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Screening in Three-Dimensional QED
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We compute the quark-antiquark potential in three-dimensional massive quantum electrodynami
The result indicates that screening prevails for large quark masses, contrary to the classical expectati
The classical result is reproduced for small separation of the quarks. [S0031-9007(97)04973-9]
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A proper study of the problem of screening and co
finement is of considerable importance in our understan
ing of gauge theories. To avoid the complexities of fo
dimensions these studies are usually confined to lower
mensions. In this framework, a deep physical interpre
tion has been achieved. Indeed, in two-dimensional QE
[1], one obtains screening in the massless case, but c
finement in the massive quark case, realizing the expec
picture.

For QCD in two dimensions Grosset al. [2] were the
first to discuss the subject. If dynamical fermions and te
charges are in different representations, they find screen
or confinement in some particular cases depending
whether the fermion is massless or massive. A simi
conclusion in an identical setting has been arrived at for
massless case in [3]. If, on the other hand, all fermions
in the fundamental representation, then screening prev
independently of the quark mass [4].

General inquiries in two-dimensional gauge theori
have been performed recently by several authors [5], c
cerning theu vacuum structure, screening, confinemen
and chiral condensates. In three dimensions related qu
tions were studied in [6].

It is thus important and instructive to verify how fa
such issues are just low dimensional unphysical featur
or part of the theoretical structure of gauge theorie
Usually, the probe of confinement comes from the Wilso
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criteria, computing the Wilson loop, and checking wheth
it behaves as the area or the perimeter of the loop,
large loops [7]. This is also the approach followed b
[2]. Here we follow an alternative route based on th
direct calculation of the quark-antiquark potential. T
perform the computations we shall take recourse
bosonization. This is a well known technique in two
dimensional space-time [8] which has been well illustrate
in getting the Schwinger terms in the current algebra
fermionic field theories, and in order to study the proble
of screening and confinement in QED2 [1] as well as in
QCD2 [4]. This is possible because one is led to effectiv
actions which contain quantum effects already at the clas
cal level.

The familiar ideas of two-dimensional bosonizatio
have been recently extended to higher dimensions and
particular, a bosonized form for massive QED3 has been
developed [9]. We use this formulation to investigate th
phenomenon of screening and confinement in this theo
by explicitly computing the quark-antiquark potentia
The result shows that contrary to the classical expectati
there is screening for large quark mass. However, t
classical result is reproduced for a small separation of t
quarks.

The partition function of three-dimensional massiv
QED in the covariant gauge, in the presence of an exter
sourceJm, is given by
n the
ariant

static
Z 
Z

dfc, c̄, Amgds≠mAmd exp

µ
i
Z

d3xfc̄si≠y 2 m 2 eAydc 2
1
4 F2

mn 1 AmJmg
∂

, (1)

whereFmn is the field tensorFmn  ≠mAn 2 ≠nAm.
The bosonized version of the above defined action in the large mass limit is given by the expression [9]

Z 
Z

dAmds≠mAmd exp

Ω
i
Z

d3x

∑
2

e2

8p
emnrAm≠nAr 1

µ
e2

24pm
2

1
4

∂
F2

mn 1 AmJm 1 · · ·

∏æ
, (2)

where terms up to order1ym have been retained in the computation of the effective action as a power series i
inverse quark mass. This result is just the partition function of the Maxwell-Chern-Simons [10] theory in the cov
gauge.

We now compute the potential as being the difference between the Hamiltonian with and without a pair of
external charges separated by a distanceL, so that
© 1998 The American Physical Society
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V sLd  Hq 2 H0  2sLq 2 L0d  2q
Z

d2xAmdm0fdsx1 1 Ly2ddsx2d 2 dsx1 2 Ly2ddsx2dg

 2qfA0sx1  2Ly2, x2  0d 2 A0sx1  Ly2, x2  0dg , (3)

where we have integrated over the two space components in order to find the potential, and considered the s
corresponding to two fixed charges of magnitudeq located at the points defined by the respective delta functions. N
thatLqsL0d denote the Lagrangians in the presence (absence) of the charges.

