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Ground State Energy of the Low Density Bose Gas
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Now that the properties of low temperature Bose gases at low densjtycan be examined
experimentally it is appropriate to revisit some of the formulas deduced by many authors four to
five decades ago. One of these is that the leading term in the gipartigle is27 /i2pa/m, wherea is
the scattering length. Owing to the delicate and peculiar nature of bosonic correlations, four decades of
research have failed to establish this plausible formula rigorously. The only known lower bound for the
energy was found by Dyson in 1957, but it was 14 times too small. The correct bound is proved here.
[S0031-9007(98)05619-1]

PACS numbers: 03.75.Fi, 05.30.Jp, 67.40.—w

With the renewed experimental interest in low density,a “nice” potential with positive scattering length, no two-
low temperature Bose gases, some of the formulas positdzbdy bound state, but with a three-body bound state [3].
four and five decades ago have been dusted off and re- Our method also obviously applies to the positive
examined. One of these is the leading term in the grountemperature free energy [because Neumann boundary
state energy. In the limit of small particle densipy, conditions give an upper bound to the solution to the heat
eo(p) ~ wdmpa (1) (or Bloch) eq_uation]. N N

0P mrTpa, We also give some explicit bounds féinite systems,
whereey(p) is the ground state energy (g.s.e.) per particlavhich might be useful for experiments with traps, but we
in the thermodynamic limita is the scattering length concentrate here on the thermodynamic limit for simplic-
(assumed positive) of the two-body potentiador bosons ity. For traps with slowly varying confining potentials,
of massm, andu = #2/2m. Vext, Our method will prove that the leading term in the

Is Eq. (1) correct? In particular, is it true for the hard- energy is given by the well known local density approxi-
sphere gas? While there have been many attempts atnaation [4], which minimizes the gaseous energy (1) plus
rigorous proof of (1) in the past 40 years, none has beethe confining energy, with respect tdx), namely,
found so far. Our aim here is to supply that proof for
finite range, positive potentials. As remarked below, (1) E(p) = ][Vext(x)p(x) + whmap(x)?]d’x
cannot hold unrestrictedly; more than> 0 is needed.

An upper bound forey(p) agreeing with (1) is not is minimized subject tof p = N = number of particles.
easy to derive, but it was achieved for hard spheres by The fact that Dyson’s lower bound was not improved
a variational calculation [1], which can be extended tofor four decades, despite many attempts, attests to the fact
include general, positive potentials of finite range. Whathat bosons are subtle quantum mechanical objects which
remained unknown was a good lower bound. The onlycan have peculiar correlations unknown to fermions. For
one available is Dyson’s [1], and that is abdatirteen example, there is the nonthermodynamié/> law for
times smallerthan (1). In this paper we shall provide the charged Bose gas that was discovered by Dyson [5],
a lower bound of the desired form, and thus prove (1)confirmed only 20 years later [6], and which defies any
We can also give explicit error bounds for small enoughsimple physical interpretation.
values of the dimensionless parameie= 47 pa’/3: The first understanding of (1) goes back to Bogoliubov

117 7], who also introduced the notion of “pairing” in Helium

eo(p) = pdmpa(l — cY'V) @) EV\}hiCh resurfaced in the BCS theory foF; ferrr?ions). Later,
for some fixed C (which is not evaluated explicitly there were several derivations of (1) (and higher order)
becauseC and the exponent/17 are only of academic [8,9]. The method of the pseudopotential, which is an old
interest). The bound (2) holds foall non-negative, idea of Fermi’'s, was closest to the Bogoliubov analysis.
finite range, spherical, two-body potentialsA typical The “exact” pseudopotential was constructed in [10], but
experimental value [2] isY = 107°. Dyson’s upper it did not help to make this appealing idea more rigorous.
bound isudmpa(l + 2Y'3) (1 — y'/3)72, Most of the derivations were in momentum space, the

