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Now that the properties of low temperature Bose gases at low density,r, can be examined
experimentally it is appropriate to revisit some of the formulas deduced by many authors four
five decades ago. One of these is that the leading term in the energyyparticle is2p h̄2raym, wherea is
the scattering length. Owing to the delicate and peculiar nature of bosonic correlations, four decade
research have failed to establish this plausible formula rigorously. The only known lower bound for
energy was found by Dyson in 1957, but it was 14 times too small. The correct bound is proved he
[S0031-9007(98)05619-1]
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With the renewed experimental interest in low densit
low temperature Bose gases, some of the formulas pos
four and five decades ago have been dusted off and
examined. One of these is the leading term in the grou
state energy. In the limit of small particle density,r,

e0srd ø m4pra , (1)

wheree0srd is the ground state energy (g.s.e.) per partic
in the thermodynamic limit,a is the scattering length
(assumed positive) of the two-body potentialy for bosons
of massm, andm ; h̄2y2m.

Is Eq. (1) correct? In particular, is it true for the hard
sphere gas? While there have been many attempts a
rigorous proof of (1) in the past 40 years, none has be
found so far. Our aim here is to supply that proof fo
finite range, positive potentials. As remarked below, (
cannot hold unrestrictedly; more thana . 0 is needed.

An upper bound fore0srd agreeing with (1) is not
easy to derive, but it was achieved for hard spheres
a variational calculation [1], which can be extended
include general, positive potentials of finite range. Wh
remained unknown was a good lower bound. The on
one available is Dyson’s [1], and that is aboutfourteen
times smallerthan (1). In this paper we shall provide
a lower bound of the desired form, and thus prove (1
We can also give explicit error bounds for small enoug
values of the dimensionless parameterY ; 4pra3y3:

e0srd $ m4pras1 2 CY1y17d (2)

for some fixed C (which is not evaluated explicitly
becauseC and the exponent1y17 are only of academic
interest). The bound (2) holds forall non-negative,
finite range, spherical, two-body potentials.A typical
experimental value [2] isY ø 1025. Dyson’s upper
bound ism4pras1 1 2Y1y3d s1 2 Y1y3d22.

We conjecture that (1) requires only a positive scatte
ing lengthand the absence of any many-body, negativ
energy bound state. If there are such bound states t
(1) is certainly wrong, but this obvious caveat does n
seem to have been clearly emphasized before. Ther
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a “nice” potential with positive scattering length, no two
body bound state, but with a three-body bound state [3]

Our method also obviously applies to the positiv
temperature free energy [because Neumann bound
conditions give an upper bound to the solution to the he
(or Bloch) equation].

We also give some explicit bounds forfinite systems,
which might be useful for experiments with traps, but w
concentrate here on the thermodynamic limit for simplic
ity. For traps with slowly varying confining potentials,
Vext, our method will prove that the leading term in the
energy is given by the well known local density approxi
mation [4], which minimizes the gaseous energy (1) plu
the confining energy, with respect torsxd, namely,

E srd ;
Z

fVextsxdrsxd 1 m4parsxd2g d3x

is minimized subject to
R

r ­ N ­ number of particles.
The fact that Dyson’s lower bound was not improve

for four decades, despite many attempts, attests to the f
that bosons are subtle quantum mechanical objects wh
can have peculiar correlations unknown to fermions. F
example, there is the nonthermodynamicN7y5 law for
the charged Bose gas that was discovered by Dyson [
confirmed only 20 years later [6], and which defies an
simple physical interpretation.

The first understanding of (1) goes back to Bogoliubo
[7], who also introduced the notion of “pairing” in Helium
(which resurfaced in the BCS theory for fermions). Late
there were several derivations of (1) (and higher orde
[8,9]. The method of the pseudopotential, which is an o
idea of Fermi’s, was closest to the Bogoliubov analysi
The “exact” pseudopotential was constructed in [10], bu
it did not help to make this appealing idea more rigorou
Most of the derivations were in momentum space, th
exception being [9], which works directly in physical
space and which can handle both long and short ran
potentials. See [11] for a review. All these method
rely on special assumptions about the ground state (e
selecting special terms in a perturbation expansion, whi
© 1998 The American Physical Society
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likely diverges) and it is important to derive a fundamenta
result like (1) without extra assumptions.

