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Conical Surfaces and Crescent Singularities in Crumpled Sheets
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We analyze the geometry and elasticity of the crescentlike singularity on a crumpled elastic sheet.
We give a physical realization of this in terms of a free-boundary contact problem. An analytical
solution is given for the universal shape of a developable cone that characterizes the singularity far
from the tip, and some of its predictions are qualitatively verified experimentally. We also give a
scaling relation for the core size, defined as the region close to the tip of the cone where the sheet is not
developable. [S0031-9007(98)05465-9]

PACS numbers: 68.60.Bs, 03.40.Dz, 46.30.Cn

As children, we are taught that to make a cone out otylinder. The excess material due to this motion is tucked
a piece of paper we should start with a circular sheetin as a fold, and the sheetis then only in partial contact with
cut out a sector along two distinct radii, and then gluethe edge of the cylinder. This construction leads to a con-
these radii by bending the sheet out of the plane. Thécal surface with reflection symmetry that is developable
curvature of the axisymmetric cone so obtained is finiteeverywhere except at the tip. The constraint of unstretcha-
everywhere except at the tip. Without cutting out thisbility is accommodated by the sheet as it chooses a solution
sector, it is impossible to make an axisymmetric conewith lower symmetry(Z2) than the perfect cone. A dif-
because the paper will either tear (when it is stretched tferent experimental realization of a developable cone may
preserve axisymmetry) or buckle (when it is compressede obtained by constraining the transparency to conform
for the same reason). This is a reflection of the fact thatto a conical container so that there is continuous contact in
for a thin elastic sheet, the energy required for stretchinghe radial direction. Later we will see that this geometry
is very large compared to that for bending [1]. However,affords the simplest physical interpretation of the problem.
in situations such as the buckling of cylinders [2] and the Mathematically, this may be posed as a free-boundary
crumpling of flat sheets [3], volume restrictions are socontact problem or a constrained variational inequality.
large that bending deformations alone cannot account fdn order to find the shape of this developable cone far
storage of energy. The energy then becomes localizeflom the tip, we have to minimize the bending energy
along a network of ridges [3], along which bending andof the sheet subject to the constraint associated with in-
stretching energies become comparable. The ridges meextensibility and the inequality constraint associated with
at peaks, which are locally conical, but not axisymmetric.contact. To describe the sheet we will use cylindrical

In this Letter we will consider these nonaxisymmetric coordinates(p, ), —7 = 6 = 7 so that a vectolpp
peaks that correspond to pointlike singularities of elastic
surfaces. They are topologically important since they de-
termine the number of ridges and characterize their length:
and, therefore, the volume of the crumpled sheet. Since ¢
single peak has no scale except that of the thickness o
the sheet, it must have a universal shape away from the
tip. The shape is that of a developable elastic cone [4]
which is isometric to the plane almost everywhere so that
it can be made by bending a flat sheet without stretching
it anywhere except at the tip. However, this alone does
not uniquely specify the cone, since it is possible to make
a nonaxisymmetric cone in many ways. In order to make
this shape unique, we have to specify some boundary con
ditions that respect the constraint of unstretchability. This
is achieved via a simple experimental realization of a de-
velopable cone, shown in Fig. 1. A circular transparency
is placed on the edge of a circular glass cylinder and pushet
into it a>.<ia'lly by a force acting along the_ axis of the c_ylin- FIG. 1. An experimental realization of a developable cone
der. Thisisthe SlmplestVOlume'reStrICtlng deformation ofig accomplished by forcing a circular transparency into a
a sheet and causes the center of the sheet to move into tbgindrical glass container.
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is deformed intor = pp + u,(p,0)p + ug(p,0)8 +  extremizing (5) gives
£(p,0)z, whereu,, uy, and ¢ represent the radial, azi- > a2
muthal, and axial displacements, respectively. Far away <W + a2> <d_¢92 + 1>¢f = b, (6)
from the tipp = 0, we look for a universal conical solu-
tion & = p(0). The condition of inextensibility requires Wherea? = 1 + A. As we are looking for a symmetric
that the stretching straing, ,, ¥4, vs¢, COrresponding to  solutiong () = ¢(—0), i.e., 4y = €, 10| = 6, andyr >
moderate deflections [5], vanish in this region, so that €, |6 < 61, where 26, is the angle over which the