We conjecture that (1) requires only a positive scatterexception being [9], which works directly in physical
ing lengthand the absence of any many-body, negativespace and which can handle both long and short range
energy bound state. If there are such bound states themotentials. See [11] for a review. All these methods
(1) is certainly wrong, but this obvious caveat does notely on special assumptions about the ground state (e.qg.,
seem to have been clearly emphasized before. There $&lecting special terms in a perturbation expansion, which
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likely diverges) and it is important to derive a fundamental¢ = (k/p)'/>. We will takeM — o with € andk = p€3
result like (1) without extra assumptions. fixed, but large.
In all of this earlier work one key fact was not TheN-body Schrédinger operator is

understood, or at least not clearly stated in connection N
with the derivation of (1). It is that there are two different H=—u Z A+ Z v(x; = X;). (4)
regimes, even at low density, with very different physics, i=1 1=i<j=N

even though the simple formula (1) seems to depend

only on the scattering length. Recall that the (two-body)de
scattering length is defined, for a spherically symmetric[h
potential,v, by

For boundary conditions we impose Neumann (zero

rivative) boundary conditions of2. It is well known

at Neumann boundary conditions give the lowest pos-

sible g.s.e. forH, and hence its use is appropriate for
" 1 a discussion of dower bound for the g.s.e. Denote this

—pug(r) + jv(r)”()(r) =0, (3 Neumann g.s.e. b¥y(N, L).

Now divide Q) into M cells and impose Neumann
conditions on each cell, which, as stated before, lowers the
"é‘?‘lergy further. We also neglect the interaction between
particles in different cells; this, too, can only lower the
energy because = 0.

A lower bound forEy(N, L) is obtained by distributing
the N particles in theM cells and then finding a lower
bound for the energy in these cells, which are now
independent. We then add thedeenergies. Finally, we

with uo(0) = 0, ug(r) > 0 (which is equivalent to the
absence of negative energy bound states, and which is tr
for non-negativev). As r — o, u(r) = r — a. [Note
the v/2 and notv in (3) because of the reduced mass.]
Thus,a depends onn in a nontrivial way, and there are
two extremes:

Potential energy dominated regier-The hard sphere
[v(r) = for r < a], is the extreme case here; the

scattering length is independent af and the energy is minimize the total energy ovall choicesof the particle

mostly (entirely)kinetic We see this from (1) because number in each cell (subject to the total number beifg

t?]mae(’/aml |stht.he kl.netlihenertgy t_(l?gllmar&n-ngnT?hn Pespite the independence of the cells, the latter problem
eorem). In this regime the potential is so dominant tha S not easy. In particular, something has to be invoked to

it forces the energy to be mostly kinetic. The ground—stat(?mj‘ke sure that we do not end up with some cells having

(g.s:) wave function IS highly co_rrelated. . . too large a number of particles and some cells having
Kinetic energy dominated regior-The typical case is too few

a very “soft” potential. Them: =~ (m/R?) fo v(r)r?dr,  “\wit'T N andM = N/(p€%) fixed, let Mc,, for n —
which implies, from (1), thato hardly depends om. 0,1,2,... denote the number of cells containing exactly

Thus_, th(_e energy 1S almost qj_btentlal_. The gs. wave -, particles. Then the particle number and cell number
function is essentially the noninteracting one in this limit. constraints are

In other words, “scattering length” is not a property
of v alone, and the low density gas, viewed from
the perspective of the bosons, looks quite different in donea=k=pl Y=l ()
the two regimes. Nevertheless, as (1) says, the energy "=0 ] "=
cannot distinguish the two cases. Whether Bose-Einsteind our energy bound is
condensation itself can notice the difference remains to be
seen. Condensation will not be touched upon here, except Eo(N,L) = Mmin Y. ¢,Eo(n,0), (6)
to note that so fathe only case with two-body interactions n=0
in which Bose-Einstein condensation has been rigorouslyhere the minimum is over atl, = 0 satisfying (5).
established is hard core lattice bosons, but only at half The minimization would be easy if we knew that
filling [12]. Eo(n, €) (or a good lower bound for it) is convex in for
Dyson [1] effectively converted region 1 into region 2. then the optimum would be, = §,;. This convexity
We shall make use of his important idea, which substitutegs very plausible, but we cannot prove it (except in the
a very soft potential for the original one (even a hard corefhermodynamic limit, where it amounts to thermodynamic

at the price of sacrificing the kinetic energy. stability). What we do know instead siperadditivity:
We assume that th&' particles are in & X L X L , )
cubic box, Q. The particle density is thep = NL3. Eo(n + n',€) = Eo(n, ) + Eo(n', ) (7)

It is well k”‘?W”_ that the energy per particle in the ¢, all n, n’, and this turns out to be an adequate substitute
thermodynamic limit, eg(p), does not depend on the ¢, controlling the large: terms in (6).

