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A quantum algorithm for a class of highly structured combinatorial search problems is introduc
This algorithm finds a solution in a single step, contrasting with the linear growth in the num
of steps required by the best classical algorithms as the problem size increases, and the expo
growth required by classical and quantum methods that ignore the problem structure. In some c
the algorithm can also guarantee that insoluble problems, in fact, have no solutions, unlike previo
proposed quantum search algorithms. [S0031-9007(98)05575-6]

PACS numbers: 03.67.Lx, 02.70.–c, 03.65.Bz, 89.70.+c
ts

a-

e
m
f

e
r

:

ry
t is
re

T
i-
out
ure
ch
by
ne
s
all

in
Quantum computers [1–5] offer a new approach
combinatorial search problems [6] with their ability to
operate simultaneously with many possible solutions.
quantum algorithm to factor large integers [7] much mo
rapidly than classical machines offers a dramatic exam
of this approach. While several additional algorithm
have been developed [8–14], whether quantum comput
can improve on heuristically guided classical metho
for general searches remains an open question. Th
heuristics exploit the structure of the problems to grea
reduce the search cost in many cases, raising the ques
of whether this structure can also improve quantu
searches.

This paper presents a new quantum search algorit
that is extremely effective for some highly structure
search problems. These problems can also be rea
solved with classical heuristics, i.e., they are relative
easy. However, the new quantum algorithm requires ev
fewer steps than the best classical methods, providing
other example for which quantum computers can outp
form classical ones.

Combinatorial search problems of the class know
as nondeterministic polynomial(NP) have very many
possible states and a procedure that quickly chec
whether a given state is a solution [6]. Examples
such problems include scheduling, finding low energ
states of spin glasses and proteins, and automatic theo
proving. A prototypical case is the satisfiability problem
(SAT) which consists of a logical formula inn variables,
V1, . . . , Vn, and the requirement to find anassignment,
specifying a value (true or false) for each variable, th
makes the formula true. There are2n assignments. The
SAT problem has received considerable attention since
is one of the most difficult NP problems [6], in the sens
that an effective method for solving SAT can be readi
transformed into an effective method for any other N
problem (but not conversely).

The assignments of a SAT problem can also be view
as bit strings with theith bit being 0 or 1 according to
whetherVi is assigned the value false or true, respective
For bit stringsr and s, let jsj be the number of 1-bits
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in s and r ^ s the bitwise AND operation onr and s.
Thus,jr ^ sj counts the number of 1-bits both assignmen
have in common. Letdsr , sd be the Hamming distance
betweenr and s, i.e., the number of positions at which
they have different values, given by

dsr , sd  jrj 1 jsj 2 2 jr ^ sj . (1)

A logical formula can be expressed in various equiv
lent forms, e.g., as a conjunction ofclauses. A clause
is a disjunction of some variables, any of which may b
negated. When all the clauses in a formula in this for
have exactlyk variables, the problem is an instance o
k-SAT. A clause withk variables is false for exactly
one set of values for its variables, and true for th
other 2k 2 1 choices. An example of such a clause fo
k  3, with the third variable negated, isV1 OR V2 OR

(NOT V3), which is false for exactly one set of values
hV1  false, V2  false, V3  truej. Since the formula is
a conjunction of clauses, a solution must satisfy eve
clause so each false clause for a given assignmen
counted as a conflict for that assignment. Solutions a
assignments with no conflicts.

In general, the computational cost of solving a SA
problem grows exponentially with the number of var
ables. However, a few simple cases can be solved with
exponential cost by heuristics that use the regular struct
of the problem to quickly and accurately determine sear
choices that lead to solutions. One example is given
1-SAT problems. In this case, each clause eliminates o
value for a single variable allowing classical algorithm
to examine the variables independently, giving an over
search cost ofOsnd.

