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Both the level of broadband microturbulence and the behavior of driven waves can be strongly
affected by local coincidences that produce nonlinear levels of the total fluctuation amplitude. We
evaluate the rate at which such coincidences occur, for moderately damped modes which frequently reset
their phases. They can produce significant nonlinear effects and can limit the amplitude of individual
modes to low levels. These effects, which involve very many modes, are inherently difficult to observe
using standard Fourier space or particle simulation techniques. [S0031-9007(98)05658-0]

PACS numbers: 03.40.Kf, 05.40.+j, 47.27.—i, 52.35.—¢g

Given that particulate media sustain many modes ofystem of many particles, with three degrees of freedom
oscillation, it is worth considering the nonlinear effects thatand negligible damping, is well known to sustadw
may arise from the interaction of these modes. When onaormal modes. As was realized by Rayleigh [1], and as
or a few isolated modes are intense, then phenomena subhs been further explored in more recent work [2,3], the
as parametric instabilities or multiwave mixing are likely. presence of weak damping causes some of these modes
However, large, local, nonlinear effects are possible eveto be coupled and may or may not prevent the existence
in cases for which the oscillation amplitude of each modeof classical normal modes. Current work has begun to
is small. If, in any given region, enough of the modes arego beyond a pure normal-mode analysis in areas such as
in phase, then the total fluctuation amplitude may becomenechanical structures [4] and atmospheric acoustics [5,6].
large enough that nonlinearities become strong. This mayhe author has been able to find no work which studied
not be important for modes which are so weakly dampedhe problem of modes which are moderately damped in
that they sample the entire system and maintain their phasbe sense described above. Yet such a situation does
relationships for long periods. However, physical system®ccur in real systems. Acoustic modes, in particular,
often also include modes which are moderately dampednay be damped on scales of interest, as they are in the
so that a given wave packet endures for many wave cyclescean, in plasmas, in football stadiums, and in solid-state
yet damps before it samples much of the system. Suchcoustics [7].
modes reset their phases frequently, through emission andMoreover, any effects which arise from the occasional
absorption. From time to time, their phases may be suchonlinear interactions of large numbers of such modes may
that a strong nonlinear interaction occurs. The naturahot be observed in most, if not all, current computational
question to ask is as follows: Whether and when are suckimulations [8]. Because such simulations, of necessity,
nonlinear interactions important? In the present Letter, weliscretize their physical system using far fewer grid cells
take a statistical approach to the analysis of this questiomr macroparticles than are actually present in the physi-
We determine the conditions under which the nonlineacal system, they sustain far fewer modes of oscillation
interaction of many weak modes may be significant, andhan natural systems. They will miss any physical effects
show that these conditions may indeed occur in som&hich require more modes than they can sustain. Like-
physical systems. wise, the analysis of wave behavior in a medium, through

Key historical work on the problem of oscillations Fourier transforms, is likely to miss such local interac-
in many-body systems is due to Lord Rayleigh [1]. Ations, since, in Fourier space, they represent a coupling
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across many frequencies and wave numbers. These o¥e note that, while this procedure provides a means
servations motivate the statistical approach taken here. of counting the number of independent modes in phase
We consider a system in which there is a very largespace, the actual wave packets are not spaced by just this
number of moderately damped modes. The total fluctuaamount. In actual physical systems, wave packets can be
tion amplitude at any given position is usually the sumemitted having arbitrary central frequencies. When
of the amplitudes of all of the modes present. Fromtwo such wave packets are sufficiently close in frequency,
time to time, however, a sufficient fraction of the modesin k, in time, and in space, as determined by linear
may be in phase, at some specific location, to producdamping rates, they become effectively indistinguishable,
to coincidental nonlinear event (CNE). We define suchwhich is the justification for counting wave packets as is
an event as the production of a state in which the totatlone here.
fluctuation amplitude is so large that the response of the To identify the moderately damped modes, of interest
medium becomes strongly nonlinear. We will analyzehere, we divide the phase space of the wave packets
this problem in terms of a density of particles, but otherinto regions, based on their physical properties. Thus,
variables such as electric field could be used equally wellfor example, we divide longitudinal modes into long
We define the minimum fluctuation amplitude for which wavelength modes, which sample the entire system,
there is such a response to bg, which is normalized acoustic modes, which will serve as our example here,
to the average density so that the maximum possible and short-wavelength modes (such as optical phonons or
value of i7,; is 1. In gases,i, Wwill be near 1; in the equivalent), which have different properties. For the
plasmas, it probably exceeds 0.1; and in solids or liquidspurpose of evaluating the effects of broadband turbulence,
it will be much smaller. In response to such a verywe will approximate the modes within a given region of
large local fluctuation amplitude, one expects that muctphase space as having the same amplitude.
of the energy from the individual local modes will be  The number of independent wave packets at some
nonlinearly absorbed. location includes all of the packets which can reach that
In an actual medium, for modes whose linear dampindocation without being substantially damped. We assume
is large enough that a typical local oscillation is dampedhere that the medium has an isotropic dielectric function.
before it reaches the system boundary, the modes can e this case, the local volumg,,. from which such wave
viewed as a collection of wave packets whose shape igackets originate ig7R>/3, whereR is a characteristic
determined by their origin and by their damping. Thesdinear damping distance. It is clear thatis proportional
wave packets are randomly created, by whatever mech#&s 1/5. By definingR = (7 /8)dw /dk, we establish the
nism, and interact when they overlap. Given a thorouglsame mode spacing inspace andv space. The number
understanding of the creation and damping mechanismaf modes in an element of wave number spatiejs then
of such modes, one could, in principle, produce a detailedV,,./87°) dk.
model of their properties and interactions for any specific The net fluctuation amplitude, at some location, is the
case. This might prove difficult in some cases, howeversum of the instantaneous amplitudes of all of the wave
because the relevant number of modes can easily excepdckets present at that location. The number of such
10° and powers thereof. We can instead turn this larggackets is
number of modes to our advantage, as they permit us to

