgraphs. These &@8/4 — & and —151/36 — hilation in the threshold region, assuming < g < 1.

1343/2, respectively, forAf) and A;@x. The terms of the

order O (8°), which are multiplied by a single power of
w2, are more tricky. First, one sees that there is & In
contribution in these pieces. This implies that these term
get contributions from both hard and (all possible) soft
scales, and these contributions are not finite separately:
This in turn means that at th@ («?) order the matching
coefficient of the NRQCD vector quark-antiquark current
is not finite any longer. Removing this divergence by
using theMS renormalization of the low energy effective
field theory, we arrive at finite (but scale dependent)
matching coefficients.

A method of systematic expansion of the Feynman dia-
grams near thresholds in powers and logarithms of the
quark velocity 8 enabled for the first time an evalu-
gtion of the non-Abelian terms. At the same time, com-
parison of the Abelian terms with previously obtained
sults gives us confidence in the correctness of the
ethod. The results of the present paper can be further
used for matchinglike calculations, to arrive at the predic-
tions for the threshold cross section at the energy region,
where B8 ~ a,. We have also given a matching relation
between full QCD and NRQCD effective currents to lead-
ing order in1/m and second order in the strong coupling

We writ constant. '
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where the operator at the left-hand side of the above equ
tion is the quark—antiquark current in the full QCD, while
the right-hand side represents the quark-antiquark curre
in the effective field theory (with}, and y;, being two-
component spinors), multiplied by a Wilson (matching)
coefficient. We note that to the ord€¥(«a,, 1/m?) the
matching condition for the quark-antiquark vector curren
has been obtained in [16].

The knowledge of contributions coming from hard

subgraphs allows us to obtain this matching coefficient [1] M.B. Voloshin, Int. J. Mod. Phys. AL0, 2865 (1995).

directly, [2] G.T. Bodwin, E. Braaten, and G. P. Lepage, Phys. Rev. D
C2(/.L) = CFCA + CACNA + NLTRCL + NHTRCH , (11) 51, 1125 (1995).
79 1 [3] A.H. Hoang, Phys. Rev. 36, 5851 (1997).
calp) = 772[__ - — |n<ﬂ> + In 2} [4] A.H. Hoang, Phys. Rev. 36, 7276 (1997).
36 3 m [5] A. Czarnecki, B. Krause, and W. Marciano, Phys. Reuv.
23 1 Lett. 76, 3267 (1996).
+ = - =4, (12) [6] A. Czarnecki and K. Melnikov, Phys. Rev. Left8, 3630
8§ 2 (1997).
2| 89 1 N 5 [7] K.G. Chetyrkin, J.H. Kihn, and A. Kwiatkowski, Phys.
cnalp) = 7 [— -5 <—> 3 '”2} Rep.277, 189 (1996).
144 2 m p )
[8] M. Beneke and V.A. Smirnov, Report No. hep-ph/
15113 ‘ (13) 9711391 (unpublished).
72 4 5 [9] V. Smirnov, Commun. Math. Phy4d.34, 109 (1990).
11 [10] K. G. Chetyrkin, Theor. Math. Phyg§5, 346 (1988).
cr(p) = —, (14) [11] K. G. Chetyrkin, Theor. Math. Phy§6, 809 (1988).
18 [12] A.H. Hoang, J.H. Kuhn, and T. Teubner, Nucl. Phys.
2, 22 B452 173 (1995).
cu(p) = _377 + g (15) [13] K. G. Chetyrkin, J.H. Kihn, and M. Steinhauser, Nucl.

. . L Phys.B482, 213 (1996).
We note finally that within the present approach it |sél4] A. Czamecki and K. Melnikov, Phys. Rev. B6, 7216

also possible to calculate the higher order terms in th (1997).
expansion ing. However, for the terms of ordeg’ [15] M. Peter, Nucl. PhysB501, 471 (1997).

in A® one should already incorporate the real gluonie] M. Luke and M. Savage, Phys. Rev.aJ, 413 (1998).
radiation. The expansion of the real radiation and thg17] M. Beneke, A. Signer, and V. Smirnov, following Letter,

phase space in this case can be obtained as a slight Phys. Rev. Lett80, 2535 (1998).

2534