] developable cone is not in contact with the edge of the
= d,u, + _(3p§)2 =0, cylinder. Sinceb () vanishes when|d| < 6, (6) is

2 homogeneous in this region. Then a solution satisfying
1 (dou u 1 the continuity conditions/(+6;) = € and¢/(+6,) = 0
oo = (2 4t~ )+ Laene =0, B y Y(=01) W'(=00)

Yop

_ dguy u, 1 , W(9) — < sin@; cosaf — aSinaf; cosh > 7
Yoo = p + p + 2p2 (996)” = 0. (1) 0) = e sin@; cosal; — asinah, cosd; /" (7)
Solving (1) for the radial and the azimuthal displacement! us the complete solution to (6) is given by
yields p(6) = ev(l6] — 61) + V(O)w(6 — l6]), (8)
u,(p,0) = _£¢2(0) where v(x) is the usual Heaviside function and the
PR 2 ’ parameters, 6; remain to be found. Substituting (8) into
" o fgda ) 2(9) ) (3) yields
uy(p,0) = 2 Ly« O] @) 01D + asinf@;sinad, — 7D
Here (.)) = d¢(.). Then periodicity in the azimuthal 1-d*> . sina#; cosaf,
direction yields the following condition og: =D sir’ 91[91 + 7}’ )
1 7 2 on . where D = sinf; cosaf; — aSinaf; cosd;. Substitut-
2 ]7, 46[y7(6) — ¥7(6)] = 0, () ing (8) into (6) yields
which is equivalent to the condition that the Gauss cur- ) RR\ )
vature of the developable cone integrated along a contour b(0) = ea”v(10] — 61) — 403 (0)lo, 6101 — 61)
surrounding the tip vanishes [4]. The inequality constraint e
corresponding to the requirement that the conical sheet lie - — (0)lg,8'(16] — 61), (10)
inside the cylinder as shown in Fig. 1 is given by do
£ where §(x) is the Diracé function [7] andé'(x) is the
= =y =€, (4) derivative of the Diracd function. For the equilibrium
p solution (8) to be a relative minimui(8) > 0, |0] = 6,
wheres/2 — tan"! € is the angle of the convex envelope [6]. Sinceéd(x) is a positive even function andl(x) is an

cone. Thust = py/(6) may be determined by minimiz- odd function, this requires that> > 0, %fl(,l < 0, and

ing the elastic bending energy of the sheet subject to (3rom (10) it follows that
and (4). To facilitate this, we define the augmented en-

2
ergy functional % (0)]xs, = 0. (11)
L[y]= 1 fﬂ do[y"(0) + ¢ (O The _Iast condition is tantamount to _requirin_g that_ the
2 J-n solution has the least possible singularity and is physically

A [T s o equivalent to having no point torques (force dipoles) at
+ f, doly(0) — ¢"(0)] = +¢,. Substituting (7) into (11) and simultaneously
- i solving the resulting equation with (9) yields
+ [, dob(9)e — ¢(0)], (5) 20, =~ 242rad= 140°, a=38. (12)

where the first term is proportional to the bending energyThen A =1 + 4?> = 13.5 and the jump %l@l =~

the second term enforces (3) via the constant Lagrange38.7¢ so thatb(8) > 0, |6| = 6, and the solution
multiplier A, and the third term enforces (4) via the is a relative minimum. In Fig. 2, we plof = p(6)
Lagrange multiplierb(#). Since (4) is an inequality for e = 0.1 showing the shape of the developable cone
constraint, b(#) > 0 when ¢ = € and vanishes when in the experimental configuration of Fig. 1. In Fig. 3,
¥ > € [6]. As we will see, A is proportional to the we depict the generators of the developable cone; these
hoop stress whileb(@) is proportional to the axial correspond to the lineg” + ¢ = const. We observe
force that maintains the developable cone in equilibriumthat the curvaturdy” + )/p is constant in the cone
The Euler-Lagrange equation fap that results from (|#| = 6,) and changes sign in the invagination in order
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FIG. 2. The developable cone corresponding to Eqg. (8) for
e =0.1.

to accommodate the additional circumferential length,
while the azimuthal derivative of the curvature is discon-
tinuous alon@ = *46;, as seen from (10).

