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Experimental Study of Developable Cones
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In this paper we investigate developable congsgnes) topology. From profilometer measurements,
we found that for a sample of a finite thickness the singularity is never pointlike but has a form of a
crescent. Measurements of the sheet local curvature revealed thdtdbee tip is rejected by a
distance which characterizes the singularity size. High deformations ofttene lead to a plastic
regime equivalent to a decrease in the singularity size characterized from curvature and profile analysis.
[S0031-9007(98)05464-7]
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Strong deformations of membranes and thin shellplate. We show that d cone obtained theoretically does
span a wide range of scales. On the microscopic scal@ot describe completely the crescent shape due to stretch-
guenched disorder in partially polymerized membranesng and observed in all crushed sheets. However, for large
and thermal fluctuations induce, without strain, a crum-deformations, the experimentaicone approaches the the-
pling transition at the melting point, below which the oretical one for zero thickness.
membrane behaves like a 2D solid [1-3]. At the crum- The d cone is obtained on a thin circular plate by
pling transition, partially polymerized vesicles look like pushing a round tip (0.5 mm diameter) centered at the
dried prunes [1]. Some inorganic compounds such aplate principal axis. In this study we used circular plates
nanotubes were observed in a phase that look similamade from both 0.05- and 0.1-mm-thick sheets (copper,
to a crumpled sheet [4]. In much larger scales, inbrass, steel, and transparencies); the results discussed are
(2 + 1)-dimensional general relativity, defect-induced mainly from the 0.1-mm-thick sheets. In order to allow
deformations of a two-dimensional sheet is characterizethe d cone to form, when pushing the tip, we keep the
by a presence of conical singularities [5]. As Einstein’ssheet border free to move in a circular rigid frame whose
equations are similar to the Fopple-von Karman (FvK)radius is 5% smaller than the sample radRys (Fig. 1).
equations, they could leave some room for the occurrencéhe opening angle of the d cone (defined as the angle
of singularities, like the tip of a developable comecpne), between the horizontal and the cone generatrix) is varied
which are surfaces with a shape of a cone but obtaineldly pushing the tip perpendicularly to the circular plate;
from a plane isometrically, introduced in [6]. In inter- the displacemend is measured by a0~2 mm precision
mediate scales, the stability of shells and thin elastianicrometer. A miniature load cell is mounted under the
plates is of great importance in structure engineering angushing tip to allow force measurements. The pushing
packaging material development [7]. Singularities thatip is mounted on a rigid 20-cm-long and 1-cm-thick
appear on a crumpled sheet, as a result of stress focusirgeel pen-shaped cylinder. This bar is rigid enough to
have been recently the subject of several investigationBe inflexible when pushing the plate. A profilometric
[7-10]. For instance, in the case of a crumpled sheetjp, mounted on the active part of a position sensor
d cones were found to be the solution to FvK equationgransducer, enables us to measure the sheet surface height
for large deflections [6]. A scaling analysis of the FvK with a precision of1072 mm. Two motors allow the
equations showed that strain and deformation energy atg@ to scan the whole/-cone surface; first by moving
located within the ridge region that separates conicathe tip on a miniature automatic displacement guide
singularities [9]. In practice, it was shown that singularity mounted following the radial direction and second by
energy plays an important role in selecting characteristicotating the frame around its axis. Both the radial and
lengths in a crumpled sheet: These lengths were showangular directions are marked in Fig. 1 @9 and (6),
to be the distance separating twa@ones [10] respectively. The measurement precision of theone

In this Letter we present a systematic experimentabpening angle is approximatelyx 10~* rad. The whole
study of an isolated-cone topology and correspond it to system is run by a PC computer equipped with analog-
a model experiment for situations where more than a sinto-digital converter. In order to avoid stretching when
gularity appears as in real crumpled paper. We investigate deformationd is imposed, a part of the plate loses
the variation of the local curvature along thiecone gen- contact with the frame, giving rise to a concave region
eratrices in the concave and convex regions. Two regime$ig. 2), whose amplitude increases when increasing
exist depending on the deformation experienced by thand whose location is randomly distributed on the plate.
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amplitude is obtained by measuring the distance which
separates the lowest point of the shéefpart and the
point where the plate loses contact with the frame. In
Fig. 4, we plot the maximal vertical deflection anglg..x

of the (—)part versusp, for a given distance. The linear

fit in Fig. 4 allows us to find the relation betweefy,.