In all of this earlier work one key fact was not
understood, or at least not clearly stated in connectio
with the derivation of (1). It is that there are two different
regimes, even at low density, with very different physics
even though the simple formula (1) seems to depen
only on the scattering length. Recall that the (two-body
scattering length is defined, for a spherically symmetri
potential,y, by

2mu00
0 srd 1

1
2

ysrdu0srd ­ 0 , (3)

with u0s0d ­ 0, u0srd . 0 (which is equivalent to the
absence of negative energy bound states, and which is tr
for non-negativey). As r ! `, usrd ø r 2 a. [Note
the yy2 and noty in (3) because of the reduced mass.
Thus,a depends onm in a nontrivial way, and there are
two extremes:

Potential energy dominated region.—The hard sphere
[ysrd ­ ` for r , a], is the extreme case here; the
scattering length is independent ofm, and the energy is
mostly (entirely)kinetic. We see this from (1) because
2m≠e0y≠m is the kinetic energy (Hellmann-Feynman
theorem). In this regime the potential is so dominant tha
it forces the energy to be mostly kinetic. The ground-stat
(g.s.) wave function is highly correlated.

Kinetic energy dominated region.—The typical case is
a very “soft” potential. Thena ø smyh̄2d

R`
0 ysrdr2 dr,

which implies, from (1), thate0 hardly depends onm.
Thus, the energy is almost allpotential. The g.s. wave
function is essentially the noninteracting one in this limit.

In other words, “scattering length” is not a property
of y alone, and the low density gas, viewed from
the perspective of the bosons, looks quite different in
the two regimes. Nevertheless, as (1) says, the ener
cannot distinguish the two cases. Whether Bose-Einste
condensation itself can notice the difference remains to b
seen. Condensation will not be touched upon here, exce
to note that so farthe only case with two-body interactions
in which Bose-Einstein condensation has been rigorous
established is hard core lattice bosons, but only at hal
filling [12].

Dyson [1] effectively converted region 1 into region 2.
We shall make use of his important idea, which substitute
a very soft potential for the original one (even a hard core
at the price of sacrificing the kinetic energy.

We assume that theN particles are in aL 3 L 3 L
cubic box,V. The particle density is thenr ­ NL23.
It is well known that the energy per particle in the
thermodynamic limit, e0srd, does not depend on the
details of (reasonable)V, so we are free to use a cube
and takeN ! ` through any sequence we please, as fa
ase0srd is concerned. We setN ­ kM with k an integer
and M the cube of an integer, because we shall want t
divide upV into M smaller cubes (calledcells) of length
l
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, ­ skyrd1y3. We will takeM ! ` with , andk ­ r,3

fixed, but large.
TheN-body Schrödinger operator is

H ­ 2m

NX
i­1

Di 1
X

1#i,j#N

ysxi 2 xjd . (4)

For boundary conditions we impose Neumann (ze
derivative) boundary conditions onV. It is well known
that Neumann boundary conditions give the lowest po
sible g.s.e. forH, and hence its use is appropriate fo
a discussion of alower bound for the g.s.e. Denote this
Neumann g.s.e. byE0sN, Ld.

Now divide V into M cells and impose Neumann
conditions on each cell, which, as stated before, lowers t
energy further. We also neglect the interaction betwee
particles in different cells; this, too, can only lower the
energy becausey $ 0.

A lower bound forE0sN , Ld is obtained by distributing
the N particles in theM cells and then finding a lower
bound for the energy in these cells, which are no
independent. We then add theseM energies. Finally, we
minimize the total energy overall choicesof the particle
number in each cell (subject to the total number beingN).
Despite the independence of the cells, the latter proble
is not easy. In particular, something has to be invoked
make sure that we do not end up with some cells havin
too large a number of particles and some cells havin
too few.

With L, N and M ­ Nysr,3d fixed, let Mcn, for n ­
0, 1, 2, . . . denote the number of cells containing exactl
n particles. Then the particle number and cell numbe
constraints areX

n$0

ncn ­ k ­ r,3,
X
n$0

cn ­ 1 , (5)

and our energy bound is

E0sN, Ld $ M min
X
n$0

cnE0sn, ,d , (6)

where the minimum is over allcn $ 0 satisfying (5).
The minimization would be easy if we knew tha

E0sn, ,d (or a good lower bound for it) is convex inn, for
then the optimum would becn ­ dn,k. This convexity
is very plausible, but we cannot prove it (except in th
thermodynamic limit, where it amounts to thermodynami
stability). What we do know instead issuperadditivity:

E0sn 1 n0, ,d $ E0sn, ,d 1 E0sn0, ,d (7)

for all n, n0, and this turns out to be an adequate substitu
for controlling the largen terms in (6).