A quantum computer can solve a 1-SAT problem
a single step. To see this, letm be the number of
clauses in the 1-SAT formula. First, form the statejcl 
22ny2

P
s jsl, an equal superposition of all2n assignments,

and then compute

jfl  jU Rcl , (2)

where the matricesR andU are defined as follows. The
matrix R is diagonal withRss ; rssd depending on the
© 1998 The American Physical Society 2473
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number of conflictsc in the assignments, ranging from0
to m,

rssd  rc ;

( p
2 cosfs2c 2 1d p

4 g for evenm ,
ic for oddm ,

(3)

which have unit magnitude. The matrix elementsUrs 
udsr ,sd depend only on the Hamming distance between t
assignmentsr ands, with

ud ;

(
22 n21

2 cosfsn 2 m 1 1 2 2dd p

4 g for evenm ,

22ny2eipsn2mdy4s2idd for oddm .
(4)

To evaluate the behavior of this algorithm, consider
soluble 1-SAT problem withm distinct clauses, each of
which must involve a distinct variable. Thusm variables
have constrained values while the remainingn 2 m are
unconstrained, giving2n2m solutions. Equation (2) can
be evaluated by using

nX
z0

s21dz

µ
n
z

∂
 dn0 , (5)

wheredxy  1 if x  y and 0 otherwise, and
nX

k0

µ
n
k

∂
cossx 1 kyd  2n cosn

µ
y
2

∂
cos

µ
x 1

ny
2

∂
.

(6)

Consider an assignmentr with h conflicts, i.e., the num-
ber of the m constrained variables to whichr as-
signs an incorrect value. Then from Eq. (2),krjfl 
22ny2

P
s Ursrssd. Each assignments in this sum can be

characterized by (1)x, the number of conflictss shares
with r ; (2) y, the number of conflicts ofs that are not
conflicts of r ; and (3) z, the number of then 2 m un-
constrained variables that have different values inr and
s. In terms of these values,s has x 1 y conflicts and
dsr , sd  sh 2 xd 1 y 1 z. Counting the number of as-
signments with given values forx, y, andz then gives

krjfl  22 n
2

X
xyz

µ
h
x

∂ µ
m 2 h

y

∂ µ
n 2 m

z

∂
3 uh2x1y1zrx1y . (7)

Substituting the values from Eqs. (3) and (4), and makin
use of Eqs. (5) and (6), giveskr jfl  22sn2mdy2dh0.
Thus, jfl has equal amplitudes among the states wi
no conflicts, i.e., the solutions, and no amplitude amon
nonsolutions. A measurement made on this final state
guaranteed to produce a solution.

Completing the description of this algorithm require
showing how it can be performed efficiently on a quantu
computer. The statejcl can be created rapidly by
separately mixing each of then-bits [10]. ForjRcl, note
that R is a unitary diagonal matrix. Thus,jRcl can be
performed efficiently [8] using a reversible version o
the rapid classical procedure that counts the number
conflicts.
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The matrix U can be implemented in terms of two
simpler matrices,W and G, defined as follows. For
assignmentsr ands,

Wrs  22ny2s21djr^sj, (8)

which is known as the Walsh transform, andG is a
diagonal matrix whose elementsGrr ; gsrd depend only
on the number of 1-bits in each assignment, i.e.,

gsrd  gh ;

( p
2 cosfsm 2 2h 2 1d p

4 g for evenm,
ihe2ipmy4 for oddm ,

(9)
where h  jr j, ranging from 0 ton, and which have
unit magnitude. The matrixW is unitary and can be
implemented efficiently [8,10]. Furthermore, because th
elements ofG are readily computed by counting the
number of 1-bits in the corresponding assignment,G is
an efficiently computable unitary operation [8]. Finally,
U can be implemented by the productWGW . To see this,
let Û ; WGW . Then

Ûrs  22n
nX

h0

ghShsr, sd ,

where

Shsr, sd 
X

t,jtjh

s21djr^tj1js^tj,

with the sum over all assignmentst with h 1-bits. Each
1-bit of t contributes 0, 1, or 2 tojr ^ tj 1 js ^ tj when
the corresponding positions ofr and s are both 0, have
exactly a single 1-bit, or are both 1, respectively. Thus
s21djr^tj1js^tj equalss21dz wherez is the number of 1-
bits in t that are in exactly one ofr and s. There are
sjr j 2 jr ^ sjd 1 sjsj 2 jr ^ sjd positions from which
such bits oft can be selected, and by Eq. (1) this is jus
dsr , sd. Counting the number of assignmentst with h
1-bits of which z are in exactly one ofr and s gives
Shsr, sd  S

snd
hd where

S
snd
hd ;