and ¢y. In the following, we will show that the selection
of both ¢(#) and 6, can be found by minimizing the
d-cone bending energy. The general equation of a cone
centered in O, in cylindrical coordinates, is written as
z = rf(#). For convenience, we rewrite the parametric

equationz = rtang(#) and r = Rcos¢(6), where R
“Angular motion (o) is the distance to the tip and is the polar angle. A
L 4 cone corresponds to a given functigi(6), where ¢ is
< Micrometer defined as above. For a given deformatin= d/R; =
tang, whered is the amount of the micrometer vertical
displacement. If we writeb(0) = ¢, for |6] > 6, and

d(0) = ¢y + e<1 + c057r0%> for |0] < 6y, (1)

the function ¢»(#) defines then a cone that remains in
contact with the circular frame fd¢| > 6,. Thed cone
is detached from the plate over an angle equaldg,

Motor

FIG. 1. The setup where thé cone is performed and where
the profilometric measurements are achieved.

which corresponds to the deflection. We assume that

If the pushing tip is deviated by a distance of the ordeld IS smqll and thate anq ¢o are of the same order
of few millimeters from the center, the characteristics ofof magnitude. To the first order, the tstal curvature
the sheet deflection are not changed, but its nucleatioﬂf the surche then reduces K.)z (¢ .+ ¢")/R. The
occurs in the closest region from the pushing tip to theCorreSpondIng energy, (per unit ofR) is

frame border. In some cases, two or falicones appear - K [” (¢ + ¢")7 Rmda

one in front of the other. Pushing the plate further, one " 2 J_x R?

of the deflection amplitudes increase, while the others K 5

disappear. Figure 2 is a top view ofdacone obtained ~5R [27”750 + 460 poe

by this procedure. In the following, we will call the 2w

d-cone convex part thét+)part and the concave part the + <300 - — + —3>62:|. 2
(—)part. The angled, made by thg—)part in the polar 0o 6o

direction and over which thé cone loses contact with the For an unstretchable plate, the lendtlof the correspond-
frame was found to be well-selected and independent oimg line atR = const must be equal tbrR so that

the tip displacement. The bright line shown in the figure ™

defines a smaller angle and does not correspond to tH&™R = L = ff Rycos ¢ + ¢7d6

angle in question. In Fig. 3, we present a set of profiles 7 30 5
of ad cone for two different; each profile is obtained at ~ [277 — wdd — 200boe — <_0 — 7T_>62}R_

varying distances from the singularity. The deflection 2 200
3
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FIG. 3. The profile of the sheet in polar coordinates vs the

‘ ' angled. (a)d = 1.41 mm; (b)d = 5.48 mm. The axes are
FIG. 2. A d cone obtained on a copper sheet. Notice thein mm. The different curves correspond to different distances
bright line separating the concave and convex parts. to thed-cone tip.
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FIG. 4. The angle made by the-) part and the horizontal vs r(mm)

the angle made by thet) part and the horizontak, = 37.5, .
and the distance to the singularity is 3 mm. FIG. 5. The(—) part local curvature vs the distance to the

singularity, and for different smald. The lines are best fit to
_ ' _ the function of the forml/(r + r;). The curves range from
Equation (2) givese as a function of¢y and 6y.  small to large deformation.

