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Unlocking Hidden Entanglement with Classical Information
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The notion of “hidden” entanglement is introduced, and it is shown that this is a property associated
with every separable mixed quantum state of two subsystems. The hidden entanglement is explicitly
quantified for a general class of separable mixed states of twelgpiparticles, and a formula is de-
rived giving the maximum amount of entanglement that can be hidden. The process of “unlocking” hid-
den entanglement with classical information is explained, and the number of bits required to unlock each
ebit of entanglement is evaluated. It is argued that the entanglement-unlocking process can be seen as
the converse of quantum cryptography schemes that use EPR pairs. [S0031-9007(97)05274-5]

PACS numbers: 89.70.+c, 03.65.Bz

In this Letter | consider mixed quantum states of twowe have no information regarding the state of any indi-
subsystems that are separable in the sense that their densitglual system in the ensemble. Such an ensemble should
matrices can be written exclusively in terms of productnot, strictly speaking, be labeled as being in a mixed state,
states. | introduce the notion of “hidden” entanglementbut we could describe it as being inpaeudmixed state.
which refers to the fact that a mixed state may have been is not in a genuine mixed state because the statistical
preparedwith entangled states, even if it is separable in thenature of the distribution of individual states corresponds
above sense. | show thamyseparable mixed state of two only to a lack of knowledge—but its physical properties
subsystems may contain hidden entanglement. A formul@ith respect to any measurement will be identical to those
is derived giving the maximum hidden entanglement for af a genuine mixed state with the same density matrix.
general class of separable mixed states of two-$ph For example, suppose that we are given a mixed state

particles. | explain how hidden entanglement can bef two spin1/2 particles which is represented by the den-
“unlocked” with classical information, and evaluate how ity matrix p, = TAT by bal + 1L Ty 12D,

many bits of classical information are required to unlockyynile this state is obviously separable, and hence able

each ebit of entanglement in the general case, for W, accommodate a local description of the subsystem
spin-1/2 particles. This analysis points to an upper Ilm[t correlations, it is also possible to write it s, —
for the amount of entanglement that can be unlocked with

each bit. 2T L)+ 1L T2) (Ll +_<11 T20) + (I Ty !2> -
The two-subsystem mixed states | consider have derLl 1.12» (M1 Lol = (s .TZD}' This means that, in spite
sity matrices that can be written in the formg = of its apparent locality,p;, may have been prepared
Z§V=1 pilE M0 2(mi 1 (&:], where the subscripts 1, 2 re- using only the maximally entangled statégv/2 (| 1, |
fer to subsystems 1 and 2. It is assumed that neither supt * | 11 12)) and 1/v2(] f112) = 11112). Suppose
system is in a pure state, i.e., at least two of ifi¢ and that we are told thap;, has indeed been prepa_red using
two of the |7;) are distinct. Clearlyps cannot violate ©nly these entangled states. The state described by
any Bell inequality, nor can it provide a quantum channefthen becomes a pseudomixed state, which we can inter-
for teleportation [1] or superdense coding [2]. Hence thePret as containindhidden entanglement. ~ Although we
labeling of ps as “local” is justifiable. know that each individual two-particle system in the
The statistical distribution of individual pure states thaténsemble is maximally entangled, this entanglement is
constitutes a given mixed state cannot consistently be irihvisible in that it cannot be demonstrated by any Bell
terpreted as representing merely a lack of knowledge dnequality violation, nor can it be used as a resource
the state of each system in the ensemble. One reason tHaf guantum computation, teleportation, cryptography,
this so-called “ignorance interpretation” is problematic isOf superdense coding. Furthermore, it is impossible
that any mixed state will allow an infinite number of de- to distil [4] any entanglement from this pseudomixed
compositions. Furthermore, the fact that (as we shall segtate. However, the hidden entanglement caorilecked
shortly) any mixed state density matrix can be interpretedvith classical information. In this elementary example
as the partial trace of an entangledre state of the given we will require 1 bit of classical information to unlock
system plus an ancilla system, where the ancilla is traced ebit from the pseudomixed state, because, if we are
out, can lead to contradictions if the ignorance interpretagiven one two-particle system from the ensemble, we
tion is adopted [3]. Nevertheless, it may be that we argvill (without performing any measurements) require
given an ensemble of systems, with a statistical distribud bit of information to establish which of the pure states
tion of preparation states, where we know the specific det/v/2 (| 11 12y = | | 12)) itis in; and each of these pure
composition of states used in the preparation, even thougstates contains 1 ebit of entanglement [5].
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It is now shown thatany separable two-subsystem etc. The amount of hidden entanglemént ebits asso-
mixed state may contain hidden entanglement. Acgiated with the above decomposition pf can then be
before, we write the general separable two-subsystemuantified asEy = (pilal> + p2|BIP)E + (pilBI* +
density matrix apg = Zf':l pilédmida o mili&il. We  palal®)E, + ..., whereE; ebits is the entanglement of
now introduce a fictitious ancilla system with basis stateg¢;), defined in terms of the Shannon entropy of the
le;)a, SO thatps can be thought of as originating in an modulus-squared coefficients in its biorthogonal expan-
entangled pure statd’)s.4 of the combined system con- sion (“Schmidt decomposition”) [5]. It may be possible
sisting of the original two subsystems plus the imaginarto combine pairs ofi¢;), [n;) in other ways to obtain
ancilla, with the ancilla traced out. Thatis,|W#)s.4 =  different decompositions opg in terms of entangled