X
z

s21dz

µ
d
z

∂ µ
n 2 d
h 2 z

∂
,

with d  dsr , sd, so that Ûrs  ûdsr ,sd with ûd  22nP
h ghS

snd
hd . Equation (9) then giveŝud  ud as de-

fined in Eq. (4). ThusU  WGW , allowing U to be
efficiently implemented.

This algorithm efficiently solves any 1-SAT problem.
With a slight modification it also applies to maximally
constrained solublek-SAT problems for anyk. These
problems have the largest possible number of clauses th
still allows for a solution. That is,m  mmax where
mmax  s n

k d s2k 2 1d because the single solution precludes
any clause that matches it. Although the variables for suc
problems cannot be considered independently, classic
heuristics are nevertheless able to solve such problems
Osnd steps. For example, local search methods start with
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random assignment and, at each step, examine the num
of conflicts in each neighbor (i.e., then assignments that
differ in a single value) and move to a neighbor with fewe
conflicts [15,16].

Let thegoodvalue for each variable be the value (true
or false) it is assigned in the unique solution, while th
opposite value is thebadvalue. An assignment withj bad
values hass n2j

k d sets ofk variables given the same values
as the solution. Each of the remaining sets conflicts wit
a clause in the problem since it is maximally constrained
Thus each assignment withj bad values hasµ

n
k

∂
2

µ
n 2 j

k

∂
conflicts. For such an assignment,j neighbors havej 2 1
bad values, and the remainingn 2 j havej 1 1 bad val-
ues. While the bad values cannot be determined witho
first knowing the solution, thenumberof bad values,j,
can usually be determined from the number of conflicts i
the neighbors. Specifically, forj # n 2 k, s hasj neigh-
bors with fewer conflicts andn 2 j with more. When
j  n 2 k 1 1, the assignment continues to havej neigh-
bors with fewer conflicts, but the remainingk 2 1 neigh-
bors, with an additional bad value, have the same numb
of conflicts. Finally, the neighbors of assignments with
n 2 k 1 1 , j # n all have the same number of con-
flicts. Thus, the number of conflicts in an assignment’
neighbors determines the value ofj, with the exception
that assignments withn 2 k 1 1 , j # n are not dis-
tinguishable. Thus, for a maximally constrainedk-SAT
problem,

ceffssd 

Ω
j if j # n 2 k 1 1 ,

n 2 k 1 2 otherwise
(10)

can be determined rapidly, using the same method
classical local search methods [15,16]. Thusceff is a
computationally tractable approximation to the number o
conflicts each assignment would have in the correspon
ing 1-SAT problem, i.e., the maximally constrained
1-SAT problem with the same solution as thek-SAT
problem. Only assignments with more thann 2 k 1 2
bad values are given an incorrect value ofj by this
approximation. In particular, theceff is always correct
for k  2.

These observations suggest changing Eq. (3) of the
gorithm to userssd  rceffssd from Eq. (10), and using
m  n, as appropriate for the corresponding 1-SAT prob
lem. To see how this approximation changes the pe
formance, consider an assignments with c bad values
and letdc  rceffssd 2 rc, which is nonzero only forc $

n 2 k 1 3. Thenjfl  jfs1dl 1 jUDcl wherejfs1dl is
the result for the corresponding 1-SAT problem, i.e., a
amplitude in the solution, andD is a diagonal matrix, with
elements given bydc. The change in the amplitude in the
solution state ish ; krjUDcl whenr is the solution. Us-
ing Eq. (7) withh  0 andrc replaced withdc gives
ber
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h  22ny2
nX

y0

µ
n
y

∂
uydy , (11)

becausem  n for the corresponding 1-SAT problem
Since therc have unit magnitude,jdcj # 2 for c $ n 2

k 1 3, anddc  0 otherwise. Then using Eq. (4) and
bound on the sum of binomial coefficients [17] valid whe
n 2 k 1 3 $ ny2,

jhj # 22sn21d
µ

n
k 2 3

∂
n 1 1 2 sk 2 3d
n 1 1 2 2sk 2 3d

.

