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Both the level of broadband microturbulence and the behavior of driven waves can be stron
affected by local coincidences that produce nonlinear levels of the total fluctuation amplitude.
evaluate the rate at which such coincidences occur, for moderately damped modes which frequently
their phases. They can produce significant nonlinear effects and can limit the amplitude of individ
modes to low levels. These effects, which involve very many modes, are inherently difficult to obse
using standard Fourier space or particle simulation techniques. [S0031-9007(98)05658-0]
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Given that particulate media sustain many modes
oscillation, it is worth considering the nonlinear effects tha
may arise from the interaction of these modes. When o
or a few isolated modes are intense, then phenomena s
as parametric instabilities or multiwave mixing are likely
However, large, local, nonlinear effects are possible ev
in cases for which the oscillation amplitude of each mod
is small. If, in any given region, enough of the modes a
in phase, then the total fluctuation amplitude may becom
large enough that nonlinearities become strong. This m
not be important for modes which are so weakly dampe
that they sample the entire system and maintain their pha
relationships for long periods. However, physical system
often also include modes which are moderately dampe
so that a given wave packet endures for many wave cyc
yet damps before it samples much of the system. Su
modes reset their phases frequently, through emission a
absorption. From time to time, their phases may be su
that a strong nonlinear interaction occurs. The natur
question to ask is as follows: Whether and when are su
nonlinear interactions important? In the present Letter, w
take a statistical approach to the analysis of this questio
We determine the conditions under which the nonline
interaction of many weak modes may be significant, an
show that these conditions may indeed occur in som
physical systems.

Key historical work on the problem of oscillations
in many-body systems is due to Lord Rayleigh [1]. A
0031-9007y98y80(12)y2499(5)$15.00
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system of many particles, with three degrees of freed
and negligible damping, is well known to sustain3N
normal modes. As was realized by Rayleigh [1], and
has been further explored in more recent work [2,3], t
presence of weak damping causes some of these m
to be coupled and may or may not prevent the existe
of classical normal modes. Current work has begun
go beyond a pure normal-mode analysis in areas such
mechanical structures [4] and atmospheric acoustics [5
The author has been able to find no work which stud
the problem of modes which are moderately damped
the sense described above. Yet such a situation d
occur in real systems. Acoustic modes, in particul
may be damped on scales of interest, as they are in
ocean, in plasmas, in football stadiums, and in solid-st
acoustics [7].

Moreover, any effects which arise from the occasion
nonlinear interactions of large numbers of such modes m
not be observed in most, if not all, current computation
simulations [8]. Because such simulations, of necess
discretize their physical system using far fewer grid ce
or macroparticles than are actually present in the phy
cal system, they sustain far fewer modes of oscillati
than natural systems. They will miss any physical effe
which require more modes than they can sustain. Lik
wise, the analysis of wave behavior in a medium, throu
Fourier transforms, is likely to miss such local intera
tions, since, in Fourier space, they represent a coup
© 1998 The American Physical Society 2499
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across many frequencies and wave numbers. These
servations motivate the statistical approach taken here.

We consider a system in which there is a very lar
number of moderately damped modes. The total fluctu
tion amplitude at any given position is usually the su
of the amplitudes of all of the modes present. Fro
time to time, however, a sufficient fraction of the mode
may be in phase, at some specific location, to produ
to coincidental nonlinear event (CNE). We define su
an event as the production of a state in which the to
fluctuation amplitude is so large that the response of
medium becomes strongly nonlinear. We will analyz
this problem in terms of a density of particles, but oth
variables such as electric field could be used equally w
We define the minimum fluctuation amplitude for whic
there is such a response to beñnl, which is normalized
to the average densityn so that the maximum possible
value of ñnl is 1. In gases,ñnl will be near 1; in
plasmas, it probably exceeds 0.1; and in solids or liquid
it will be much smaller. In response to such a ve
large local fluctuation amplitude, one expects that mu
of the energy from the individual local modes will b
nonlinearly absorbed.

