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Conical Surfaces and Crescent Singularities in Crumpled Sheets
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We analyze the geometry and elasticity of the crescentlike singularity on a crumpled elastic sheet.
We give a physical realization of this in terms of a free-boundary contact problem. An analytical
solution is given for the universal shape of a developable cone that characterizes the singularity far
from the tip, and some of its predictions are qualitatively verified experimentally. We also give a
scaling relation for the core size, defined as the region close to the tip of the cone where the sheet is not
developable. [S0031-9007(98)05465-9]
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As children, we are taught that to make a cone out
a piece of paper we should start with a circular shee
cut out a sector along two distinct radii, and then glu
these radii by bending the sheet out of the plane. T
curvature of the axisymmetric cone so obtained is fini
everywhere except at the tip. Without cutting out thi
sector, it is impossible to make an axisymmetric con
because the paper will either tear (when it is stretched
preserve axisymmetry) or buckle (when it is compress
for the same reason). This is a reflection of the fact tha
for a thin elastic sheet, the energy required for stretchi
is very large compared to that for bending [1]. Howeve
in situations such as the buckling of cylinders [2] and th
crumpling of flat sheets [3], volume restrictions are s
large that bending deformations alone cannot account
storage of energy. The energy then becomes localiz
along a network of ridges [3], along which bending an
stretching energies become comparable. The ridges m
at peaks, which are locally conical, but not axisymmetric

In this Letter we will consider these nonaxisymmetri
peaks that correspond to pointlike singularities of elast
surfaces. They are topologically important since they d
termine the number of ridges and characterize their leng
and, therefore, the volume of the crumpled sheet. Sinc
single peak has no scale except that of the thickness
the sheet, it must have a universal shape away from
tip. The shape is that of a developable elastic cone [
which is isometric to the plane almost everywhere so th
it can be made by bending a flat sheet without stretchi
it anywhere except at the tip. However, this alone do
not uniquely specify the cone, since it is possible to ma
a nonaxisymmetric cone in many ways. In order to mak
this shape unique, we have to specify some boundary c
ditions that respect the constraint of unstretchability. Th
is achieved via a simple experimental realization of a d
velopable cone, shown in Fig. 1. A circular transparenc
is placed on the edge of a circular glass cylinder and push
into it axially by a force acting along the axis of the cylin
der. This is the simplest volume-restricting deformation o
a sheet and causes the center of the sheet to move into
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cylinder. The excess material due to this motion is tucke
in as a fold, and the sheet is then only in partial contact wi
the edge of the cylinder. This construction leads to a co
ical surface with reflection symmetry that is developab
everywhere except at the tip. The constraint of unstretch
bility is accommodated by the sheet as it chooses a solut
with lower symmetrysZ2d than the perfect cone. A dif-
ferent experimental realization of a developable cone m
be obtained by constraining the transparency to confor
to a conical container so that there is continuous contact
the radial direction. Later we will see that this geometr
affords the simplest physical interpretation of the problem

Mathematically, this may be posed as a free-bounda
contact problem or a constrained variational inequalit
In order to find the shape of this developable cone f
from the tip, we have to minimize the bending energ
of the sheet subject to the constraint associated with
extensibility and the inequality constraint associated wi
contact. To describe the sheet we will use cylindrica
coordinatess r, ud, 2p # u # p so that a vectorrr̂

FIG. 1. An experimental realization of a developable con
is accomplished by forcing a circular transparency into
cylindrical glass container.
© 1998 The American Physical Society
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is deformed into$r ­ rr̂ 1 urs r, udr̂ 1 uus r, udû 1

js r, udẑ, whereur, uu , and j represent the radial, azi-
muthal, and axial displacements, respectively. Far aw
from the tipr ­ 0, we look for a universal conical solu-
tion j ­ rcsud. The condition of inextensibility requires
that the stretching strainsgrr , gru, guu, corresponding to
moderate deflections [5], vanish in this region, so that

grr ­ ≠rur 1
1
2

s≠rjd2 ­ 0 ,

gru ­
1
2

µ
≠uur

r
1 ≠ruu 2

uu

r

∂
1

1
2r

≠rj≠uj ­ 0 ,

guu ­
≠uuu

r
1

ur

r
1

1
2r2

s≠ujd2 ­ 0 . (1)

Solving (1) for the radial and the azimuthal displaceme
yields

urs r, ud ­ 2
r

2
c2sud ,

uus r, ud ­
r

2

Z u

dufc2sud 2 c 02sudg . (2)

Here s.d0 ­ ≠us.d. Then periodicity in the azimuthal
direction yields the following condition onc :