de:jallskof (reasor;]able():{ so we are free to Lljse a CUbf Equation (7) is an immediate consequence of the posi-
and takeN — c through any sequence we please, as fayivy of the potential and it is used as follows. Suppose,

ase(p) is concerned. We sét = kM with k an integer (g)rovisionally, that we have a lower bound of the form
and M the cube of an integer, because we shall want t

divide up ) into M smaller cubes (calledells) of length Eon,€) = K()n(n — 1), for0=n =4k, (8)
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with K({) independent of: for 0 = n = 4k. In fact, we
shall later prove that for small enough(and hence small
enoughk) and suitablel, (8) holds with

K({) = pdmral>1 — C'YV"7), (9)

with C’ some constant. [However, the analysis we give

(convex suffices) with respect@o Then, for all functions

¢,

[ w90 + [ 30 = wavn [l6mPax = 0.
B
15)

now, leading to (12), does not depend on this particular Proof.—Actually, (15) holds withu|V ¢ (x)[? replaced

form of K(€).]
Split the sum in (6) into two piecesd) = n < 4k
and4k = n. Letr =), 4 nc, <k, so thatk — t =

> ,=axnc,. From (8) and Cauchy’s inequality (and
Zn<4k Cp = 1)
> cuEo(n, 0) = K(O1(t — 1). (10)
n<4k

On the other hand, iz = 4k then, by (7),Eo(n,€) =
(n/8k)Ey(4k, €), so

Z CnEO(n’ e) =
n=4k
Upon adding (10) and (11) the factotr — 1) + (k —
t) 2k — 1/2) is obtained. Although the number is
unknown, we note that this factor is monotone decreasin
in ¢ in the interval0 = ¢ = k [which is wheret lies, by
(5)]. Thus, we can set = k and obtain the same bound
as if we had convexity, i.e.,

Eo(N,L) = NK(£) (p€® — 1). (12)

In summary, if we can show (8) for a box ofiaedsize
¢, for all particle numbers up to = 4p€3, then we will
have obtained our goal, (2), in the thermodynamic limit
providedwe can show that th& in (8) satisfies (9) with
the constantC’ when ¢ is large compared to the mean
particle spacing, i.e.p€?> > C”"Y~Y'7. Then theC in
(2) equalsC’ + C”.

We now focus on a single cell and denote the
coordinatesxy, ..., x,,) collectively byX. The first step in
proving (9) is to replace the total potentidl,-; v(x; —
x;), by a lesser quantity,W, (X), the nearest-neighbor
potentialdefined by

1 n
WU(X) = E E U(X,‘ - Xj(,')),
i=1

where j(i) is the nearest-neighbor to particiein the
configurationX; i.e., particlei “feels” only its nearest
neighbor. Hence, we repla¢é by the smaller operator

H=T + W, =<H, (14)
where7 = —,uZAN,- is the kinetic energy in (4). Since
v = 0, the g.s.e. o satisfiesEy(n,{) = Ey(n, £).

To get into the kinetic energy dominated region, we
wish to replacev in (13) by a gentler potential/. To
this end we generalize Lemma 1 of [1] and simplify its
proof.

LEMMA 1—Letv(r) = 0 and v(r) = 0 for r > R,.
Let U(r) = 0 be any function satisfying U(r)r?dr < 1
and U(r) = 0 for r < Ry. Let B C R? be star-shaped

k—1t

K(0) (4k — 1).

(13)
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by the (smalleryadial kinetic energy u|d¢(x)/dr|?, and
thus it suffices to prove the analog of (15) for the integral
along each radial line, and to assume thak) = u(r)/r
along this line, withu(0) = 0. Let us first prove (15)
when U is a delta function at some radids = Ry, i.e.,
U(r) = R™28(r — R). Then, it is enough to show, for
all u, that

K 1
[ i) = w2 v utnP ar
0

= palu(R)?R72.  (16)

If the length of the radial line is less thak then (16)
is trivial. Otherwise, normalizex by u(R) = R — a,
and ask for the minimum of the left side of (16) under
¢he condition thatu(0) = 0, u(R) = R — a. This is a
simple problem in the calculus of variations and leads
to the scattering length equation (3). If we substitute
the solution into (16), integrate by parts, and note that
uo(r) = r — a for r > Ry, we find that (16) is true if
a = R, which is true since, = 0. Finally, by linearity
and the fact thatU(r) = [ 28(r — s)U(s)s*ds, the
S-function case implies the general case. Q.E.D.