Equation (7) is an immediate consequence of the po
tivity of the potential and it is used as follows. Suppose
provisionally, that we have a lower bound of the form

E0sn, ,d $ Ks,dnsn 2 1d, for 0 # n # 4k , (8)
2505
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with Ks,d independent ofn for 0 # n # 4k. In fact, we
shall later prove that for small enoughr (and hence small
enoughk) and suitable,, (8) holds with

Ks,d $ m4pa,23s1 2 C0Y1y17d , (9)

with C0 some constant. [However, the analysis we giv
now, leading to (12), does not depend on this particul
form of Ks,d.]

Split the sum in (6) into two pieces:0 # n , 4k
and 4k # n. Let t ;

P
n,4k ncn # k, so thatk 2 t ­P

n$4k ncn. From (8) and Cauchy’s inequality (andP
n,4k cn # 1)X

n,4k

cnE0sn, ,d $ Ks,dtst 2 1d . (10)

On the other hand, ifn $ 4k then, by (7),E0sn, ,d $

sny8kdE0s4k, ,d, soX
n$4k

cnE0sn, ,d $
k 2 t

2
Ks,d s4k 2 1d .

Upon adding (10) and (11) the factortst 2 1d 1 sk 2

td s2k 2 1y2d is obtained. Although the numbert is
unknown, we note that this factor is monotone decreasi
in t in the interval0 # t # k [which is wheret lies, by
(5)]. Thus, we can sett ­ k and obtain the same bound
as if we had convexity, i.e.,

E0sN , Ld $ NKs,d s r,3 2 1d . (12)

In summary, if we can show (8) for a box of afixedsize
,, for all particle numbers up ton ­ 4r,3, then we will
have obtained our goal, (2), in the thermodynamic lim
providedwe can show that theK in (8) satisfies (9) with
the constantC0 when , is large compared to the mean
particle spacing, i.e.,r,3 . C00Y21y17. Then theC in
(2) equalsC0 1 C00.

We now focus on a single cell and denote then
coordinatessx1, ..., xnd collectively byX. The first step in
proving (9) is to replace the total potential,

P
i,j ysxi 2

xjd, by a lesser quantity,WysXd, the nearest-neighbor
potentialdefined by

WysXd ;
1
2

nX
i­1

ysxi 2 xjsidd , (13)

where jsid is the nearest-neighbor to particlei in the
configurationX; i.e., particle i “feels” only its nearest
neighbor. Hence, we replaceH by the smaller operatoreH ; T 1 Wy # H , (14)

whereT ­ 2m
P

Di is the kinetic energy in (4). Since
y $ 0, the g.s.e. ofeH satisfieseE0sn, ,d # E0sn, ,d.

To get into the kinetic energy dominated region, w
wish to replacey in (13) by a gentler potentialU. To
this end we generalize Lemma 1 of [1] and simplify it
proof.

LEMMA 1.—Let ysrd $ 0 and ysrd ­ 0 for r . R0.
Let Usrd $ 0 be any function satisfying

R
Usrdr2dr # 1

and Usrd ­ 0 for r , R0. Let B , R3 be star-shaped
2506
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(convex suffices) with respect to0. Then, for all functions
f,Z

B
mj=fsxdj2 1

∑
1
2

ysrd 2 maUsrd
∏

jfsxdj2 d3x $ 0 .

(15)

Proof.—Actually, (15) holds withmj=fsxdj2 replaced
by the (smaller)radial kinetic energy, mj≠fsxdy≠rj2, and
thus it suffices to prove the analog of (15) for the integral
along each radial line, and to assume thatfsxd ­ usrdyr
along this line, withus0d ­ 0. Let us first prove (15)
when U is a delta function at some radiusR $ R0, i.e.,
Usrd ­ R22dsr 2 Rd. Then, it is enough to show, for
all u, thatZ R

0
mju0srd 2 usrdyrj2 1

1
2

ysrdjusrdj2 dr

$ majusRdj2R22. (16)

If the length of the radial line is less thanR then (16)
is trivial. Otherwise, normalizeu by usRd ­ R 2 a,
and ask for the minimum of the left side of (16) under
the condition thatus0d ­ 0, usRd ­ R 2 a. This is a
simple problem in the calculus of variations and leads
to the scattering length equation (3). If we substitute
the solution into (16), integrate by parts, and note that
u0srd ­ r 2 a for r . R0, we find that (16) is true if
a # R, which is true sinceu0 $ 0. Finally, by linearity
and the fact thatUsrd ­

R
r22dsr 2 sdUssds2 ds, the

d-function case implies the general case. Q.E.D.
We select ourU by picking someR ¿ R0 and setting