adopt a statistical description based upon their character- _ Vioc _ 7 (dw)3
S X N= | —dk=| —3|—
istic properties. 83 683 \ dk
In order to obtain a statistical estimate of the rate of 272 [ de \3
CNEs, we need to identify the number of wave packets at = ] 357 <ﬁ> k> dk , (2)

a given location with statistically independent phases. We

approximate the wave packets as Gaussian wave packe{gnere the final equality applies only to isotropic turbu-

The phases of these wave packets are randomly resglyce and the integral is over the relevant range of wave
after one characteristic linear damping time of a typicak,ectors. This integral may or may not be simple. For ex-
mode (or after each CNE), because the mode at a giV%ple,dw/dk may equal the sound speegand § may

characteristic frequency must be reemitted, giving it &)e proportional to the frequen@/ = ac,k. In this case,
new phase, on such a time scale. Thus, the normalized

fluctuation amplitudesn/n of a wave packet of central 272

frequency w;, linear dampings, and phase¢ has a N = ﬁln(kmax/kmin)s 3)

frequency spectrum given by
Sn ' 1 (@ — @) where knin and kna are the minimum and maximum
— = jie'? exp|:—— 72} (1) wave numbers in the region over which the broadband
n 2 g turbulence has similar properties.

The FWHM of such wave packets is quite close2®, We would like to know how often these N modes
which we take to be the mode spacing in frequency spac@re phased to produce a CNE. In principle, one could
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consider an ensemble of all possible distributions of thef nonlinear damping events. These might include the
phases of th&v modes. Here, we use a simpler estimate observation of energetic particles in plasmas or the
We divide theseV packets into four groups identified as appearance of bursts of noise in other frequency bands
ni, ny, n3, andny. These modes are those with phasesn condensed media. A next question is as follows: Can
within =7 /4 of 0, w/2, o, and 37 /2, respectively, at the damping due to CNEs ever become large enough to
the time when the largest total fluctuation amplitude isimpact the turbulence itself?
produced for a given realization of the phases. To a The rate at which a CNE occurs locally depends on the
first approximation, groups 1 and 3 are phased so thairobability P that a given ensemble of wave packets will
they do not interfere with groups 2 and 4. Given aproduce one and on the réfeat which new ensembles are
constant mode amplitudefor broadband turbulence, this established. In the absence of a CNE, a new, independent
maximum fluctuation amplitude is distribution of phases is established at the characteristic
linear damping rate5. After a CNE, both the phases
and the amplitudes must be reestablished. The phases
The average value @¢fi; — n3) is 0, but there is a definite will be disrupted by the very rapid amplitude changes
probability of finding any value up to-N. We define produced by the damping event, and will establish new
A =n, — nyandd = n; + n3 — N/2. By application values following the event at roughly the acoustic rate
of the usual statistics of large systems, one can show that. The rate at which the amplitudes are reestablished,
the probability distribution for a state havirgandd is will depend upon the type and amplitude of the driving
A2 o source. Cherenkov sources will be effective on particle
eXp—A7/2(d + N/2)I exp—d /(N/Z)]. transit time scales. Mode coupling sources [9] from
V2m(d + N/2) V7N/2 5 waves at other frequencies will have rates that depend on
() their strength but that can easily exce&d (Note that
We want the probability distributioi#’ (A), which we ob-  the physical system under consideration must have local
tain by integrating Eq. (5) oved. [This is straightfor- sources—the moderately damped waves cannot propagate
ward after realizing thaW (A, d) is significant only for to a given location from beyond its local interaction

fimax = ﬁl”ll - n3|~ (4)

W(A,d) =

d < N/2.] This yields volume.) The combined effect of these two alternatives
| A2 is thatI' = 6(1 — P) + vP, so that the rate at which a
w(A) = exp{——} (6) CNE occurs locally id'P = 6P + (v — §)P>.
vaN N We now apply this to the damping of the modes