We select oulU by picking someR > R, and setting

U(r)=3R>-R})™" forRo<r<R (17)

andU(r) = 0 otherwise. Later on we shall chooReand
we shall take

Ry<R<p P «xt. (18)

By further decomposing a cube into Voronoi cells
(which are always convex), Dyson [1] deduces from
Lemma 1 thatd is bounded below by a nearest-neighbor
potential, as in (13), i.e.,

H>H> wa Wy(X), (19)

where Wy is as in (13), withv replaced byU. For the
hard core case, Dyson estimates thaimum (over all
X) of Wy (X), for aU similar to (17), and gets a lower
bound for allp, but 14 times smaller than (1). We follow
another route. An important quantity for us will be the
average value of Wy (X) in a cell, denoted by Wy).

To compute{U(x; — Xxj(1))), for example, it is easiest
to do thex,,...,x, integrations over the cell first and
then thex; integration. Providedk; is in the smaller
cube which is a distanck from the cell boundary [whose
volume is (¢ — 2R)’], the probability thatR, < |x; —
xi| < R is 4mw(R3 — R3)/3¢3. Thus, performing the;
integration over the smaller cube, and then adding similar
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contributions fromU (x> — xj(2)), etc., and using (17), we
get

_ 3n(€ - 2R)?

Wy) = ® _rye - 0r'1 (20
47 2R} 1
zﬁn(n—1)<l—7>m- (21)
with
Q =4m(R® — R)/30 < 1. (22)

In(2) weusedl — x]" ' =[1 + (n — Dx] ' for0 =
x = 1. Note that (21) is of the form (8).
By similar reasoning, we obtain the upper bound

3n

(Wy) = m[l -(1-0"1 (23)
< %n(n -1). (24)

SinceU(r)? = 47 (Q€3)~'U(r), we also obtain
(W) = 4mn(Q€) " Wy). (25)

We can now use Lemma 1 and these averages to obtai
Instead of using (19) alone, we pick some

(8) and (9).
0 < & < 1 and, borrowing a bit of kinetic energy, define

H=eT + (1 — e)pa Wy(X). (26)

By Lemma 1 andv = 0, we have
H>H>H. (27)

We shall derive (8) and (9) from a lower boundAo

Although ¢ is small, we regardd, = £7 as our un-
perturbed Hamiltonian and& = (1 — &)ua Wy(X) as
a perturbation ofH,. The ground state wave func-
tion for Hy is Wo(X) = €732 and HyWy = AoV = 0
(Neumann conditions). The second eigenvaluedgfis
A = eum /€. Note that the ground state expectation,
(ol Wy W), is precisely the averageW,) mentioned
in (20)—(25).

Temple’s inequality [13] states that when a perturba-

tion V is non-negative (as here) and whap — Ay =
(PolV|W¥y) then the g.s.eEy, of the perturbed Hamilton-
ian H = Hy + V satisfies
(Wl V2 Wo) — (Wl V|¥)?
A= Ag — (Wo|V[Py)
(28)

Ep = Ao +(Wo|V[¥y) —

We apply this to our case with; — Ay = gum/¢€?
andV = (1 — g)ua Wy. We neglect the (positive) term
(Wo|V|Wo)? in (28) and we use (21), (24), and (25). We

also usel — ¢ < 1 in two appropriate places and find

)

(29)

dqran 1

00 em — al>{ Wy)

Eo(n, f)
MG<WU>

= (1 —s)(l -

Apart from some higher order errors, (29) is just what
we need in (8) and (9). Let us denote the order of
the main error byy“, and we would like to show that
a = 1/17 suffices. The errors are the following:

From the(1 — &) factor, we need = O(Y?).

From the Q(n + 1) error in (21) we needQp{’ =
oY?).

From theR /¢ error in (21) we nee®/{ = O(Y?®).

From (29) we needal>  Wy)/e = O(Y*) and
pl3a/R3e = O(Y?).

All these desiderata can be met with = Y¢,
R/€ =Y Q =0(Y%), pR* =Y?, anda = 1/17—
as claimed.
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