Usrd ­ 3sR3 2 R3
0 d21 for R0 , r , R (17)

andUsrd ­ 0 otherwise. Later on we shall chooseR, and
we shall take

R0 ø R ø r21y3 ø , . (18)

By further decomposing a cube into Voronoi cells
(which are always convex), Dyson [1] deduces from
Lemma 1 thateH is bounded below by a nearest-neighbor
potential, as in (13), i.e.,

H . eH . maWU sXd , (19)

whereWU is as in (13), withy replaced byU. For the
hard core case, Dyson estimates theminimum (over all
X) of WUsXd, for a U similar to (17), and gets a lower
bound for allr, but 14 times smaller than (1). We follow
another route. An important quantity for us will be the
average value ofWU sXd in a cell, denoted bykWU l.

To computekUsx1 2 xjs1ddl, for example, it is easiest
to do thex2, . . . , xn integrations over the cell first and
then thex1 integration. Providedx1 is in the smaller
cube which is a distanceR from the cell boundary [whose
volume is s, 2 2Rd3], the probability thatR0 , jxj 2

x1j , R is 4psR3 2 R3
0 dy3,3. Thus, performing thex1

integration over the smaller cube, and then adding simila
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contributions fromUsx2 2 xjs2dd, etc., and using (17), we
get

kWU l $
3ns, 2 2Rd3

sR3 2 R3
0d,3

f1 2 s1 2 Qdn21g (20)

$
4p

,3
nsn 2 1d

µ
1 2

2R
,

∂3 1
1 1 Qsn 2 1d

. (21)

with

Q ­ 4psR3 2 R3
0 dy3,3 ø 1 . (22)

In (21) we usedf1 2 xgn21 # f1 1 sn 2 1dxg21 for 0 #

x # 1. Note that (21) is of the form (8).
By similar reasoning, we obtain the upper bound

kWUl #
3n

R3 2 R3
0

f1 2 s1 2 Qdn21g (23)

#
4p

,3
nsn 2 1d . (24)

SinceUsrd2 ­ 4psQ,3d21Usrd, we also obtain

kW 2
Ul # 4pnsQ,3d21kWU l . (25)

We can now use Lemma 1 and these averages to obt
(8) and (9). Instead of using (19) alone, we pick som
0 , ´ ø 1 and, borrowing a bit of kinetic energy, definebH ; ´T 1 s1 2 ´dmaWU sXd. (26)

By Lemma 1 andy $ 0, we have

H . eH . bH . (27)

We shall derive (8) and (9) from a lower bound tobH.
Although ´ is small, we regardH0 ; ´T as our un-

perturbed Hamiltonian andV ; s1 2 ´dmaWUsXd as
a perturbation ofH0. The ground state wave func-
tion for H0 is C0sXd ­ ,23ny2 and H0C0 ­ l0C0 ­ 0
(Neumann conditions). The second eigenvalue ofH0 is
l1 ­ ´mpy,2. Note that the ground state expectation
kC0jWU jC0l, is precisely the averagekWUl mentioned
in (20)–(25).

Temple’s inequality [13] states that when a perturba
tion V is non-negative (as here) and whenl1 2 l0 $

kC0jV jC0l then the g.s.e.,E0, of the perturbed Hamilton-
ian H ­ H0 1 V satisfies

E0 $ l0 1 kC0jV jC0l 2
kC0jV 2jC0l 2 kC0jV jC0l2

l1 2 l0 2 kC0jV jC0l
.

(28)

We apply this to our case withl1 2 l0 ­ ´mpy,2

andV ­ s1 2 ´dmaWU . We neglect the (positive) term
kC0jV jC0l2 in (28) and we use (21), (24), and (25). We
ain
e

,

-

also use1 2 ´ , 1 in two appropriate places and find

E0sn, ,d
makWUl

$ s1 2 ´d
µ
1 2

4pan
Q,

1
´p 2 a,2kWUl

∂
.

(29)

Apart from some higher order errors, (29) is just wha
we need in (8) and (9). Let us denote the order o
the main error byY a , and we would like to show that
a ­ 1y17 suffices. The errors are the following:

From thes1 2 ´d factor, we need́ # OsYad.
From the Qsn 1 1d error in (21) we needQr,3 #

OsYad.
From theRy, error in (21) we needRy, # OsYad.
From (29) we need a,2kWU ly´ # OsYad and

r,5ayR3´ # OsYad.
All these desiderata can be met with́ ­ Ya ,

Ry, ­ Y a , Q ­ OsYad, rR3 ­ Y2a, anda ­ 1y17—
as claimed.
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