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Lognormal Size Distributions in Particle Growth Processes without Coagulation
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A new model is proposed to explain lognormal particle size distributions found in vapor growth
processes such as gas evaporation, without invoking coagulation. In the model, particles are moving by
diffusion and drift through a finite growth region. The particle size is assumed to be a power function
of growth time, and the final size distribution is determined by the first passage times. By computer
simulation, lognormal size distributions and scaling laws interrelating the distribution parameters, the
size of the growth region, and the drift speed were found. [S0031-9007(98)05606-3]

PACS numbers: 81.10.Bk, 61.46.+w, 81.05.Ys, 81.40.-z

The particle size distribution is a very important prop- This Letter takes a different approach, which does not
erty of finely divided systems such as aerosols, emulsiongvolve coagulation. A new model is proposed by em-
and powders. Particle growth processes and their influengehasizing the time spent for growth, which has not been
on the size distribution have been studied for a long timeroperly considered until now. It will be shown that the
and general theories exist [1-3]. In the case of growthdistribution of particle growth times can be accurately de-
from vapor, initial nucleation gives rise to droplets or par-scribed by a lognormal distribution, and that growth by
ticles which first grow by vapor absorption and then posvapor absorption may indeed lead to a lognormal size dis-
sibly by coagulation. A vapor growth process studied intribution. This applies to any growth process where the
great detail is the gas evaporation method for productiotbasic mechanism is particle diffusion and drift through a
of ultrafine particles with mean size in the nanometer rangénite growth region. Subsequent coagulation would not
[4]. Inthis method, a metal is evaporated, and the vapor igestroy the lognormality if the conditions are providing a
subsequently cooled in an inert gas such as He. The teckelf-preserving size distribution [18].
nique was studied extensively by Grangvist and Buhrman In modern gas evaporation equipment, an amount of
[5]. Since then, intense development has taken place [6metal is melted in a crucible in an evaporation chamber
8], and nanostructured materials composed of ultrafine pafilled with inert gas. A steady flow of inert gas encloses
ticles have become important in fundamental and appliethe crucible. Ultrafine particles are formed in a growth
physics. In several such materials, extraordinary physicatone above the melt and carried by the gas flow to a deposi-
and chemical properties have been found [9—12]. Manyion chamber where they are collected. A one-dimensional
of these properties depend critically on a small mean pamodel of this evaporation process was devised, in which
ticle size and a narrow size distribution. the particles are formed and then transported by means

It was shown in [5] that the particle diameterafter gas  of diffusion and drift through the growth zone, of finite
evaporation are well described by a lognormal distributionJength L. The drift is caused by the gas flow around the

| inr — Inp)? crucible as well as by a convection current in the gas that
r —Inp) . . ,

flr) = —— exp{—iz} (1) would be present even if no flow was applied. The particle
V2ming 2(na) size distribution is obtained by assuming that the particle
which is defined by the geometric mean diamegieand size is a linear function of the growth time. To illustrate
the dimensionless geometric standard deviation Also  this assumption, consider growth of a spherical particle in
in [5], a coalescence model leading to lognormality wasatomic vapor. Atoms are absorbed by the particle, with
derived, and it was argued that growth by absorption ofurface aread, at a constant rate per unit area and time.
atomic vapor could not give rise to a lognormal particleThe particle volumeV increases according @V /dr =
size distribution. Subsequent work emphasizing the influyA. SinceV « r3andA « 2, it follows thatr o« ¢. More
ence of absorption on the size distribution has been donsophisticated models yield the same result, or sometimes
[13,14], but lognormal distributions are usually explaineda different power-law dependence [19,20]. Note that the
by the Brownian coagulation models [15-18]. The appli-size distribution will be lognormal, if the time distribution
cability of these models can be questioned, since they aiie lognormal, for any power-law dependence of particle
based on the theory of Smoluchowsky [1], which treats cosize on growth time. Finally, the model should also in-
agulation in a closed system of particles. A modern setuglude a correction of the diffusion constant as predicted by
for gas evaporation is an open system, with particles corthe Einstein-Stokes formula. However, such a correction
stantly being added and removed. Furthermore, the coagwas not included since simulations indicated only a minor
lation models do not explain the origin of the lognormalinfluence on the size distribution. These results will be
distribution but rather assume its presence. published elsewhere.
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In the model, the distribution of growth times is the accurate. In experiments, it is possible that the convec-
first passage time distribution of a one-dimensional rantion current alone is large enough to fulfil the condition
dom walk with a reflecting boundary at=0 and an §/8, > 1. It can be concluded that lognormal particle
absorbing boundary at = L. In the simulations, an size distributions found in experiments can be explained in
equivalent, symmetric problem was considered; see Fig. Terms of growth time distributions. This holds in the case
A particle starts aty = 0 and moves outward until one of of gas evaporation as well as in other growth processes
the boundaries at L is reached. The random walk was where particles diffuse and drift through a finite growth
implemented as region. It should be noted that once initial nucleation