We now consider the equations of motion associated with the Lagrangian defined in (2). The field equation
covariant gauge reads

2
e2

4p
emnr≠nAr 1

µ
1 2

e2

6pm

∂
hAm 1 Jm  0 . (4)

Defining the curl ofAm as

Am  2emnb≠nAb (5)

the equation of motion can be expressed as

fh 1 m2
AgAm  2

1
1 2 e2y6pm

emnb≠bJn 2
e2y4p

h1 2 e2y6pmj2
Jm (6)

where

mA 
e2y4p

h1 2 e2y6pmj
.

In the absence of sources it reproduces the familiar massive mode of Maxwell-Chern-Simons theory [10]. Fro
is seen that an expression forA0 is required to calculate the potential. This is given in terms of the curl (5) by

A2  2≠1A0 . (7)

The time dependent solution forA2 corresponding to the sources describing static quarks can be obtained from
Using this result from (7) finally yields

A0sxd  2
Z

d2yDsx 2 y, mAd
1

1 2 e2y6pm
J0s yd

 2
q

1 2 e2y6pm

∑
D

µ
x1 1

L
2

, x2; mA

∂
2 D

µ
x1 2

L
2

, x2; mA

∂∏
, (8)
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where Dsx; mAd is the Euclidean Feynman propagato
in two dimensions, since we are dealing with the tim
independent Green’s function in (6). It is given by th
modified Bessel function,

Dsx; Md 
1

2p
K0fM

p
sx1d2 1 sx2d2g . (9)

The above solution (8) is defined up to anx2 dependent
constant, which will be overlooked in what follows, sinc
it will not affect our results.

The potential is now found from (3) and (8), reading

V sLd  2
q2

1 2 e2y6pm
fDs0, 0; mAd 2 DsL, 0; mAdg .

(10)

At this point we disregard the constant term, as discuss
before, arriving at the main result of this work,

V sLd  2
1
p

q2

1 2 e2y6pm
K0smALd
r
e
e

ed

; 2
q2

ren

p
K0smALd . (11)

The behavior of this potential energy should be compar
with the classical expectation, that is

V classsLd 
q2

p
ln aasmALd , (12)

where we arbitrarily choose the massive parameter. T
classical result in the ultraviolet regime corresponds
a renormalization of the strength, but in the infrared,
logarithmic growth is expected, which would signalize
confinement of the external quarks. However, as in th
case of two-dimensional QCD the quantum result (11
indicates screening, due to the Chern-Simons term
the action, which indicates a mass for the gauge fiel
Interestingly, in the limitL ! 0 (i.e., when the quarks
are close), the leading term in the expression (11) f
heavy quarks reduces to the classical result (12). In t
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FIG. 1. Classical (dashed line) and quantum (continuous lin
effective interquark potentials are sketched as a function
their separation. The classical potential grows with interqua
separation (confinement), while for the quantum theory t
potential tends asymptotically to zero.

two-dimensional case, this is also true, e.g., the class
potential for short separations is given by the expressio

V classsLd 
e2

2
L , (13)

which corresponds to the short separation limit (for hea
quarks) of the full quantum result [1,4].

In the three-dimensional case, we drew the diagra
corresponding to the classical and to the quantum res
superposed in Fig. 1 for comparison.

We see, therefore, that the conclusions obtained in tw
dimensional space-time are valid in the three-dimensio
case, strengthening them and providing further reality
the results. The utility of the bosonization methods
the present context has been clearly illuminated. The
methods prove to be of greater effectiveness in obtain
physical results, especially because the bosonized vers
contains quantum corrections at the classical level.

To put our work in the proper perspective we recall th
screening effects in the Maxwell-Chern-Simons theo
may have been known [10], but the observation th
there exists a direct connection between fermionic thre
dimensional QED and the Maxwell-Chern-Simons theo
leading to similar effects in the former is new, a
shown in our work. Moreover, we gave an explic
calculation for the quark-antiquark potential for larg
values of the quark mass which quantitatively illuminate
the screening phenomenon due to the quantum effe
Indeed, the departure of the quantum result from t
classical expression was clearly illustrated (see Fig. 1).
is also appropriate to mention that the results obtain
240
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here were based on bosonization in the large mass l
using the quadratic approximation. It is, of cours
possible to extend the bosonization scheme to arbitr
mass [11] or to go beyond the quadratic approximatio
It would then be interesting to see whether the screen
phase persists or is modified under these circumstan
As a concluding remark, we mention that screeni
effects in QED3 have not been investigated either usin
bosonization or any other method.
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