In an actual medium, for modes whose linear dampi
is large enough that a typical local oscillation is damp
before it reaches the system boundary, the modes can
viewed as a collection of wave packets whose shape
determined by their origin and by their damping. The
wave packets are randomly created, by whatever mec
nism, and interact when they overlap. Given a thorou
understanding of the creation and damping mechanis
of such modes, one could, in principle, produce a detai
model of their properties and interactions for any speci
case. This might prove difficult in some cases, howev
because the relevant number of modes can easily exc
105 and powers thereof. We can instead turn this lar
number of modes to our advantage, as they permit us
adopt a statistical description based upon their charac
istic properties.

In order to obtain a statistical estimate of the rate
CNEs, we need to identify the number of wave packets
a given location with statistically independent phases. W
approximate the wave packets as Gaussian wave pack
The phases of these wave packets are randomly re
after one characteristic linear damping time of a typic
mode (or after each CNE), because the mode at a gi
characteristic frequency must be reemitted, giving it
new phase, on such a time scale. Thus, the normali
fluctuation amplitudednyn of a wave packet of central
frequency v1, linear dampingd, and phasef has a
frequency spectrum given by

dn
n

 ñeif exp

"
2

1
2

sv 2 v1d2

d2

#
. (1)

The FWHM of such wave packets is quite close to2d,
which we take to be the mode spacing in frequency spa
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We note that, while this procedure provides a mean
of counting the number of independent modes in phas
space, the actual wave packets are not spaced by just t
amount. In actual physical systems, wave packets can
emitted having arbitrary central frequenciesv1. When
two such wave packets are sufficiently close in frequency
in k, in time, and in space, as determined by linea
damping rates, they become effectively indistinguishable
which is the justification for counting wave packets as is
done here.

To identify the moderately damped modes, of interes
here, we divide the phase space of the wave packe
into regions, based on their physical properties. Thus
for example, we divide longitudinal modes into long
wavelength modes, which sample the entire system
acoustic modes, which will serve as our example here
and short-wavelength modes (such as optical phonons
the equivalent), which have different properties. For th
purpose of evaluating the effects of broadband turbulenc
we will approximate the modes within a given region of
phase space as having the same amplitude.

The number of independent wave packets at som
location includes all of the packets which can reach tha
location without being substantially damped. We assum
here that the medium has an isotropic dielectric function
In this case, the local volumeVloc from which such wave
packets originate is4pR3y3, whereR is a characteristic
linear damping distance. It is clear thatR is proportional
to 1yd. By definingR  spydddvydk, we establish the
same mode spacing ink space andv space. The number
of modes in an element of wave number space,dk is then
sVlocy8p3d dk.

The net fluctuation amplitude, at some location, is the
sum of the instantaneous amplitudes of all of the wav
packets present at that location. The number of suc
packets is

N 
Z Vloc

8p3
dk 

Z p

6d3

µ
dv

dk

∂
3

dk


Z 2p2

3d3

µ
dv

dk

∂
3
k2 dk , (2)

where the final equality applies only to isotropic turbu-
lence and the integral is over the relevant range of wav
vectors. This integral may or may not be simple. For ex
ample,dvydk may equal the sound speedcs andd may
be proportional to the frequencyd  acsk. In this case,

N 
2p2

3a3
lnskmaxykmind , (3)

where kmin and kmax are the minimum and maximum
wave numbers in the region over which the broadban
turbulence has similar properties.

