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Unlocking Hidden Entanglement with Classical Information
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The notion of “hidden” entanglement is introduced, and it is shown that this is a property associated
with every separable mixed quantum state of two subsystems. The hidden entanglement is explicitly
quantified for a general class of separable mixed states of two spin-1y2 particles, and a formula is de-
rived giving the maximum amount of entanglement that can be hidden. The process of “unlocking” hid-
den entanglement with classical information is explained, and the number of bits required to unlock each
ebit of entanglement is evaluated. It is argued that the entanglement-unlocking process can be seen as
the converse of quantum cryptography schemes that use EPR pairs. [S0031-9007(97)05274-5]

PACS numbers: 89.70.+c, 03.65.Bz
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In this Letter I consider mixed quantum states of tw
subsystems that are separable in the sense that their de
matrices can be written exclusively in terms of produ
states. I introduce the notion of “hidden” entanglemen
which refers to the fact that a mixed state may have be
preparedwith entangled states, even if it is separable in th
above sense. I show thatanyseparable mixed state of two
subsystems may contain hidden entanglement. A form
is derived giving the maximum hidden entanglement for
general class of separable mixed states of two spin-1y2
particles. I explain how hidden entanglement can
“unlocked” with classical information, and evaluate how
many bits of classical information are required to unloc
each ebit of entanglement in the general case, for t
spin-1y2 particles. This analysis points to an upper lim
for the amount of entanglement that can be unlocked w
each bit.

The two-subsystem mixed states I consider have de
sity matrices that can be written in the formrS PN

i1 pijjil1jhil2 2khi j1kjij, where the subscripts 1, 2 re
fer to subsystems 1 and 2. It is assumed that neither s
system is in a pure state, i.e., at least two of thejjil and
two of the jhil are distinct. Clearly,rS cannot violate
any Bell inequality, nor can it provide a quantum chann
for teleportation [1] or superdense coding [2]. Hence th
labeling ofrS as “local” is justifiable.

The statistical distribution of individual pure states tha
constitutes a given mixed state cannot consistently be
terpreted as representing merely a lack of knowledge
the state of each system in the ensemble. One reason
this so-called “ignorance interpretation” is problematic
that any mixed state will allow an infinite number of de
compositions. Furthermore, the fact that (as we shall s
shortly) any mixed state density matrix can be interpret
as the partial trace of an entangledpurestate of the given
system plus an ancilla system, where the ancilla is trac
out, can lead to contradictions if the ignorance interpre
tion is adopted [3]. Nevertheless, it may be that we a
given an ensemble of systems, with a statistical distrib
tion of preparation states, where we know the specific d
composition of states used in the preparation, even thou
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we have no information regarding the state of any ind
vidual system in the ensemble. Such an ensemble sho
not, strictly speaking, be labeled as being in a mixed sta
but we could describe it as being in apseudomixed state.
It is not in a genuine mixed state because the statisti
nature of the distribution of individual states correspon
only to a lack of knowledge—but its physical propertie
with respect to any measurement will be identical to tho
of a genuine mixed state with the same density matrix.

For example, suppose that we are given a mixed st
of two spin-1y2 particles which is represented by the den
sity matrix r12 

1
2 sj " 1 # 2l k" 1 # 2j 1 j # 1 " 2l k# 1 " 2jd.

While this state is obviously separable, and hence a
to accommodate a local description of the subsyste
correlations, it is also possible to write it asr12 
1
4 hsj " 1 # 2l 1 j # 1 " 2ld sk" 1 # 2j 1 k# 1 " 2jd 1 sj " 1 # 2l 2

j # 1 " 2ld sk" 1 # 2j 2 k# 1 " 2jdj. This means that, in spite
of its apparent locality,r12 may have been prepared
using only the maximally entangled states1y

p
2 sj " 1 #

2l 1 j # 1 " 2ld and 1y
p

2 sj " 1 # 2l 2 j # 1 " 2ld. Suppose
that we are told thatr12 has indeed been prepared usin
only these entangled states. The state described byr12

