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Screening in Three-Dimensional QED
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We compute the quark-antiquark potential in three-dimensional massive quantum electrodynamics.
The result indicates that screening prevails for large quark masses, contrary to the classical expectations.
The classical result is reproduced for small separation of the quarks. [S0031-9007(97)04973-9]
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A proper study of the problem of screening and con-criteria, computing the Wilson loop, and checking whether
finement is of considerable importance in our understandi¢ behaves as the area or the perimeter of the loop, for
ing of gauge theories. To avoid the complexities of fourlarge loops [7]. This is also the approach followed by
dimensions these studies are usually confined to lower d[2]. Here we follow an alternative route based on the
mensions. In this framework, a deep physical interpretadirect calculation of the quark-antiquark potential. To
tion has been achieved. Indeed, in two-dimensional QEerform the computations we shall take recourse to
[1], one obtains screening in the massless case, but cobesonization. This is a well known technique in two-
finement in the massive quark case, realizing the expectetimensional space-time [8] which has been well illustrated
picture. in getting the Schwinger terms in the current algebra in

For QCD in two dimensions Gros al. [2] were the  fermionic field theories, and in order to study the problem
first to discuss the subject. If dynamical fermions and tesbf screening and confinement in QE[L] as well as in
charges are in different representations, they find screenin@QCD, [4]. This is possible because one is led to effective
or confinement in some particular cases depending oactions which contain quantum effects already at the classi-
whether the fermion is massless or massive. A similacal level.
conclusion in an identical setting has been arrived at for the The familiar ideas of two-dimensional bosonization
massless case in [3]. If, on the other hand, all fermions arbave been recently extended to higher dimensions and, in
in the fundamental representation, then screening prevaifgarticular, a bosonized form for massive QERas been
independently of the quark mass [4]. developed [9]. We use this formulation to investigate the

General inquiries in two-dimensional gauge theoriepphenomenon of screening and confinement in this theory
have been performed recently by several authors [5], corby explicitly computing the quark-antiquark potential.
cerning the# vacuum structure, screening, confinement,The result shows that contrary to the classical expectation,
and chiral condensates. In three dimensions related quethiere is screening for large quark mass. However, the
tions were studied in [6]. classical result is reproduced for a small separation of the

It is thus important and instructive to verify how far quarks.
such issues are just low dimensional unphysical features, The partition function of three-dimensional massive
or part of the theoretical structure of gauge theoriesQED in the covariant gauge, in the presence of an external
Usually, the probe of confinement comes from the Wilsprsource/#, is given by

Z = fd[e//, @,AM]B(GMA“)GX%I'[ Ex[Pid — m — el — %Ffw + AMJ“]>, 1)

whereF,,, is the field tenso¥,, = d,A, — 9,A,.
The bosonized version of the above defined action in the large mass limit is given by the expression [9]

e? 1

. e’ ,
Z= [ dAﬂé(aﬂA“)exp{z f d%[—g—w €up ALY AP + <247Tm = Z)Ffw + A"+ }} )

where terms up to order/m have been retained in the computation of the effective action as a power series in the
inverse quark mass. This result is just the partition function of the Maxwell-Chern-Simons [10] theory in the covariant
gauge.

We now compute the potential as being the difference between the Hamiltonian with and without a pair of static
external charges separated by a distalhcso that
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V(L) =H, — Hy= —(L, — Lo) = —q] d*xA, 8"[8(x" + L/2)8(x?) — 8(x' — L/2)6(x%)]

= —g[Ag(x' = —L/2,x*> = 0) — Ao(x' = L/2,x* = 0)], (3)

where we have integrated over the two space components in order to find the potential, and considered the source as
corresponding to two fixed charges of magnitydecated at the points defined by the respective delta functions. Note
thatZ,(L,) denote the Lagrangians in the presence (absence) of the charges.

We now consider the equations of motion associated with the Lagrangian defined in (2). The field equation in the
covariant gauge reads

62 , 2
_Ef;wpa AP + <1 — 67Tm>DA'u +J,=0. 4)
Defining the curl ofA,, as
A, = —GMVﬁBVA’B (5)
the equation of motion can be expressed as
1 e?/4mr
O+ milA, = — ygdPJ — ————— ] 6
[ mal Ay 1 — e%/6mrm Curp {1 — e2/6mm}? ™ * ©)
where
e*/4m
Ma =
A1 - e2/6mm}

In the absence of sources it reproduces the familiar massive mode of Maxwell-Chern-Simons theory [10]. From (3) it
is seen that an expression & is required to calculate the potential. This is given in terms of the curl (5) by

Ay = —d14,. ()

The time dependent solution fol, corresponding to the sources describing static quarks can be obtained from (6).
Using this result from (7) finally yields

1
== - 2 -
Ap(x) fd YA = y,ma) 1= /6mm Jo(y)
_ q 1, Lo > < 1 _ L o ﬂ
= - —+ — —
1= /6mm [A(x > , X7 my Al x > ,xTomy ) |, (8)

where A(x;my) is the Euclidean Feynman propagatbr — _qr%fn Ko(myL) (11)
in two dimensions, since we are dealing with the time T '

independent Green’s function in (6). It is given by the
modified Bessel function,

AGM) = 5o KT+ G (9)

The above solution (8) is defined up to ah dependent

Constant, which will be overlooked in what fO”OWS, since where we arb“ranly choose the massive parameter_ The

it will not affect our results. _ classical result in the ultraviolet regime corresponds to

The potential |s2now found from (3) and (8), reading 5 renormalization of the strength, but in the infrared, a

_ q . _ . logarithmic growth is expected, which would signalize

Vi =2 1 — e2/6mm [4(0,0:ma) = A(L, 0:ma)]. confinement of the external quarks. However, as in the

(10) case of two-dimensional QCD the quantum result (11)

indicates screening, due to the Chern-Simons term in

At this point we disregard the constant term, as discusseghe action, which indicates a mass for the gauge field.
before, arriving at the main result of this work, Interestingly, in the limitL — 0 (i.e., when the quarks

2 are close), the leading term in the expression (11) for

_ 1 q
Vi) = Tl — er/6mm Ko(maL) heavy quarks reduces to the classical result (12). In the
239

The behavior of this potential energy should be compared
with the classical expectation, that is

2
Vclass(L) = q— In a(l(mAL) B (12)
v
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here were based on bosonization in the large mass limit
using the quadratic approximation. It is, of course,
possible to extend the bosonization scheme to arbitrary
mass [11] or to go beyond the quadratic approximation.
It would then be interesting to see whether the screening
phase persists or is modified under these circumstances.
As a concluding remark, we mention that screening
effects in QEDR have not been investigated either using
bosonization or any other method.
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two-dimensional case, this is also true, e.g., the classical
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