A JoilEdIminalena, then pg=Tr(|¥)s1a X  states—and from each such decomposition we can obtain
s+4{¥]). In order to show thaps can contain hidden an infinite number of alternative decompositions by vary-
entanglement, we first introduce an alternative bhsls,  ing |a|?, |81%, |y|?, etc. ClearlyEy will depend on the

for the ancilla, such that particular decomposition gig that is referred to. Even if
le1) = alel) + Bleb), les) = B*lely — a*led), we know that a particular set of entangled states has been
used to prepargg, we cannot in general evaluate thg
les) = yle3) + Sley).lea) = 8%le3) — ¥ led), directly from the|#;) as given by Egs. (2a) and (2b), be-
etc. Hence cause the pairkt)i|m1)2, |£2)11m2)2, etc. will not in gen-
[W)sca = /Prlélm(alepa + Bler)a) eral be biorthogonal. However, it will always be possible
to find a biorthogonal expansion for eah;) [7], so that
+ Vp2lénIma(Blea — a’les)a) + ... it will always be possible to calculate th indirectly.
Once again tracing out the ancilla, we find that our original | now consider separable mixed states of two subsys-
density matrixps can be written tems where each subsystem has a Hilbert space of di-
ps = (Yorelénlm + vp2 B léma)) mension two. The classification of separable mixed states
is notoriously difficult [8], and the analysis here will be
X (pr a2 ml &l + /p2 BaAmal (&) restricted to the general class consisting of those mixed
+ (VP BlENIM) — VP2 a*léx]na)) states of two two-state subsystems that can be written as
] a weighted sum of projections on four orthogonal product
X (Vp1 B 2oml (€1l = Vpraxmli{éal) + ... states. The remaining analysis in this Letter will be spe-
cific to mixed states of this kind. Any such state can be

This means thajps may contain hidden entanglement,
since it can be written in terms of the entangled states

(\/Ea|§1>1|771>2 + \/Eﬁ*|§2>1|ﬂ2>2), PL = P1| Tl (T Lol + P2| LN
WP BlIENIM — J73 a*léaNlna), XNl + psl 1120 T2l + pal L N2

etc. This argument can of course be extended to nonsepa- X (L \al. ®3)
rable mixed states, i.e., mixed states containing distillabl

entanglement. That is, a mixed state with distillable entan-'?|ere _the states indicated can refe_r to any two-
dimensional variable, not necessarily spin). Note that no

glementin its density matrix may contain further entangle- air of projections in this density matrix is biorthogonal.

