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Experimental Study of Developable Cones
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In this paper we investigate developable cones (d-cones) topology. From profilometer measurements,
we found that for a sample of a finite thickness the singularity is never pointlike but has a form of a
crescent. Measurements of the sheet local curvature revealed that thed-cone tip is rejected by a
distance which characterizes the singularity size. High deformations of thed-cone lead to a plastic
regime equivalent to a decrease in the singularity size characterized from curvature and profile analysis.
[S0031-9007(98)05464-7]
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Strong deformations of membranes and thin she
span a wide range of scales. On the microscopic sca
quenched disorder in partially polymerized membran
and thermal fluctuations induce, without strain, a crum
pling transition at the melting point, below which the
membrane behaves like a 2D solid [1–3]. At the crum
pling transition, partially polymerized vesicles look like
dried prunes [1]. Some inorganic compounds such
nanotubes were observed in a phase that look sim
to a crumpled sheet [4]. In much larger scales,
s2 1 1d-dimensional general relativity, defect-induce
deformations of a two-dimensional sheet is characteriz
by a presence of conical singularities [5]. As Einstein
equations are similar to the Föpple-von Kármán (FvK
equations, they could leave some room for the occurren
of singularities, like the tip of a developable cone (d cone),
which are surfaces with a shape of a cone but obtain
from a plane isometrically, introduced in [6]. In inter
mediate scales, the stability of shells and thin elas
plates is of great importance in structure engineering a
packaging material development [7]. Singularities th
appear on a crumpled sheet, as a result of stress focus
have been recently the subject of several investigatio
[7–10]. For instance, in the case of a crumpled she
d cones were found to be the solution to FvK equatio
for large deflections [6]. A scaling analysis of the FvK
equations showed that strain and deformation energy
located within the ridge region that separates conic
singularities [9]. In practice, it was shown that singularit
energy plays an important role in selecting characteris
lengths in a crumpled sheet: These lengths were sho
to be the distance separating twod cones [10]

In this Letter we present a systematic experimen
study of an isolatedd-cone topology and correspond it to
a model experiment for situations where more than a s
gularity appears as in real crumpled paper. We investig
the variation of the local curvature along thed-cone gen-
eratrices in the concave and convex regions. Two regim
exist depending on the deformation experienced by t
54 0031-9007y98y80(11)y2354(4)$15.00
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plate. We show that ad cone obtained theoretically does
not describe completely the crescent shape due to stre
ing and observed in all crushed sheets. However, for lar
deformations, the experimentald cone approaches the the
oretical one for zero thickness.

The d cone is obtained on a thin circular plate b
pushing a round tip (0.5 mm diameter) centered at t
plate principal axis. In this study we used circular plate
made from both 0.05- and 0.1-mm-thick sheets (copp
brass, steel, and transparencies); the results discussed
mainly from the 0.1-mm-thick sheets. In order to allow
the d cone to form, when pushing the tip, we keep th
sheet border free to move in a circular rigid frame who
radius is 5% smaller than the sample radiusRf (Fig. 1).
The opening anglef of the d cone (defined as the angle
between the horizontal and the cone generatrix) is var
by pushing the tip perpendicularly to the circular plate
the displacementd is measured by a1022 mm precision
micrometer. A miniature load cell is mounted under th
pushing tip to allow force measurements. The pushi
tip is mounted on a rigid 20-cm-long and 1-cm-thic
steel pen-shaped cylinder. This bar is rigid enough
be inflexible when pushing the plate. A profilometri
tip, mounted on the active part of a position sens
transducer, enables us to measure the sheet surface h
with a precision of1022 mm. Two motors allow the
tip to scan the wholed-cone surface; first by moving
the tip on a miniature automatic displacement guid
mounted following the radial direction and second b
rotating the frame around its axis. Both the radial an
angular directions are marked in Fig. 1 assrd and sud,
respectively. The measurement precision of thed-cone
opening angle is approximately7 3 1024 rad. The whole
system is run by a PC computer equipped with analo
to-digital converter. In order to avoid stretching whe
a deformationd is imposed, a part of the plate lose
contact with the frame, giving rise to a concave regio
(Fig. 2), whose amplitude increases when increasingd
and whose location is randomly distributed on the pla
© 1998 The American Physical Society
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FIG. 1. The setup where thed cone is performed and where
the profilometric measurements are achieved.

