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A quantum algorithm for a class of highly structured combinatorial search problems is introduced.
This algorithm finds a solution in a single step, contrasting with the linear growth in the number
of steps required by the best classical algorithms as the problem size increases, and the exponential
growth required by classical and quantum methods that ignore the problem structure. In some cases,
the algorithm can also guarantee that insoluble problems, in fact, have no solutions, unlike previously
proposed quantum search algorithms. [S0031-9007(98)05575-6]

PACS numbers: 03.67.Lx, 02.70.—c, 03.65.Bz, 89.70.+c

Quantum computers [1-5] offer a new approach tan s and r As the bitwise AND operation onr and s.
combinatorial search problems [6] with their ability to Thus,|r A s| counts the number of 1-bits both assignments
operate simultaneously with many possible solutions. Ahave in common. Letl(r,s) be the Hamming distance
guantum algorithm to factor large integers [7] much morebetweenr and s, i.e., the number of positions at which
rapidly than classical machines offers a dramatic exampléhey have different values, given by
of this approach. While several additional algorithms
have been developed [8—14], whether quantum computers d(r,s) = Irl + sl = 21r A sl. 1)
can improve on heuristically guided classical methods A logical formula can be expressed in various equiva-
for general searches remains an open question. Thegsnt forms, e.g., as a conjunction ofauses A clause
heuristics exploit the structure of the problems to greatlyis a disjunction of some variables, any of which may be
reduce the search cost in many cases, raising the questipegated. When all the clauses in a formula in this form
of whether this structure can also improve quantumhave exactlyk variables, the problem is an instance of
searches. k-SAT. A clause withk variables is false for exactly

This paper presents a new quantum search algorithne set of values for its variables, and true for the
that is extremely effective for some highly structuredother2* — 1 choices. An example of such a clause for
search problems. These problems can also be readily = 3, with the third variable negated, 18, oR V, OR
solved with classical heuristics, i.e., they are relatively(NoT V3), which is false for exactly one set of values:
easy. However, the new quantum algorithm requires eve{y, = false V, = false V3 = trug}. Since the formula is
fewer steps than the best classical methods, providing amr conjunction of clauses, a solution must satisfy every
other example for which quantum computers can outperelause so each false clause for a given assignment is

form classical ones. counted as a conflict for that assignment. Solutions are
Combinatorial search problems of the class knowrassignments with no conflicts.
as nondeterministic polynomia(NP) have very many In general, the computational cost of solving a SAT

possible states and a procedure that quickly checksroblem grows exponentially with the number of vari-
whether a given state is a solution [6]. Examples ofables. However, a few simple cases can be solved without
such problems include scheduling, finding low energyexponential cost by heuristics that use the regular structure
states of spin glasses and proteins, and automatic theoreshthe problem to quickly and accurately determine search
proving. A prototypical case is the satisfiability problem choices that lead to solutions. One example is given by
(SAT) which consists of a logical formula im variables, 1-SAT problems. In this case, each clause eliminates one
Vi,..., Vs, and the requirement to find amssignment, value for a single variable allowing classical algorithms
specifying a value (true or false) for each variable, thato examine the variables independently, giving an overall
makes the formula true. There at® assignments. The search cost 0O (n).
SAT problem has received considerable attention since it A quantum computer can solve a 1-SAT problem in
is one of the most difficult NP problems [6], in the sensea single step. To see this, let» be the number of
that an effective method for solving SAT can be readilyclauses in the 1-SAT formula. First, form the sthte =
transformed into an effective method for any other NP2=%/2 %" |s), an equal superposition of &t assignments,
problem (but not conversely). and then compute

The assignments of a SAT problem can also be viewed 16) = U Ry 2
as bit strings with theth bit being 0 or 1 according to ’
whetherV; is assigned the value false or true, respectivelywhere the matrice® andU are defined as follows. The
For bit stringsr and s, let |s| be the number of 1-bits matrix R is diagonal withR,;, = p(s) depending on the
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number of conflicts: in the assignment, ranging from0 The matrix U can be implemented in terms of two
to m, simpler matrices,W and I', defined as follows. For

assignments ands,
(s) = V2cod(2e — 1) 3] for evenm, 3 i
PR = Pe = i for oddm , 3) W,y =272 (=1l (8)

which is known as the Walsh transform, add is a
diagonal matrix whose elements, = y(r) depend only
on the number of 1-bits in each assignment, i.e.,

which have unit magnitude. The matrix elemebts =
uq(rs) depend only on the Hamming distance between th
assignments ands, with