ment which is hidden. For such a state it may be posslblgor example, in the first two term$? ) is orthogonal to

to both distill and unlock entanglement. :
In order to quantify the hidden entanglement associatel:il 1), but| 1o) is ngt orthogonal tdﬂ \..2>' .
As before, by introducing a fictitious ancilla we can

with the above decomposition @fs, we first normalize rewrite p; in terms of normalized entangled stalgs):
[6] the entangled states shown, and rewyiteas pL 9 RS-

written as

ps = (pilal + plBP) b1 (el pr = (pilal®> + pal B Ix1) (i
+ (B + palal)lga)(gal + ... (1) +(pilAE + palaP) ) (ra
where|¢1), |$2), ..., are the normalized states + (palyl® + pald1) Ix3) (xsl
b)) = 1 + (pald* + paly®) lxa) (xal 4
(pilal? + palBI?)1/? where
X (Vpralépiln + p2 BT IéDim2)2), ) = 1
(2a) (pilel® + p2|BI2)1/2
) = 1 X (VpraltTil) + VP2 B L1 N2),
(p1lBI? + palal?)!/? 1
X (ST BlEN M) — VB3 a’léIma)) . ) = CBE T palal)
(2b) X (VP1Bl 11l — VP2’ L1 \2),
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etc. [Alternatively, we could have obtained a different setwhere

of entangled stately/) by pairing| T, 12) with | | \,2) ., 4pipalaPIBRIx? |12
rs?gtlgsr than with| || \\»). This would have yielded the Ay =gl =1 = (pilalz + p2lBI2)2 ’
and we can derive similar expressions for the entangle-
1
lxi)y = el T sl B mentskE,, Es, E4 ebits of|x2), |x3), |x4). The total hid-
piic palBI?) den entanglemerft associated withy;, when it has been
X (prellily + VpaBlli \2), prepared with they;), is then given by
etc.] _ 2 2 2 2
Note that the set dfy;) will be orthogonal if and only if E = (pilal™ + pal BREL + (pIBF + palelDE
p1 = p> and p; = pa, in which casep; becomesp;, = + (pslyl* + pal8I)Es + (p3l81* + paly))Es.
2p1(lx) xal + Dx2y ) + 2p3(Lxs) Ol + Lxa) (ral). ©6)

Conversely, given any complete set of orthogonal

entangled states, we can construct a separable mixgd different value forE would of course be obtained if the
state, of the formp,, with any p; and p; satisfying alternative hidden entangled stalag) were used in the
p1 + p3 =05. preparation ofp;). Note that we must have < E =< 1.

In order to evaluate the entanglement of the individualE cannot be zero given that neither subsystem is in a
states|y;) in Eq. (4), we must first obtain the modulus- pure state and will equal unity if and only if all of the
squared coefficients in the Schmidt decompositions ofionvanishing y;) are maximally entangled.
these states. To do this we write the stafes), |\, Straightforward calculus shows that th@aximum
as|™\) = x| + vy, IN) = y*I1) — x*| ). Astraight- hidden entanglement that can be obtained from the
forward calculation then shows that the entanglentént decompositionp; by varying |«|?, |B8|?, etc., occurs

ebits of| y;) is given by when |a|? = 181> = |y|?> = |8 = % and is given by
E; = —(A{ log, A{ + Aflog, A}), (5) | max Emax» Emax), Where
(pi +p2>{ <1 —0%2> (1 +012>} (p3+p4){ <1—0§4> (1 +034>}
Emyx = ————= 11 — )+ lo - I — | + I
max ) 09, 2 012 10g, 1~ o, 2 009, 2 634 100, 1= 0w/
(7)
with ! has been prepared using the decomposition of entangled
4pipilxl2 \1/2 states|y;) as in Eq. (4), then we will requir& bits of
0;; = <1 — %) classical information per pair of subsystems in order to
(pi + p)) establish the state that each pair was prepared in, where

Enmax refers to the case where the stalg$ rather than _ ) ) ’ )
the|y;) are used; effectively this means swappjngwith % = —{(pilel® + p2BI)log,(pilal + pal BI7)

p4 and replacindx|* with 1 — [x|* in Eq. (7). + (p1lBI> + palal®)log,(pilBIP + palal?)