then becomes a pseudomixed state, which we can in
pret as containinghidden entanglement. Although we
know that each individual two-particle system in th
ensemble is maximally entangled, this entanglement
invisible in that it cannot be demonstrated by any Be
inequality violation, nor can it be used as a resour
for quantum computation, teleportation, cryptograph
or superdense coding. Furthermore, it is impossib
to distil [4] any entanglement from this pseudomixe
state. However, the hidden entanglement can beunlocked
with classical information. In this elementary examp
we will require 1 bit of classical information to unlock
1 ebit from the pseudomixed state, because, if we a
given one two-particle system from the ensemble, w
will (without performing any measurements) requir
1 bit of information to establish which of the pure state
1y

p
2 sj " 1 # 2l 6 j # 1 " 2ld it is in; and each of these pure

states contains 1 ebit of entanglement [5].
© 1998 The American Physical Society 2493
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It is now shown thatany separable two-subsystem
mixed state may contain hidden entanglement. A
before, we write the general separable two-subsyste
density matrix asrS 

PN
i1 pijjil1jhil2 2khi j1kjij. We

now introduce a fictitious ancilla system with basis state
jeilA, so thatrS can be thought of as originating in an
entangled pure statejClS1A of the combined system con-
sisting of the original two subsystems plus the imaginar
ancilla, with the ancilla traced out. That is, ifjClS1A PN

i1
p

pi jjil1jhil2jeilA, then rS  TrAsjClS1A 3

S1AkCjd. In order to show thatrS can contain hidden
entanglement, we first introduce an alternative basisje0

ilA

for the ancilla, such that

je1l  aje0
1l 1 bje0

2l, je2l  bpje0
1l 2 apje0

2l ,

je3l  gje0
3l 1 dje0

4l, je4l  dpje0
3l 2 gpje0

4l ,

etc. Hence

jClS1A 
p

p1 jj1l1jh1l2saje0
1lA 1 bje0

2lAd

1
p

p2 jj2l1jh2l2sbpje0
1lA 2 apje0

2lAd 1 . . . .

Once again tracing out the ancilla, we find that our origina
density matrixrS can be written

rS  s
p

p1 ajj1l1jh1l2 1
p

p2 bpjj2l1jh2l2d

3 s
p

p1 ap
2kh1j 1kj1j 1

p
p2 b 2kh2j 1kj2jd

1 s
p

p1 bjj1l1jh1l2 2
p

p2 apjj2l1jh2l2d

3 s
p

p1 bp
2kh1j 1kj1j 2

p
p2 a 2kh2j 1kj2jd 1 . . . .

This means thatrS may contain hidden entanglement,
since it can be written in terms of the entangled states

s
p

p1 ajj1l1jh1l2 1
p

p2 bpjj2l1jh2l2d ,

s
p

p1 bjj1l1jh1l2 2
p

p2 apjj2l1jh2l2d ,

etc. This argument can of course be extended to nonse
rable mixed states, i.e., mixed states containing distillab
entanglement. That is, a mixed state with distillable enta
glement in its density matrix may contain further entangle
ment which is hidden. For such a state it may be possib
to both distill and unlock entanglement.

In order to quantify the hidden entanglement associate
with the above decomposition ofrS , we first normalize
[6] the entangled states shown, and rewriterS as

rS  sp1jaj2 1 p2jbj2d jf1l kf1j

1 sp1jbj2 1 p2jaj2d jf2l kf2j 1 . . . , (1)

wherejf1l, jf2l, . . . , are the normalized states

jf1l 
1

sp1jaj2 1 p2jbj2d1y2

3 s
p

p1 ajj1l1jh1l2 1
p

p2 bpjj2l1jh2l2d ,

(2a)

jf2l 
1

sp1jbj2 1 p2jaj2d1y2

3 s
p

p1 bjj1l1jh1l2 2
p

p2 apjj2l1jh2l2d ,

(2b)
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etc. The amount of hidden entanglementEH ebits asso-
ciated with the above decomposition ofrS can then be
quantified asEH  s p1jaj2 1 p2jbj2dE1 1 s p1jbj2 1