277 cod(n — m + 1 — 2d)%] for evenm, _ . — |V2cod(m — 21 — 1)F] for evenm,
= | y(r) =y = iho—imm/4 for odd m
27»1/26177("*"1)/4(—,')‘1 for oddm . ,

@ o)

To evaluate the behavior of this algorithm, consider avhere » = |r|, ranging from 0 ton, and which have
soluble 1-SAT problem withn distinct clauses, each of unit magnitude. The matri¥¥ is unitary and can be
which must involve a distinct variable. Thusvariables implemented efficiently [8,10]. Furthermore, because the
have constrained values while the remaining- m are  elements ofl" are readily computed by counting the
unconstrained, givin@"~" solutions. Equation (2) can number of 1-bits in the corresponding assignmdhtis

be evaluated by using an efficiently computable unitary operation [8]. Finally,
n n U can be implemented by the produgd’W. To see this,
Z(—l)z<z> = 60, (5) letU = WI'W. Then
z=0 ’ n
whered,, = 1if x = y and 0 otherwise, and U,=27" Z YiSu(r,s),
Z <n>COS(x + ky) = 2" COS"(l)COS(x + ﬂ) where
= \k 2 2
6) Su(r,s) = Y (=plitthnd,

Consider an assignmentwith & conflicts, i.e., the num- Llel=h

ber of the m constrained variables to whiclh as-  with the sum over all assignmentswvith # 1-bits. Each
signs an incorrect value. Then from Eq. (2)|¢) =  1-bit of r contributes O, 1, or 2 tr A 7| + [s A t| when
272y U,.p(s). Each assignmentin this sum can be the corresponding positions ef and s are both 0, have
characterized by (1}, the number of conflicts shares exactly a single 1-bit, or are both 1, respectively. Thus,
with »; (2) v, the number of conflicts of that are not (—1)I"A1*lsAl equals(—1)¢ wherez is the number of 1-
conflicts of r; and (3)z, the number of thes — m un-  bits in ¢ that are in exactly one of ands. There are
constrained variables that have different values iand  (Ir] — |r A s|) + (Is] = |r A s|) positions from which

s. In terms of these values, hasx + y conflicts and such bits ofs can be selected, and by Eq. (1) this is just
d(r,s) = (h — x) + y + z. Counting the number of as- d(r,s). Counting the number of assignmentsvith &
signments with given values fat, y, andz then gives 1-bits of whichz are in exactly one of and s gives

Sp(r,s) = S;(,'Zi) where

1) = _%Zh m—h\(n—m n -
R O L ()

Substituting the values from Egs. (3) and (4), and makingvith d = d(r,s), so thatU,, = g5 With &g = 27"
use of Egs. (5) and (6), give&|d) = 2-0—m/25,0 S, 5,5 Equation (9) then givesiy = ug as de-
Thus, |¢) has equal amplitudes among the states witlined in Eq. (4). ThusU = WI'W, allowing U to be
no conflicts, i.e., the solutions, and no amplitude amongefficiently implemented.
nonsolutions. A measurement made on this final state is This algorithm efficiently solves any 1-SAT problem.
guaranteed to produce a solution. With a slight modification it also applies to maximally
Completing the description of this algorithm requiresconstrained solubl&-SAT problems for anyk. These
showing how it can be performed efficiently on a quantumproblems have the largest possible number of clauses that
computer. The statdy) can be created rapidly by still allows for a solution. That is;m = mmax Where
separately mixing each of thebits [10]. For|R¢), note  mmax = (}) (2¥ — 1) because the single solution precludes
that R is a unitary diagonal matrix. Thu$R¢) can be any clause that matches it. Although the variables for such
performed efficiently [8] using a reversible version of problems cannot be considered independently, classical
the rapid classical procedure that counts the number dieuristics are nevertheless able to solve such problems in
conflicts. O(n) steps. For example, local search methods start with a
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random assignment and, at each step, examine the number nin

of conflicts in each neighbor (i.e., theassignments that n=2"2% < >uy5ys (11)
differ in a single value) and move to a neighbor with fewer y=0 Y

conflicts [15,16]. becausem = n for the corresponding 1-SAT problem.