If the pushing tip is deviated by a distance of the orde
of few millimeters from the center, the characteristics o
the sheet deflection are not changed, but its nucleat
occurs in the closest region from the pushing tip to th
frame border. In some cases, two or fourd cones appear
one in front of the other. Pushing the plate further, on
of the deflection amplitudes increase, while the othe
disappear. Figure 2 is a top view of ad cone obtained
by this procedure. In the following, we will call the
d-cone convex part thes1dpart and the concave part the
s2dpart. The angle2u0 made by thes2dpart in the polar
direction and over which thed cone loses contact with the
frame was found to be well-selected and independent
the tip displacement. The bright line shown in the figur
defines a smaller angle and does not correspond to
angle in question. In Fig. 3, we present a set of profile
of a d cone for two differentd; each profile is obtained at
varying distancesr from the singularity. The deflection

FIG. 2. A d cone obtained on a copper sheet. Notice th
bright line separating the concave and convex parts.
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amplitude is obtained by measuring the distance whic
separates the lowest point of the sheets2dpart and the
point where the plate loses contact with the frame. In
Fig. 4, we plot the maximal vertical deflection anglefmax
of thes2dpart versusf0 for a given distancer. The linear
fit in Fig. 4 allows us to find the relation betweenfmax

andf0. In the following, we will show that the selection
of both fsud and u0 can be found by minimizing the
d-cone bending energy. The general equation of a con
centered in O, in cylindrical coordinates, is written as
z ­ rfsud. For convenience, we rewrite the parametric
equationz ­ r tanfsud and r ­ R cosfsud, where R
is the distance to the tip andu is the polar angle. A
cone corresponds to a given functionfsud, wheref is
defined as above. For a given deformationdp ­ dyRf ­
tanf0, whered is the amount of the micrometer vertical
displacement. If we writefsud ­ f0 for juj . u0 and

fsud ­ f0 1 e

µ
1 1 cosp

u

u0

∂
for juj , u0 , (1)

the function fsud defines then a cone that remains in
contact with the circular frame forjuj . u0. Thed cone
is detached from the plate over an angle equal to2u0,
which corresponds to the deflection. We assume th
d is small and thate and f0 are of the same order
of magnitude. To the first order, the total curvature
of the surface then reduces tok ­ sf 1 f00dyR. The
corresponding energyEk (per unit ofR) is

Ek ­
K
2

Z p

2p

sf 1 f00d2

R2 R
q

cos2 f 1 f02 du

,
K
2R

∑
2pf2

0 1 4u0f0e

1

µ
3u0 2

2p2

u0
1

p4

u
3
0

∂
e2

∏
. (2)

For an unstretchable plate, the lengthL of the correspond-
ing line atR ­ const must be equal to2pR so that

2pR ­ L ­
Z p

2p
R

q
cos2 f 1 f02 du

,
∑

2p 2 pf2
0 2 2u0f0e 2

µ
3u0

2
2

p2

2u0

∂
e2

∏
R .

(3)

FIG. 3. The profile of the sheet in polar coordinates vs the
angle u. (a) d ­ 1.41 mm; (b) d ­ 5.48 mm. The axes are
in mm. The different curves correspond to different distance
to thed-cone tip.
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FIG. 4. The angle made by thes2d part and the horizontal vs
the angle made by thes1d part and the horizontalRf ­ 37.5,
and the distance to the singularity is 3 mm.

Equation (2) givese as a function off0 and u0.
Replacinge by its value in Eq. (2) and minimizingEk

with respect tou0, one finds2u0 , 2.09 rad , 120± and
e , 1.38f0. This last relation confirms our assumption
that e and f0 are of the same order of magnitude. A
solution to a similar problem gives2u0 , 140± [11]. The
theoretical value of the aperture angle2u0 is in good
agreement with the experiment (Fig. 2) and is valid fo
smalld. The aperture angle between the points where t
plate loses contact with the frame is abouts110 6 5d±.
The theoretical maximal deflection anglefmax ­ fs0d
is proportional tof0 and equalsfs0d ­ sf0 1 2ed ­
3.76f0. This result is in good agreement also with
the experimental data, since the best fit in Fig. 4 give
fs0d ­ 3.73f0. From Fig. 3, we notice that for large
r the profile is smooth and is very close to the one o
a d cone obtained by a bending energy minimizatio
described previously. In contrast, within the singularit
region the profile does not correspond to an ideald cone
whose center is on the tip. Thed-cone tip shift can
be quantified by measuring what we called thed-cone
anisotropy A defined as the ratiofz spd 2 z spy2dgy
z spd, where z sud is the height of the sheet measure
at the polar angleu. From geometrical considerations
A ­ AsRf , r , xsd, wherexs is a distance by which the
d-cone tip has shifted and which origin will be explaine
later. We measure experimentallyA for different r at a
given d, we obtainxs [12]; xs decreases with an increase
in d. On the other hand, we measured thes2dpart local
curvature for smalld vs r. In Fig. 5, we plot thes2dpart
local curvature versusr . The different curves correspond
to different smalld ranging from 1.2 to 2.4 mm. The
curve is best fitted by a function of the form1ysr 1 rsd,
and is not of the form1yr as expected for an ideal
cone. In fact,rs can be interpreted as the shift of the
coordinates origin of the cones2dpart. In Fig. 6, we plot
both rs and xs versusd. We notice that as we increase
d, both quantities decrease quickly. In fact,xs andrs are
indirect measurements of the singularity size. For sm
2356
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FIG. 5. The s2d part local curvature vs the distance to the
singularity, and for different smalld. The lines are best fit to
the function of the form1ysr 1 rsd. The curves range from
small to large deformation.