To better interpret our solution, we consider the general
equation of equilibrium for the transverse displacemént

of a bent plate [5] FIG. 3. The generators of the developable cone shown in
BV*¢ = howpdadgé + P. (13)  Fig. 2; the solid lines correspond t¢” + ¢ > 0 and the
;3 o . o dotted lines correspond " + & < 0. Here24, is the angle
Here B = ER°/12(1 — v*) is the bending rigidity,E  petween the lines of maximum curvature that results in the
is Young's modulus,v is Poisson’s ratio,h is the crescentlike scar an@d, is the angle over which the cone is

thicknessg, s are the in-plane stresses, ahds the axial ~ not in contact with the cylinder.
pressure over the plate. Substitutifg= py into (13)
and comparing (6) and (13) term by term, we find that  {he crescent is found to 9, = 27 /a rad ~ 94°, which

_ BA __ Bb(6) compares well with the experimental value of 1®aund

70T T 2 T Thpd 14) " from Fig. 4.

Thenb(9) > 0, |6 = 0, corresponds to an axial external AS € is grad_ually increa_sed, the_z_developable cone fir_st
force necessary to maintain the developable cone iFLecomes multivalued. This transition can _b_e predicted in
equilibrium. This force vanishes whes(6) = e and the context of our theor_y by finding the critical _value of
is discontinuous a# = +0, sinceb(0), given in (10), € ~ 0.32 when the projected angle corresponding to the

is discontinuous along these two radial lines. We als onge coordln'ates gives rise to multivalugd As e
observe that) is proportional to the hoop stress in IS increased St'.” further t@. ~ 0.67, the cone touches
the conical sheet. Thus the simplest interpretation oftse” along a I_|ne (F'.g' 5). Thesg: values efdo not
the nonaxisymmetric solution (8) corresponds to a thirf9r¢€ quanUtaUveI_y W'th the experimental vaIue$9f~
elastic sheet in partial contact with an axisymmetric coné)'s’ €c ™~ 0.8. This IS becau_se some quadratic terms
of angle 7/2 — tan 'e. Experimentally, the angular in the in-plane stretching which were neglected in the
opening over which the cone is not in contact with the

cylinder is found to be about 13@nd compares well with
the theoretical predictioBd; ~ 140°. The discontinuity
in b(#) alongd = =6, implies that the out-of-plane shear
stressQy = By + ¢')/p? [8] is also discontinuous
along these two rays. This singularity is amplified by
the factor1/p? in Q4 close to the tip, and ameliorated
far from it. This discontinuity occurs because we have
neglected out-of-plane shear deformations in our strain
measures (1). In thin plate theory, this is known as the
Kirchhoff-Love approximation [8] and is violated in a
boundary layer of widthO(h) [9] over which out-of-
plane shear deformations become important. In Fig. 3,
we also see that there are two rays along which the
curvature is a maximum, with the magnitude increasing
as we approach the tip. When the bending stresses alon
these raysB(y" + ¢)/p exceeds the yield stress, the FIG. 4. A closeup view of the scars, one of which is at the

sheet deforms plastically leading to the crescent-shapeg of the cone in Fig. 1, viewed using reflected light. The
scar shown in Fig. 4. From (7), the angular opening ofwhitening is due to plastic deformation.
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the long scar itself, and the second is a very small
neighborhood of the tip. In this second region of radius
O(h), which we call the isotropic core, the assumption of
two dimensionality is invalid and one must resort to a full
three-dimensional treatment. Radial and circumferential
stretching in the first region corresponding to the long
crescent are of the same order. Here the deformation
of conical wedge into a parabolic profile gives a strain
of the order ofl/ cose — 1 ~ €2. Then the energy due
to stretching is given by/, ~ Ehe*r?. Minimizing the
total energyU, + U, yields the scaling relation. ~
h/e for the core size. A comparison of these results with
experiments [12] will be treated in a future publication.
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FIG. 5. The shape of the cone fer= 0.67 corresponding to
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