Let thegoodvalue for each variable be the value (true Since thep,. have unit magnituddg.| = 2 for ¢ = n —
or false) it is assigned in the unique solution, while thex + 3, ands,. = 0 otherwise. Then using Eq. (4) and a
opposite value is thbadvalue. An assignmentwithbad  bound on the sum of binomial coefficients [17] valid when
values hasé”;’) sets ofk variables given the same values , — k + 3 = n/2,
as the solution. Each of the remaining sets conflicts with
a clause in the problem since it is maximally constrained. Il = 2_(,,_1)< n ) n+1—(k—3)

Thus each assignment wijhbad values has k—=3/n+1-2k—-3)"
<n> B <n - j> Thus, the probability to obtain a solution is
k k k=3
. . . Pom=11+n=1-2gl~1 -2 "2
conflicts. For such an assignmepheighbors have — 1 somn (k = 3)°

bad values, and the remaining— j have;j + 1 bad val-
ues. While the bad values cannot be determined witho h st . However. whan> 2
first knowing the solution, th@umberof bad values;, one sgalrc Str?p ersln.ctzlzeases.l ' ¢ héther
can usually be determined from the number of conflicts irgsgglutionziisti aigorithm no longer guarantees w

he neighbors. ifically, fgr= n — k, s hasj neigh- . : . .
Loers ?/v%hb%v?/ersggﬁfligg éngh _ 7 Witﬁ ino?:] \?V%en As a simple alternative, note that the number of conflicts

i =n—k + 1, the assignment continues to hgueeigh- grows strictly monotonicajly fori = n — k. In these
bors with fewer conflicts, but the remainifig— 1 neigh- caseg can be computed directly from the number of con-

bors. with an additional bad value have the same numb lj]cts. This alternative avoids the overhead of examining
of conflicts. Finally, the neighbors of assignments with e neighbors but with the consequence that then assign-

n—k+1<j=n all have the same number of con- ments withn — k + 1 = j = n are not distinguishable.

flicts. Thus, the number of conflicts in an assignment’sWhether incurring this slight additional error is justified

neighbors determines the value gfwith the exception \]iw[dzeperr\]dtgn thte_cogt of ?xatmtlnlrtl)g netl)glghtt)grs S;’r;/\r/:(gg
that assignments with — k + 1 < j < n are not dis- — < Whetner 1L 1s important fo be able 10 g

Qo . ; whether a solution exists.
tinguishable. Thus, for a maximally constraineeSAT In summary, for 1-SAT and maximally constrained

&RO this algorithm will almost surely find the solution in

problem, k-SAT, this algorithm finds a solution in one step almost
j fj=n—-—%k+1, surely asn — o, while classical heuristics requir@(n)
Cetr(s) = {n %+ 2 otherwise (10)  steps. By contrast, search methods that ignore the problem

structure requir®(2") steps classically, an@l(2"/2) steps
can be determined rapidly, using the same method asn quantum computers [8]. In addition, for all 1-SAT
classical local search methods [15,16]. Thuyg is a  problems and maximally constrained 2-SAT problems, the
computationally tractable approximation to the number ofalgorithm finds a solution with probability one. Thus, in
conflicts each assignment would have in the correspondhese cases, failure to find a solution definitely indicates
ing 1-SAT problem, i.e., the maximally constrained the problem is not soluble. This contrasts with previously
1-SAT problem with the same solution as theSAT  proposed quantum algorithms that find solutions with
problem. Only assignments with more than— k + 2 probability less than one and, hence, cannot guarantee no
bad values are given an incorrect value jpfby this  solutions exist.
approximation. In particular, the.s is always correct While search algorithm performances are often com-
for k = 2. pared based on the number of search steps required, i.e.,
These observations suggest changing Eq. (3) of the athe number of sequentially examined assignments, it is
gorithm to usep(s) = p..,(s) from Eq. (10), and using also important to compare the number of more elemen-
m = n, as appropriate for the corresponding 1-SAT prob-+tary computational steps required. The matrix operations
lem. To see how this approximation changes the perand forming the initial state can be done@n) time [8].
formance, consider an assignmentvith ¢ bad values The time required to examine the assignments, e.g., to de-
and leté, = p.,(s) — pe, Which is nonzero only for =  termine their number of conflicts or comparison to their
n —k + 3. Then|¢) = |¢V) + |[UAy)where|¢V)is  neighbors, will be comparable for both quantum and clas-
the result for the corresponding 1-SAT problem, i.e., allsical algorithms since they can both make use of the same
amplitude in the solution, andl is a diagonal matrix, with  procedures. This cost will depend on the effectiveness of
elements given by.. The change in the amplitude in the the data structures used to compare assignments with the
solution state is; = (r|UA) whenr is the solution. Us- constraints, typically at mosP(m). Then neighbors of
ing Eq. (7) withz = 0 andp. replaced withs,. gives an assignment could be examineddin) time. Thus the
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