p2jaj2dE2 1 . . . , whereEi ebits is the entanglement of
jfil, defined in terms of the Shannon entropy of the
modulus-squared coefficients in its biorthogonal expan-
sion (“Schmidt decomposition”) [5]. It may be possible
to combine pairs ofjjil, jhjl in other ways to obtain
different decompositions ofrS in terms of entangled
states—and from each such decomposition we can obtai
an infinite number of alternative decompositions by vary-
ing jaj2, jbj2, jgj2, etc. ClearlyEH will depend on the
particular decomposition ofrS that is referred to. Even if
we know that a particular set of entangled states has bee
used to preparerS , we cannot in general evaluate theEi

directly from thejfil as given by Eqs. (2a) and (2b), be-
cause the pairsjj1l1jh1l2, jj2l1jh2l2, etc. will not in gen-
eral be biorthogonal. However, it will always be possible
to find a biorthogonal expansion for eachjfil [7], so that
it will always be possible to calculate theEi indirectly.

I now consider separable mixed states of two subsys
tems where each subsystem has a Hilbert space of d
mension two. The classification of separable mixed state
is notoriously difficult [8], and the analysis here will be
restricted to the general class consisting of those mixed
states of two two-state subsystems that can be written a
a weighted sum of projections on four orthogonal product
states. The remaining analysis in this Letter will be spe-
cific to mixed states of this kind. Any such state can be
written as

rL  p1j " 1 # 2l k" 1 # 2j 1 p2j # 1 - 2l

3 k# 1 - 2j 1 p3j " 1 " 2l k" 1 " 2j 1 p4j # 1 & 2l

3 k# 1 & 2j . (3)

(Here the states indicated can refer to any two-
dimensional variable, not necessarily spin). Note that no
pair of projections in this density matrix is biorthogonal.
For example, in the first two terms,j " 1l is orthogonal to
j # 1l, but j # 2l is not orthogonal toj - 2l.

As before, by introducing a fictitious ancilla we can
rewriterL in terms of normalized entangled statesjxil:

rL  sp1jaj2 1 p2jbj2d jx1l kx1j

1 sp1jbj2 1 p2jaj2d jx2l kx2j

1 sp3jgj2 1 p4jdj2d jx3l kx3j

1 sp3jdj2 1 p4jgj2d jx4l kx4j , (4)

where

jx1l 
1

sp1jaj2 1 p2jbj2d1y2

3 s
p

p1 aj " 1 # 2l 1
p

p2 bpj # 1 - 2ld ,

jx2l 
1

sp1jbj2 1 p2jaj2d1y2

3 s
p

p1 bj " 1 # 2l 2
p

p2 apj # 1 - 2ld ,
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etc. [Alternatively, we could have obtained a different se
of entangled statesjx 0

il by pairing j " 1 # 2l with j # 1 & 2l
rather than withj # 1 - 2l. This would have yielded the
states

jx 0
1l 

1
sp1jaj2 1 p4jbj2d1y2

3 s
p

p1 aj " 1 # 2l 1
p

p4 bpj # 1 & 2ld ,
etc.]

Note that the set ofjxil will be orthogonal if and only if
p1  p2 andp3  p4, in which caserL becomesr̄L 
2p1sjx1l kx1j 1 jx2l kx2jd 1 2p3sjx3l kx3j 1 jx4l kx4jd.
Conversely, given any complete set of orthogon
entangled states, we can construct a separable mi
state, of the formr̄L, with any p1 and p3 satisfying
p1 1 p3  0.5.

In order to evaluate the entanglement of the individu
statesjxil in Eq. (4), we must first obtain the modulus
squared coefficients in the Schmidt decompositions
these states. To do this we write the statesj -l, j &l,
asj -l  xj "l 1 yj #l, j &l  ypj "l 2 xpj #l. A straight-
forward calculation then shows that the entanglementE1
ebits ofjx1l is given by

E1  2sl1
1 log2 l1

1 1 l2
1 log2 l2

1 d , (5)
t

al
xed

al
-
of

where

l6
1 

1
2

Ω
1 6

µ
1 2

4p1p2jaj2jbj2jxj2

sp1jaj2 1 p2jbj2d2

∂1y2æ
,

and we can derive similar expressions for the entangl
mentsE2, E3, E4 ebits of jx2l, jx3l, jx4l. The total hid-
den entanglementE associated withrL, when it has been
prepared with thejxil, is then given by

E  sp1jaj2 1 p2jbj2dE1 1 sp1jbj2 1 p2jaj2dE2

1 sp3jgj2 1 p4jdj2dE3 1 sp3jdj2 1 p4jgj2dE4 .