Replacinge by its value in Eqg. (2) and minimizing:,

with respect tofy, one finds26, ~ 2.09 rad ~ 120° and  d, plate curvature is distributed over the whole sample
€ ~ 1.38¢¢. This last relation confirms our assumption and the singularity size is equal to the sample radius.
that e and ¢, are of the same order of magnitude. A However, as we increas#, the deformation is focused
solution to a similar problem giveX), ~ 140° [11]. The and the singularity size decreases. The singularity size
theoretical value of the aperture anglé, is in good region can also be observed in Fig. 2; the sample avoids
agreement with the experiment (Fig. 2) and is valid forformation of pointlike singularity by making a linelike
smalld. The aperture angle between the points where theingularity which corresponds to the thinner part of the

plate loses contact with the frame is abdut0 = 5)°.  line separating thé+)part and thg—)part of the cone in
The theoretical maximal deflection anglgn.x = ¢#(0)  Fig. 2. This line that is hyperbolic shaped can be obtained
is proportional to¢, and equals(0) = (¢o + 2€) = by intersecting a plane with a cone at the tip micrometer

3.76¢0. This result is in good agreement also with and parallel to a generatrix. This cone is centered at a

the experimental data, since the best fit in Fig. 4 giveslistancex, from the micrometer tip along its generatrix

¢(0) = 3.73¢¢. From Fig. 3, we notice that for large along the(+)part. The thin line obtained by the plane

r the profile is smooth and is very close to the one ofcut corresponds then to the crescent shape observed in

a d cone obtained by a bending energy minimizationcrumpled papers. We have measured the curvature of

described previously. In contrast, within the singularitythe crescent shown in Fig.2 and found that it decreases

region the profile does not correspond to an idéabne  with 4 [12]. In Figs. 7(a) and 7(b), we plot the-)part

whose center is on the tip. Thé-cone tip shift can and the ridge local curvature vs respectively, and for

be quantified by measuring what we called ieone

anisotropy A defined as the ratid{(7) — (7w /2)]/ 18

{(7r), where £(0) is the height of the sheet measured

at the polar angled. From geometrical considerations

A = A(Ry,r,x), Wherex, is a distance by which the

d-cone tip has shifted and which origin will be explained

later. We measure experimentalty for differentr at a g
e

14

givend, we obtainx, [12]; x, decreases with an increase
in d. On the other hand, we measured thepart local

curvature for smalll vs r. In Fig. 5, we plot thg—)part

local curvature versus. The different curves correspond
to different smalld ranging from 1.2 to 2.4 mm. The
curve is best fitted by a function of the forin/(r + ry),

and is not of the forml/r as expected for an ideal
cone. In fact,r; can be interpreted as the shift of the 6
coordinates origin of the corfe-)part. In Fig. 6, we plot
both r; and x; versusd. We notice that as we increase d (mm)

d, both quantities decrease quickly. Infact,andr; are  FiG. 6. The shift distance, and the singularity displacement
indirect measurements of the singularity size. For smalk, as a function ofi. (e) correspond ta, (o) correspond ta.
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larged. The fit to the curvature is no longer of the form singularity region is spread over the sample, whereas,
1/r. Instead, it varies lik&ye~"/4), whered, is a cutoff ~ for large d, the curvature is focused and the singularity
distance. In the case of tlie-)part 7(a),d. does not vary size is reduced to a small region, characterized by the
with d. Whereas on the ridge 7(b),. decreases with crescent shape [12]. The decrease in the singularity size
d. In Fig. 7(a), the cutoff distance is constant becausevith deformation appears as analogous to the focusing of
the crescent due to the permanent scar appears on thl@pological defects under constraints [14]. The singularity
ridges only. The plastic deformation is felt on the borderhyperbolic shape is found by intersecting a plane with a
between thd—)part and thd+)part of thed cone where theoretical cone. This cone is centered at the distance
the folding occurs and the stress is maximum. In factx, from the pushing tip. The plastic transition is the
by looking at the ridge curvature, one can notice that appearance of a crescent shape on the sheet and the
reaches a value of about 5 mm at which a permanent scéwcusing of the ridge curvature [15]. Although crumpled
appears. This value corresponds also to the curvature aésicles have been observed [1], no systematic local study
which the yield limit of a 0.1-mm-thick copper sheet is of the surface of a crumpled vesicle has been performed
exceeded [10]. [16]. Profilometry using laser beam or magnetic beads on

The deviation of the curvature from/r behavior to the surface of a crumpled vesicle can complement freeze
an exponential is due to the fact that at laefj¢he yield fracture microscopy experiments usually used to probe
limit of the material is exceeded and stretching starts tovesicles in suspensions.
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