1
2

Z p

2p
dufc2sud 2 c 02sudg ­ 0 , (3)

which is equivalent to the condition that the Gauss cu
vature of the developable cone integrated along a cont
surrounding the tip vanishes [4]. The inequality constrai
corresponding to the requirement that the conical sheet
inside the cylinder as shown in Fig. 1 is given by

j

r
­ c $ e , (4)

wherepy2 2 tan21 e is the angle of the convex envelope
cone. Thusj ­ rcsud may be determined by minimiz-
ing the elastic bending energy of the sheet subject to
and (4). To facilitate this, we define the augmented e
ergy functional

L fcg ­
1
2

Z p

2p
dufc 00sud 1 csudg2

1
l

2

Z p

2p
dufc2sud 2 c 02sudg

1
Z p

2p

dubsudfe 2 csudg , (5)

where the first term is proportional to the bending energ
the second term enforces (3) via the constant Lagran
multiplier l, and the third term enforces (4) via the
Lagrange multiplierbsud. Since (4) is an inequality
constraint, bsud . 0 when c ­ e and vanishes when
c . e [6]. As we will see, l is proportional to the
hoop stress whilebsud is proportional to the axial
force that maintains the developable cone in equilibrium
The Euler-Lagrange equation forc that results from
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extremizing (5) givesµ
d2

du2 1 a2

∂ µ
d2

du2 1 1

∂
c ­ b , (6)

wherea2 ­ 1 1 l. As we are looking for a symmetric
solution csud ­ cs2ud, i.e., c ­ e, juj $ u1 and c .

e, juj , u1, where 2u1 is the angle over which the
developable cone is not in contact with the edge of th
cylinder. Sincebsud vanishes whenjuj , u1, (6) is
homogeneous in this region. Then a solution satisfyin
the continuity conditionscs6u1d ­ e and c 0s6u1d ­ 0
is

Csud ­ e

µ
sinu1 cosau 2 a sinau1 cosu

sinu1 cosau1 2 a sinau1 cosu1

∂
. (7)

Thus the complete solution to (6) is given by

csud ­ eysjuj 2 u1d 1 Csudysu1 2 jujd , (8)

where ysxd is the usual Heaviside function and the
parametersa, u1 remain to be found. Substituting (8) into
(3) yields

u1D 1 a sinu1 sinau1 2 pD

­
s1 2 a2d

2D
sin2 u1

∑
u1 1

sinau1 cosau1

a

∏
, (9)

where D ­ sinu1 cosau1 2 a sinau1 cosu1. Substitut-
ing (8) into (6) yields

bsud ­ ea2ysjuj 2 u1d 2
d3C

du3 sudju1 dsjuj 2 u1d

2
d2C

du2 sudju1 d
0sjuj 2 u1d , (10)

where dsxd is the Dirac-d function [7] andd0sxd is the
derivative of the Dirac-d function. For the equilibrium
solution (8) to be a relative minimumbsud . 0, juj $ u1
[6]. Sincedsxd is a positive even function andd0sxd is an
odd function, this requires thata2 . 0, d3C

du3 ju1 , 0, and
from (10) it follows that

d2C

du2 sudj6u1 ­ 0 . (11)

The last condition is tantamount to requiring that th
solution has the least possible singularity and is physica
equivalent to having no point torques (force dipoles) a
u ­ 6u1. Substituting (7) into (11) and simultaneously
solving the resulting equation with (9) yields

2u1 ø 2.42 rad ø 140±, a ø 3.8 . (12)

Then l ­ 1 1 a2 ø 13.5 and the jump d3C

du3 ju1 ø
238.7e so that bsud . 0, juj $ u1 and the solution
is a relative minimum. In Fig. 2, we plotj ­ rcsud
for e ­ 0.1 showing the shape of the developable con
in the experimental configuration of Fig. 1. In Fig. 3
we depict the generators of the developable cone; the
correspond to the linesc 00 1 c ­ const. We observe
that the curvaturesc 00 1 cdyr is constant in the cone
sjuj $ u1d and changes sign in the invagination in orde
2359
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FIG. 2. The developable cone corresponding to Eq. (8) fo
e ­ 0.1.

to accommodate the additional circumferential length
while the azimuthal derivative of the curvature is discon
tinuous alongu ­ 6u1, as seen from (10).