(6)

(A different value forE would of course be obtained if the
alternative hidden entangled statesjx

0
il were used in the

preparation ofrL). Note that we must have0 , E # 1.
E cannot be zero given that neither subsystem is in
pure state andE will equal unity if and only if all of the
nonvanishingjxil are maximally entangled.

Straightforward calculus shows that themaximum
hidden entanglement that can be obtained from th
decompositionrL by varying jaj2, jbj2, etc., occurs
when jaj2  jbj2  jgj2  jdj2 

1
2 , and is given by

maxsEmax, Ẽmaxd, where
Emax  2
sp1 1 p2d

2

Ω
log2

µ
1 2 u

2
12

4

∂
1 u12 log2

µ
1 1 u12

1 2 u12

∂æ
2

sp3 1 p4d
2

Ω
log2

µ
1 2 u

2
34

4

∂
1 u34 log2

µ
1 1 u34

1 2 u34

∂æ
,

(7)
ed

o

)

at
d
-

with

uij 

µ
1 2

4pipjjxj2

spi 1 pjd2

∂1y2

.

Ẽmax refers to the case where the statesjx
0
il rather than

the jxil are used; effectively this means swappingp2 with
p4 and replacingjxj2 with 1 2 jxj2 in Eq. (7).

In the special case where the original product-state d
composition (3) ofrL contains two pairs of biorthogonal
projections, i.e.,jxj2  1, we find that Eq. (7) simplifies
to

Emax  2

4X
i1

pi log2 pi 1 sp1 1 p2d log2sp1 1 p2d

1 sp3 1 p4d log2sp3 1 p4d
and thatẼmax  0.

As we have already mentioned, if a separable mixe
state has been prepared using entangled states, and
know the particular decomposition of entangled state
used in the preparation, so that the mixed state becom
a pseudomixed state, then the hidden entanglement c
tained in this pseudomixed state can be unlocked wi
classical information. In order to unlock all the hidden
entanglement, we require sufficient information to esta
lish which particular entangled state each pair of subsy
tems has been prepared in. If we are given the separa
mixed staterL described by Eq. (3) and are told that i
e-

d
we
s
es

on-
th

b-
s-
ble
t

has been prepared using the decomposition of entangl
statesjxil as in Eq. (4), then we will requireS bits of
classical information per pair of subsystems in order t
establish the state that each pair was prepared in, where

S  2hsp1jaj2 1 p2jbj2d log2sp1jaj2 1 p2jbj2d

1 sp1jbj2 1 p2jaj2d log2sp1jbj2 1 p2jaj2d

1 sp3jgj2 1 p4jdj2d log2sp3jgj2 1 p4jdj2d

1 sp3jdj2 1 p4jgj2d log2sp3jdj2 1 p4jgj2dj .

(8)

[We have assumed here thatp1 andp2 are both nonzero,
and/orp3 andp4 are both nonzero. Ifp1 or p2 vanishes,
then the first two terms on the right hand side of Eq. (8
should be replaced byp1 log2 p1 (for vanishing p2) or
p2 log2 p2 (for vanishing p1). A similar modification
should be made ifp3 or p4 vanishes.]

Hence the number of bits of classical information
required to unlock each ebit of entanglement isSyE,
whereS is given by Eq. (8) andE is given by Eq. (6). It
seems thatSyE is always$1. Although I do not have an
analytical proof for the general validity of this inequality,
I have not been able to find any set of parameters th
violates it. In other words, it seems that we always nee
at least one bit to unlock each ebit. In the maximum
hidden-entanglement case (wherejaj2  jbj2  jgj2 
2495
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jdj2 
1
2 ), S simplifies to S̆  1 2 sp1 1 p2d 3

log2sp1 1 p2d 2 sp3 1 p4d log2sp3 1 p4d, and the
number of bits required to unlock each ebit isS̆yEmax,
whereEmax is given by Eq. (7).