We would like to know how often these N modes
are phased to produce a CNE. In principle, one coul
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consider an ensemble of all possible distributions of t
phases of theN modes. Here, we use a simpler estimat
We divide theseN packets into four groups identified a
n1, n2, n3, and n4. These modes are those with phas
within 6py4 of 0, py2, p, and 3py2, respectively, at
the time when the largest total fluctuation amplitude
produced for a given realization of the phases. To
first approximation, groups 1 and 3 are phased so t
they do not interfere with groups 2 and 4. Given
constant mode amplitudẽn for broadband turbulence, this
maximum fluctuation amplitude is

ñmax  ñjn1 2 n3j . (4)

The average value ofsn1 2 n3d is 0, but there is a definite
probability of finding any value up to6N. We define
D  n1 2 n3 andd  n1 1 n3 2 Ny2. By application
of the usual statistics of large systems, one can show t
the probability distribution for a state havingD andd is

W sD, dd 
exph2D2yf2sd 1 Ny2dgjp

2psd 1 Ny2d
expf2d2ysNy2dgp

pNy2
.

(5)

We want the probability distributionW sDd, which we ob-
tain by integrating Eq. (5) overd. [This is straightfor-
ward after realizing thatW sD, dd is significant only for
d ø Ny2.] This yields

WsDd 
1

p
pN

exp

"
2

D2

N

#
. (6)

The probability that the differenceD will produce a CNE
is the integral ofW over all D above the minimum
value where this is the case,D0  ñnlyñ. Allowing for
both positive and negativeD, this integral is the com-
plementary error function erfcsu0d, whereu0  D0y

p
N .

(The integral can be taken to infinity with negligible
error.) The statistical imbalance of groups 2 and 4 co
tributes an equal probability of a CNE. The total prob
ability that a given distribution of phases will produce
CNE, from broadband turbulence whose normalized lev
is ñ

p
Nyñnl  1yu0, is then

Psu0d  2 erfcsu0d 2 erfc2su0d . (7)

Figure 1 shows the dependence ofP on the normalized
level of turbulence. One sees that a small chan
in ñ can produce a large change inP and that the
importance of CNEs increases sharply asñ increases. It
is not surprising that the probability of producing a CN
becomes substantial as̃n

p
N approaches̃nnl. One can

also see, here, the difficulty that simulations will hav
in observing such phenomena. Simulations reduce

p
N

without being able to reducẽnnl, and, thus, may require
inherently nonlinear levels of̃n before CNEs will appear.

We can now identify the conditions under whic
CNEs may produce significant observable effects. On
ñ
p

N , ñnl, one is likely to see evidence of them
in observations which are sensitive to the occurren
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of nonlinear damping events. These might include th
observation of energetic particles in plasmas or th
appearance of bursts of noise in other frequency ban
in condensed media. A next question is as follows: Ca
the damping due to CNEs ever become large enough
impact the turbulence itself?

The rate at which a CNE occurs locally depends on th
probability P that a given ensemble of wave packets will
produce one and on the rateG at which new ensembles are
established. In the absence of a CNE, a new, independe
distribution of phases is established at the characterist
linear damping rated. After a CNE, both the phases
and the amplitudes must be reestablished. The phas
will be disrupted by the very rapid amplitude changes
produced by the damping event, and will establish new
values following the event at roughly the acoustic rate
v. The rate at which the amplitudes are reestablished,n,
will depend upon the type and amplitude of the driving
source. Cherenkov sources will be effective on particl
transit time scales. Mode coupling sources [9] from
waves at other frequencies will have rates that depend o
their strength but that can easily exceedd. (Note that
the physical system under consideration must have loc
sources—the moderately damped waves cannot propag
to a given location from beyond its local interaction
volume.) The combined effect of these two alternative
is that G  ds1 2 Pd 1 nP, so that the rate at which a
CNE occurs locally isGP  dP 1 sn 2 ddP2.

We now apply this to the damping of the modes
themselves, which is due to the linear damping at rat
d, and to the effects of CNEs, which occur at rate
GP. We assume here that a CNE, through its nonlinea
interaction, removes most of the energy from the mode
under consideration inVloc. The energy loss due to CNEs
will be comparable to or larger than the linear damping
whennP2 . d. In combination with Eq. (7), this implies
that CNEs will be a major energy sink when

erfcsu0d 

∑
1 2

q
1 2

p
dyn

∏
. (8)

FIG. 1. The probabilityP that a random set of phases will
produce a coincidental nonlinear amplitude is very strongly
dependent upon the normalized level of broadband turbulence
2501
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Figure 2 shows this result. We see that, once the mod
are driven strongly enough to increase their amplitud
aboveñ  ñnly

p
N in a small fraction of a damping time,

the coincidental nonlinear events will dominate the energ
losses.