Thus, the probability to obtain a solution is

Psoln  j1 1 hj2 $ 1 2 2jhj , 1 2 22sn22d nk23

sk 2 3d!
,

so this algorithm will almost surely find the solution in
one search step asn increases. However, whenk . 2,
Psoln , 1 so the algorithm no longer guarantees wheth
a solution exists.

As a simple alternative, note that the number of conflic
grows strictly monotonically forj # n 2 k. In these
casesj can be computed directly from the number of co
flicts. This alternative avoids the overhead of examinin
the neighbors but with the consequence that then ass
ments withn 2 k 1 1 # j # n are not distinguishable.
Whether incurring this slight additional error is justifie
will depend on the cost of examining neighbors or, whe
k  2, whether it is important to be able to guarante
whether a solution exists.

In summary, for 1-SAT and maximally constraine
k-SAT, this algorithm finds a solution in one step almo
surely asn ! `, while classical heuristics requireOsnd
steps. By contrast, search methods that ignore the prob
structure requireOs2nd steps classically, andOs2ny2d steps
on quantum computers [8]. In addition, for all 1-SAT
problems and maximally constrained 2-SAT problems, t
algorithm finds a solution with probability one. Thus, i
these cases, failure to find a solution definitely indicat
the problem is not soluble. This contrasts with previous
proposed quantum algorithms that find solutions wi
probability less than one and, hence, cannot guarantee
solutions exist.

While search algorithm performances are often co
pared based on the number of search steps required,
the number of sequentially examined assignments, it
also important to compare the number of more eleme
tary computational steps required. The matrix operatio
and forming the initial state can be done inOsnd time [8].
The time required to examine the assignments, e.g., to
termine their number of conflicts or comparison to the
neighbors, will be comparable for both quantum and cla
sical algorithms since they can both make use of the sa
procedures. This cost will depend on the effectiveness
the data structures used to compare assignments with
constraints, typically at mostOsmd. The n neighbors of
an assignment could be examined inOsnd time. Thus the
2475
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cost for asinglesearch step is about the same for the qua
tum algorithm and classical searches when neighbors
examined. However, the quantum algorithm is able to e
amine all assignments in superposition while a classic
search examines just one, allowing the quantum algorith
to complete in just one step while the best classical me
ods requireOsnd steps.

An important issue is how quantum algorithms degrad
with errors and decoherence [18,19]. While there h
been progress in implementation [20–24], error contr
[25,26], and studies of decoherence [27], it remains to
seen how these problems affect the algorithm presen
here. In particular, because the algorithm requires only
single step and simple phases, decoherence is likely to
less of a difficulty for it than algorithms requiring multiple
steps to move significant amplitude to solutions [10,13].

A significant generalization would be to problems with
fewer constraints. Problems with an intermediate numb
of constraints are the most difficult for classical heuristic
[28,29] as well as quantum searches based on analog
with these classical methods [12,13]. The usefulness
Eqs. (3) and (9) depends on the regular relations amo
the number of conflicts in neighboring assignments. Wi
fewer constraints, these relations vary considerably amo
problems. Nevertheless, Eq. (11) remains small even w
some additional errors in the phase choices. In particul
for mostk-SAT problems withm ¿ n2, jhj continues to
approach 0 asn ! `, increasing the range of problems
this algorithm is very likely to solve in a single step
[30]. This raises the general issue of optimally usin
the information that can be readily determined abo
assignments in combinatorial searches. Such informat
includes whether a state is a solution, the number
conflicts it has, and how it compares with its neighbor
Additional information is available on consistency o
assignments to only some of the variables, as us
with incremental searches [12]. Making fuller use o
this available information may improve performance b
better matching characteristics of combinatorial search
to capabilities of physically realizable devices.
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