To better interpret our solution, we consider the gener
equation of equilibrium for the transverse displacementj

of a bent plate [5]

B=4j ­ hsab≠a≠bj 1 P . (13)

Here B ­ Eh3y12s1 2 n2d is the bending rigidity,E
is Young’s modulus,n is Poisson’s ratio,h is the
thickness,sab are the in-plane stresses, andP is the axial
pressure over the plate. Substitutingj ­ rc into (13)
and comparing (6) and (13) term by term, we find that

suu ­ 2
Bl

hr2 , P ­
Bbsud
hr3 . (14)

Thenbsud . 0, juj $ u1 corresponds to an axial externa
force necessary to maintain the developable cone
equilibrium. This force vanishes whencsud $ e and
is discontinuous atu ­ 6u1 since bsud, given in (10),
is discontinuous along these two radial lines. We als
observe thatl is proportional to the hoop stress in
the conical sheet. Thus the simplest interpretation
the nonaxisymmetric solution (8) corresponds to a th
elastic sheet in partial contact with an axisymmetric con
of angle py2 2 tan21 e. Experimentally, the angular
opening over which the cone is not in contact with th
cylinder is found to be about 130± and compares well with
the theoretical prediction2u1 , 140±. The discontinuity
in bsud alongu ­ 6u1 implies that the out-of-plane shear
stressQu ­ Bsc 000 1 c 0dyr2 [8] is also discontinuous
along these two rays. This singularity is amplified b
the factor1yr2 in Qu close to the tip, and ameliorated
far from it. This discontinuity occurs because we hav
neglected out-of-plane shear deformations in our stra
measures (1). In thin plate theory, this is known as th
Kirchhoff-Love approximation [8] and is violated in a
boundary layer of widthOshd [9] over which out-of-
plane shear deformations become important. In Fig.
we also see that there are two rays along which th
curvature is a maximum, with the magnitude increasin
as we approach the tip. When the bending stresses alo
these raysBsc 00 1 cdyr exceeds the yield stress, the
sheet deforms plastically leading to the crescent-shap
scar shown in Fig. 4. From (7), the angular opening o
2360
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FIG. 3. The generators of the developable cone shown
Fig. 2; the solid lines correspond toc 00 1 c . 0 and the
dotted lines correspond toc 00 1 c , 0. Here2u0 is the angle
between the lines of maximum curvature that results in t
crescentlike scar and2u1 is the angle over which the cone is
not in contact with the cylinder.

the crescent is found to be2u0 ­ 2pya rad ø 94±, which
compares well with the experimental value of 101± found
from Fig. 4.

As e is gradually increased, the developable cone fi
becomes multivalued. This transition can be predicted
the context of our theory by finding the critical value o
em , 0.32 when the projected angle corresponding to t
Monge coordinates gives rise to multivaluedj. As e

is increased still further toec , 0.67, the cone touches
itself along a line (Fig. 5). These values ofe do not
agree quantitatively with the experimental values ofem ,
0.5, ec , 0.8. This is because some quadratic term
in the in-plane stretching which were neglected in th

FIG. 4. A closeup view of the scars, one of which is at th
tip of the cone in Fig. 1, viewed using reflected light. Th
whitening is due to plastic deformation.
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FIG. 5. The shape of the cone fore ø 0.67 corresponding to
the case when the cone touches itself.

weakly nonlinear strain measures (1) become importa
for moderatee. Their inclusion precludes any analytica
insight and yields only quantitative corrections to th
above theory.

The solution shown in Fig. 2 may be interpreted a
the rotational analog of a macroscopic dislocation
the interface between a thin elastic sheet and a rig
substrate [10]. Here the relative difference between th
area of the convex envelope of the sheet and the a
of the sheet characterizes the strength of the dislocatio
The analogy may be pushed further; the energy of th
developable cone is composed of two parts: a bendi
contribution in the outer region and a stretching an
bending contribution near the tip, which is analogous t
the core of a dislocation. Since the curvature of the con
is k , ´yr, the bending energy isUb ,

RR
rc

Bk2rdr ­

e2B ln R
rc

, whererc is a cutoff radius. This logarithmic
divergence and the associated cutoff radius are famil
concepts in dislocation mechanics [11], whererc is the
size of the dislocation core.

We now estimate the dimensions of the core, define
as the region over which the inextensional solution brea
down. As seen in Fig. 4, the core is a crescentlike obje
whose length far exceeds its width. In fact, there a
actually two corelike regions where stretching, plasticity
and other nonlinear effects are important; the first
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the long scar itself, and the second is a very sm
neighborhood of the tip. In this second region of radiu
Oshd, which we call the isotropic core, the assumption o
two dimensionality is invalid and one must resort to a fu
three-dimensional treatment. Radial and circumferent
stretching in the first region corresponding to the lon
crescent are of the same order. Here the deformat
of conical wedge into a parabolic profile gives a stra
of the order of1y cose 2 1 , e2. Then the energy due
to stretching is given byUs , Ehe4r2

c . Minimizing the
total energyUb 1 Us yields the scaling relationrc ,
hye for the core size. A comparison of these results wi
experiments [12] will be treated in a future publication.
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