X+ =X + € + 8s,, ) has taken pIaC(_e, thge prop_osed mod_el fully accounts f_or
the lognormal size distribution found in numerous experi-
ments. Growth by vapor absorption is sufficient, and the
model does not involve coagulation. However, if subse-
quent growth by Brownian coagulation would occur in re-

el h icleth ber of i gions where absorption cannot take place, this is known to
respectively. For each particliethe number of time sSteps 1o apja to preserve the initial lognormal distribution [18].

t; required to reach:L was recorded. First passage time |, Fig. 3(a), the geometric mean particle sjzés nor-

problems have been extensively studied [21,22], and g, )i;eq by division byL? and plotted versus normalized

similar problem, with drift in the positive direction only drift, 8/8,. The following scaling law is established:
and no boundary on the negative side, is known to have an (6/5)
p(8/68¢

analytic solution, the inverse Gaussian distribution [23,24].

Diffusion and drift are competing mechanisms of par- Lz
ticle transport. The diffusion is described by a diffusion
equation{x?) = D¢, whereD is a diffusion constant and
(x?) is the mean-square displacement at ttméfhe mean
is taken over an ensemble of particles. In the prese
model, D = 1/3. The mean passage tin{g) then sat-

where the position at time + 1 is given by the previ-
ous position, a random diffusion tere, uniformly dis-
tributed on[—1, 1], and a drift terméds,, whered is the
drift speed and, = —1,0,1 for x, <0, x, = 0, x, > 0,

with p; denoting the scaled geometric mean particle size.
In the small drift cased /Sy < 1, only diffusion plays a
nrtole, and the mean size does not vary with drift. When

isfies L = D{(t;). The drift, with speeds, is described
by an equation of motiony = 8. A critical drift 8, is Soal
defined for which the diffusion current and drift current 99l
are equal, that is, diffusion and drift yield the same mean 9 gg:
passage times, > 75t
5 50r (a)
5o- 2 - L @
L 3L a 13:
Simulations were performed with different values of i
system sizel. and drift §, and with at leasi0’ particles 0%}:
to ensure good statistics. The RANLUX random num- - s .
ber generator [25,26] was used for the simulations. The 2 T g ! 2
distribution parameters and o were estimated from the
simulation data. Typical size distributions are shown in
the log-probability plots of Fig. 2. In a log-probability
plot, a lognormal distribution yields a straight line [5]. 99.99}
When the drift is small compared to the critical drift, 99.97
8/8p < 1, the distribution is seen to deviate from lognor- 3?i

mal; see Fig. 2(a). In an experimental situation, such a
deviation from lognormality might still be too small to
be observed. The large drift cas®/8, > 1, indicates

Probability (%)
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o

lognormality to a very high precision. This is shown in I
Fig. 2(b). The tail points of the curves are not statistically 1r
0.1
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-L 0 Xt L FIG. 2. Log-probability plots of simulated particle sizes.

Number of particles N = 10°, system size L = 300.
FIG. 1. The one-dimensional model used in the simulations(a) Small drift: §/8, = 0.009; p = (2.006 + 0.01) X 10°,
A particle starts atr = 0 and is transported by diffusion and o = 2.194 + 0.008. (b) Large drift: 6/80=27; p =
drift, with speed=§, until it reaches—L or +L. 9646 *= 11, o = 1.208 = 0.001.
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10° ‘ - To summarize, the distribution of growth times in par-
ticle growth processes similar to those underlying the gas
. evaporation method is proposed to give rise to lognormal
®aa particle size distributions. The model does not assume co-
agulation of particles; hence growth by vapor absorption
would be the dominant growth mechanism.
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