d, plate curvature is distributed over the whole samp
and the singularity size is equal to the sample radiu
However, as we increased, the deformation is focused
and the singularity size decreases. The singularity si
region can also be observed in Fig. 2; the sample avoi
formation of pointlike singularity by making a linelike
singularity which corresponds to the thinner part of th
line separating thes1dpart and thes2dpart of the cone in
Fig. 2. This line that is hyperbolic shaped can be obtaine
by intersecting a plane with a cone at the tip micromet
and parallel to a generatrix. This cone is centered at
distancexs from the micrometer tip along its generatrix
along thes1dpart. The thin line obtained by the plane
cut corresponds then to the crescent shape observed
crumpled papers. We have measured the curvature
the crescent shown in Fig. 2 and found that it decreas
with d [12]. In Figs. 7(a) and 7(b), we plot thes2dpart
and the ridge local curvature vsr, respectively, and for

FIG. 6. The shift distancers and the singularity displacement
xs as a function ofd. s≤d correspond tors, s±d correspond toxs.
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larged. The fit to the curvature is no longer of the form
1yr. Instead, it varies likeC0es2rydcd, wheredc is a cutoff
distance. In the case of thes2dpart 7(a),dc does not vary
with d. Whereas on the ridge 7(b),dc decreases with
d. In Fig. 7(a), the cutoff distance is constant becau
the crescent due to the permanent scar appears on
ridges only. The plastic deformation is felt on the borde
between thes2dpart and thes1dpart of thed cone where
the folding occurs and the stress is maximum. In fac
by looking at the ridge curvature, one can notice thatdc

reaches a value of about 5 mm at which a permanent s
appears. This value corresponds also to the curvature
which the yield limit of a 0.1-mm-thick copper sheet is
exceeded [10].

The deviation of the curvature from1yr behavior to
an exponential is due to the fact that at larged the yield
limit of the material is exceeded and stretching starts
be important with respect to pure bending. As a fir
approximation, we assume that thes2dpart is an isolated
stripe. By further pushing the plate beyond the yield limi
the stripe starts to bend and the region near the singula
suffers stretching. Following [13], if we include stretching
in the energy balance, we find that the stripe local curvatu
decreases like an exponential, and the cutoff distan
decreases by increasing the height of the sheet, that
by pushing the plate [9]. The curve giving the curvatur
versus the distance for ad cone made of a 0.05-mm-thick
sheet gives a cutoff distance that is half of the one for
0.1-mm-thick sheet. We noticed no qualitative chang
between the two plates, and we believe that the cuto
distance is a linear function versush.

Studying local properties of ad cone made of a thin
circular plate has revealed the origin of the cresce
shape observed on crumpled sheets. For small pl
deformations, the local curvature along the generatric
follows the known power law1yr as for a cone of
revolution. By an increase in the deformation, the loc
curvature along the generatrices is no longer of the for
1yr but follows an exponential law due to stretching nea
the tip. By measuring the anisotropy of the deforme
plate profile, we found that thed-cone tip moved by
a distancexs, which depends on the deformationd
and characterizes the singularity size. For smalld, the

FIG. 7. Thed-cone local curvature vs the distancer from the
singularity for differentd. (a) Thes2d part local curvature,dc
is constant and equal to 20 mm. (b) The ridge local curvatu
dc decreases when increasingd. In the figure we report the
different value off instead ofd.
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singularity region is spread over the sample, wherea
for large d, the curvature is focused and the singularity
size is reduced to a small region, characterized by th
crescent shape [12]. The decrease in the singularity si
with deformation appears as analogous to the focusing
topological defects under constraints [14]. The singularit
hyperbolic shape is found by intersecting a plane with
theoretical cone. This cone is centered at the distanc
xs from the pushing tip. The plastic transition is the
appearance of a crescent shape on the sheet and
focusing of the ridge curvature [15]. Although crumpled
vesicles have been observed [1], no systematic local stu
of the surface of a crumpled vesicle has been performe
[16]. Profilometry using laser beam or magnetic beads o
the surface of a crumpled vesicle can complement freez
fracture microscopy experiments usually used to prob
vesicles in suspensions.
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