The probability that the differencé will produce a CNE themselves, which is due to the linear damping at rate
is the integral of W over all A above the minimum &, and to the effects of CNEs, which occur at rate
value where this is the casdy = 7i,1/7. Allowing for I'P. We assume here that a CNE, through its nonlinear
both positive and negativd, this integral is the com- interaction, removes most of the energy from the modes
plementary error function erfa,), whereuy = Ao/+/N. under consideration ii,.. The energy loss due to CNEs
(The integral can be taken to infinity with negligible will be comparable to or larger than the linear damping
error.) The statistical imbalance of groups 2 and 4 conwhenvP? > §. In combination with Eq. (7), this implies
tributes an equal probability of a CNE. The total prob-that CNEs will be a major energy sink when

ability that a given distribution of phases will produce a
CNE, from broadband turbulence whose normalized level erfo(ug) = [1 -1 - \/6/1/] (8)
is ix/N /iin1 = 1/uy, is then
P(up) = 2 erfcug) — erfc(up) . (7)
Figure 1 shows the dependencefobn the normalized 1F

level of turbulence. One sees that a small changt
in 7 can produce a large change i and that the
importance of CNEs increases sharplyiascreases. |t
is not surprising that the probability of producing a CNE
becomes substantial @&/N approachesi,;. One can
also see, here, the difficulty that simulations will have

in observing such phenomena. Simulations redy@e

Probability P
=
]

. . ; 0.01 s 1
without being able to reducg,;, and, thus, may require 0.1 1 10
inherently nonlinear levels of before CNEs will appear. ) ~‘/—/~

We can now identify the conditions under which Normalized turbulence, nv N/n,,

?NES may produce significant observable effects. onCQIG. 1. The probabilityP that a random set of phases will

n\/ﬁ ~ fin, ON€ iS_ likely to see evidence of them produce a coincidental nonlinear amplitude is very strongly
in observations which are sensitive to the occurrencélependent upon the normalized level of broadband turbulence.
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Figure 2 shows this result. We see that, once the modake mode amplitudes are very small by single-mode
are driven strongly enough to increase their amplitudeneasures. This result will apply as well to structured
aboveii = ii,/+/N in a small fraction of a damping time, turbulence, for which the quantitative analysis will be
the coincidental nonlinear events will dominate the energynmore complex. Ideally, one would carry out a detailed
losses. evaluation or simulation of the statistical properties of
This specific analysis implies that CNEs impose a fairlythe total fluctuation amplitude produced by the entire,
small limit on the general level of broadband turbulenceactual spectrum of modes. In practice, it may prove more
that can be driven without a large increase in the drivingeasible to treat the structure as a number of discrete
power and corresponding heating of the medium. In gasdstervals of uniform turbulence, to which the present
and plasmas, where th&,, ~ 1, this implies that the analysis can be directly extended.
broadband turbulence cannot exceed- 1/+/N. This As one example, one can consider the introduction of
can be far below the level at which wave-wave or wave-one or more strongly driven modes into a system with
particle nonlinearities, involving only one or a few waves,a large, established level of broadband turbulence. This
become strong. will tend, through mode coupling, to try to drive the
We can take a numerical example from the laserbroadband turbulence to larger amplitude. In addition,
plasma context. We consider acoustic waves for whichi,; for the broadband turbulence will decrease because
w = csk, dw/dk = ¢, and § ~ 0.03w = 0.03c;k so  of the significant amplitude of the strongly driven modes.
that « = 0.03. The region of interest extends from The resulting advent or increase of CNEs may increase the
kmin ~ 3000 cm™!, as waves having smaller wave num- damping of the driven modes and may also drive down the
bers are too weakly damped to have consequences ¢evel of broadband turbulence from its previous steady-
the time scales of interest, tén., ~ 10°, as waves state value. This may explain the observed reductions
with larger wave numbers haverp > 1 and, thus, are in the noise level [13,17] in laser plasmas when acoustic
strongly damped. (Here\p is the Debye shielding dis- modes are driven by stimulated Brillouin scattering.
tance.) Equation (3) then impligg ~ 10°. The maxi- In conclusion, we have used a simple analysis to ad-
mum amplitude of broadband turbulence permitted indress the question of whether and when the interference
such a plasma i8 ~ 1/+/N ~ 0.001. This would imply  of many, moderately damped modes may be important.
a reflectivity of ~0.01% from a plasma whose density is We find that, once broadband turbulence reaches a level
0.05 times the critical density, taking the coherence lengtlapproximately equal to the nonlinear saturation amplitude
to beR. This is roughly consistent with observations in divided by the square root of the number of interfering
some laser plasmas, where the level of acoustic turbulencaodes, there will be a significant probability of nonlinear
is apparently quite large [10—16]. saturation events. When the interfering modes are driven
The analysis presented here has considered broadbastlongly enough, such events will significantly increase
turbulence as an initial, tractable problem for evaluationtheir damping. Further, these nonlinear events can influ-
The fundamental result is that the coincidental overlap oence the structure of the turbulence when one or more of
many modes can produce nonlinear effects even whetie waves is strongly driven. These findings imply that a
more detailed analysis of such effects is warranted in the
many specific cases where such modes exist.
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