The question arises as to whether it is possible to obt
a higher yield of ebits per bit if we are supplied with
only partial information with regard to distinguishing the
hidden entangled states. For example, suppose that we
supplied with the pseudomixed state described byrL with
known decomposition of preparation statesjxil as given
by Eq. (4), and that we are given sufficient informatio
to identify thejx1l states, but that thejx2l, jx3l, andjx4l
states remain indistinguishable from each other. The yie
of ebits per bit for unlocked hidden entanglement is the
given byE0yS0, whereE0  s p1jaj2 1 p2jbj2dE1, with
E1 given by Eq. (5), and

S0  2hsp1jaj2 1 p2jbj2d log2s p1jaj2 1 p2jbj2d

1 f1 2 sp1jaj2 1 p2jbj2dg

3 log2f1 2 sp1jaj2 1 p2jbj2dgj .

Interestingly, it seems that we always haveEyS .

E0yS0. Again, I have not proved the general validity o
this inequality analytically, but I cannot find any set o
parameters that violates it. This is surprising, becau
if one of the jxil is significantly more entangled than
the others, then one might have expected to be able
obtain a higher yield of ebits per bit by requiring only
sufficient information to identify the pairs of subsystem
corresponding to that particularjxil.

Entanglement can be seen as a valuable resource
applications such as quantum computation [9], telepor
tion [1], cryptography [10–12], and superdense coding [2
The fact that any separable mixed state can contain hidd
entanglement means that entanglement can be disgu
within any separable mixed state of our choice. Furthe
more, there are infinite numbers of ways of disguising e
tanglement within a given separable mixed state. Th
means that it is possible to transmit a quantity of enta
glement in such a way that the entanglement cannot
unlocked by any thief who tries to intercept the transmi
sion, and that this transmission can be achieved via a
separable two-subsystem mixed state whatsoever. The
formation needed to unlock the hidden entanglement c
be sent via a classical communication channel, once
mixed state ensemble has arrived safely. For further
curity, the entanglement-unlocking information can be e
crypted using a separate key which is generated and sha
between sender and receiver using quantum cryptograp
This means that if a thief intercepts the transmission
the original mixed state and replaces it with another mix
state with identical density matrix but containing no hidde
entanglement, then she will still not be able to access
hidden entanglement even after the unlocking informati
has been sent.

The process of unlocking hidden entanglement can
understood as the converse of quantum cryptography te
2496
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niques that use EPR pairs [10–12]. In the latter tech
niques it is possible to generate a secret shared class
bit by using up 1 ebit of entanglement; whereas in th
entanglement-unlocking process it is possible to relea
1 ebit of entanglement by supplying 1 classical bit. I
could be argued that in EPR-pair cryptography the secr
shared bit iscreatedrather than unlocked, in that, accord-
ing to standard quantum mechanics, it did not exist prio
to the protagonists’ disentangling measurements. How
ever, if we adopt a deterministic interpretation of quantum
mechanics (such as Bohm’s theory [13]), then each b
generated in EPR-pair cryptography already exists pri
to the protagonists’ disentangling measurements, so th
we can interpret the effect of these measurements as
unlocking of classical information, in an analogous wa
to that in which hidden entanglement can be unlocked
has been outlined here.

We can also see that a quantum ensemble, when it is i
pseudomixed state where there is hidden entanglement,
be labeled as “nonlocal” or “local,” depending on whethe
or not we have access to the entanglement-unlockin
information. If this information is irretrievably destroyed,
then the ensemble in question changes from one wi
potentially nonlocal properties to one with only loca
properties, even though nothing whatsoever happens
the ensemble physically. This demonstrates that, althou
nonlocality is exclusively a quantum mechanical property
classical information can provide a bridge between loca
and nonlocal physical systems.

I am grateful to Sandu Popescu for interesting discu
sions and for helping to provide the proof for the uni
versality of possible hidden entanglement for separab
mixed states of two subsystems.
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