In the special case where the original product-state de- 5 5 5 5
composition (3) ofp; contains two pairs of biorthogonal + (p3lyl® + pald9)log,y(pslyl® + paldl?)
projections, i.e.Jx|?> = 1, we find that Eq. (7) simplifies + (p3l8I* + palyl?)log,(psl81*> + palyl?)}.
to

4 (8)
Emax = — Z pil0g, pi + (p1 + p2)log(p1 + p2) [We have assumed here that and p, are both nonzero,
= and/orp; and p, are both nonzero. 1p; or p, vanishes,
+ (p3 + pa)logy(ps + pa) then the first two terms on the right hand side of Eq. (8)
and thatE,,,, = 0. should be replaced by, log, p; (for vanishing p,) or

As we have already mentioned, if a separable mixeg;log, p, (for vanishing p;). A similar modification
state has been prepared using entangled states, and slould be made ip; or p4 vanishes.]
know the particular decomposition of entangled states Hence the number of bits of classical information
used in the preparation, so that the mixed state becomesquired to unlock each ebit of entanglement3gE,
a pseudomixed state, then the hidden entanglement comherey is given by Eq. (8) and is given by Eq. (6). It
tained in this pseudomixed state can be unlocked witlseems thak /E is always=1. Although | do not have an
classical information. In order to unlock all the hidden analytical proof for the general validity of this inequality,
entanglement, we require sufficient information to estabt have not been able to find any set of parameters that
lish which particular entangled state each pair of subsysviolates it. In other words, it seems that we always need
tems has been prepared in. If we are given the separabd¢ least one bit to unlock each ebit. In the maximum-
mixed statep; described by Eqg. (3) and are told that it hidden-entanglement case (whétd? = |B|> = |y|*> =
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|87 = %), 3 simplifies to S=1-(p + p) X niques that use EPR pairs [10-12]. In the latter tech-

log,(p1 + p2) — (p3 + pa)log,(ps + ps), and the niques it is possible to generate a secret shared classical
number of bits required to unlock each ebitIyE,,,, bit by using up 1 ebit of entanglement; whereas in the
whereE,., is given by Eq. (7). entanglement-unlocking process it is possible to release
The question arises as to whether it is possible to obtaih €bit of entanglement by supplying 1 classical bit. It

a higher yield of ebits per bit if we are supplied with could be argued that in EPR-pair cryptography the secret
only partial information with regard to distinguishing the shared bit ixcreatedrather than unlocked, in that, accord-
hidden entangled states. For example, suppose that we drg to standard quantum mechanics, it did not exist prior
supplied with the pseudomixed state describegppyvith ~ to the protagonists’ disentangling measurements. How-
known decomposition of preparation statgs) as given ever, if we adopt a deterministic interpretation of quantum
by Eq. (4), and that we are given sufficient informationmechanics (such as Bohm's theory [13]), then each bit
to identify the|y,) states, but that thky,), | y3), and|ys)  generated in EPR-pair cryptography already exists prior
states remain indistinguishable from each other. The yieltP the protagonists’ disentangling measurements, so that
of ebits per bit for unlocked hidden entanglement is therwe can interpret the effect of these measurements as the
given by E'/S/, whereE' = (pilal® + p2lBI2)E;, with  unlocking of classical information, in an analogous way

E; given by Eq. (5), and to that in which hidden entanglement can be unlocked as
has been outlined here.
I 2 2 2 2
2= —A(plal” + pal B logy(pilel™ + pl BT We can also see that a quantum ensemble, when itis in a
+[1 = (pilal®* + p2|/3|2)] pseudomixed state where there is hidden entanglement, can
< | - lal® + pal BI2 be labeled as “nonlocal” or “local,” depending on whether
oGl = (pilal” + pal 1T or not we have access to the entanglement-unlocking

Interestingly, it seems that we always ha¥/> >  information. If this information is irretrievably destroyed,
E'/3'. Again, | have not proved the general validity of then the ensemble in question changes from one with
this inequality analytically, but | cannot find any set of potentially nonlocal properties to one with only local
parameters that violates it. This is surprising, becausproperties, even though nothing whatsoever happens to
if one of the |y;) is significantly more entangled than the ensemble physically. This demonstrates that, although
the others, then one might have expected to be able taonlocality is exclusively a quantum mechanical property,
obtain a higher yield of ebits per bit by requiring only classicalinformation can provide a bridge between local
sufficient information to identify the pairs of subsystemsand nonlocal physical systems.
corresponding to that particul@y;). | am grateful to Sandu Popescu for interesting discus-
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tion [1], cryptography [10—12], and superdense coding [2] mixed states of two subsystems.
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