This specific analysis implies that CNEs impose a fairl
small limit on the general level of broadband turbulenc
that can be driven without a large increase in the drivin
power and corresponding heating of the medium. In gas
and plasmas, where thẽnnl , 1, this implies that the
broadband turbulence cannot exceedñ , 1y

p
N . This

can be far below the level at which wave-wave or wave
particle nonlinearities, involving only one or a few waves
become strong.

We can take a numerical example from the lase
plasma context. We consider acoustic waves for whic
v  csk, dvydk  cs, and d , 0.03v  0.03csk so
that a  0.03. The region of interest extends from
kmin , 3000 cm21, as waves having smaller wave num
bers are too weakly damped to have consequences
the time scales of interest, tokmax , 106, as waves
with larger wave numbers haveklD . 1 and, thus, are
strongly damped. (Here,lD is the Debye shielding dis-
tance.) Equation (3) then impliesN , 106. The maxi-
mum amplitude of broadband turbulence permitted
such a plasma is̃n , 1y

p
N , 0.001. This would imply

a reflectivity of, 0.01% from a plasma whose density is
0.05 times the critical density, taking the coherence leng
to be R. This is roughly consistent with observations in
some laser plasmas, where the level of acoustic turbulen
is apparently quite large [10–16].

The analysis presented here has considered broadb
turbulence as an initial, tractable problem for evaluatio
The fundamental result is that the coincidental overlap
many modes can produce nonlinear effects even wh

FIG. 2. The level of broadband turbulence required to mak
coincidental nonlinear events a major energy sink depend
as shown, upon the rate at which the mode amplitudes a
reestablished following such an event. Nonlinear absorptio
dominates over linear damping in the region above the curve
2502
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the mode amplitudes are very small by single-mod
measures. This result will apply as well to structured
turbulence, for which the quantitative analysis will be
more complex. Ideally, one would carry out a detailed
evaluation or simulation of the statistical properties o
the total fluctuation amplitude produced by the entire
actual spectrum of modes. In practice, it may prove mor
feasible to treat the structure as a number of discre
intervals of uniform turbulence, to which the presen
analysis can be directly extended.

As one example, one can consider the introduction o
one or more strongly driven modes into a system wit
a large, established level of broadband turbulence. Th
will tend, through mode coupling, to try to drive the
broadband turbulence to larger amplitude. In addition
ñnl for the broadband turbulence will decrease becaus
of the significant amplitude of the strongly driven modes
The resulting advent or increase of CNEs may increase t
damping of the driven modes and may also drive down th
level of broadband turbulence from its previous steady
state value. This may explain the observed reduction
in the noise level [13,17] in laser plasmas when acoust
modes are driven by stimulated Brillouin scattering.

In conclusion, we have used a simple analysis to ad
dress the question of whether and when the interferen
of many, moderately damped modes may be importan
We find that, once broadband turbulence reaches a lev
approximately equal to the nonlinear saturation amplitud
divided by the square root of the number of interfering
modes, there will be a significant probability of nonlinea
saturation events. When the interfering modes are drive
strongly enough, such events will significantly increas
their damping. Further, these nonlinear events can influ
ence the structure of the turbulence when one or more
the waves is strongly driven. These findings imply that
more detailed analysis of such effects is warranted in th
many specific cases where such modes exist.

The author acknowledges fruitful discussions with
Dr. Kent Estabrook and Dr. Edward Williams of the
Lawrence Livermore National Laboratory. This work
was supported by the Department of Energy and by th
University of Michigan.
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