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Theory of Rapidly Oscillating Electron Angular Distributions in Slow Ion-Atom Collisions
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A general expression for the ionization amplitude in slow ion-atom collisions is derived. The
expression is inverted to obtain adiabatic electronic wave functions at complex values of the internuclear
distance. It is shown that beating betweens and p components of electronic wave functions gives
rise to rapid oscillations of electron angular distributions with ion velocityy. These rapid oscillations
measure the real part of that eigenvalue whose imaginary part gives the well-known Wannier exponent.
[S0031-9007(98)05440-4]
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The cold-target recoil-ion mass-spectrometr
(COLTRIMS) imaging technique has been used
obtain energy and angular distributions of electron
ejected from atoms in a variety of atomic processes [
Distributions of electrons produced by slow ion-atom
collisions are of particular interest since there is as y
no consensus as to the physical mechanisms that tran
energy from heavy, charged ions with velocityy to
electrons such that the electrons acquire energy greatly
excess ofy2.

The Sturmian theory [2] and its antecedents [3,
indicate two or three mechanisms that may operate,
definitive predictions of the electron distributions hav
proved elusive. Experimental evidence [1,4] qualitative
supports one of the three mechanisms of Ref. [4], name
electron promotion to continuum states along the top
the potential barrier between target and projective spec
In this Letter we develop a general theory for electro
distributions and show how to extract key paramete
from the data. The theory is used to extract deta
relevant to Born-Oppenheimer potential energy curv
´sRd for diatomic molecular energy levels. Here,R is
a coordinate measuring the separation between target
projectile cores. Atomic units withe ­ me ­ h̄ ­ 1 are
used throughout.

In slow ion-atom collisions, adiabatic potential curve
´nsRd related to bound states may be extracted from t
velocity and impact parameter dependencies of inela
tic and elastic cross sections [5]. Theory is less we
developed for ionization processes. The advanced ad
batic description [3] of fast electron distributionssk ¿ yd
gives some information about the potential curves´sRd in
the complexR plane for relatively smallR. The sim-
plicity of expressions suggest that several parameters
quasimolecules (i.e., energy of the level coupled with
continuum, effective charge of the core, and characteris
internuclear distances) could be determined directly fro
analysis of the electron energy spectra [6]. It is importa
that a determination of most parameters can be made
ing only relative (not absolute) values of differential cros
sections which can be measured very accurately. So
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data on parameters of relatively simple diatomic and
atomic quasimolecules have been reported in Ref. [6].
has been found that the values of parameters of diato
quasimolecules extracted from experimental data are c
to those of the united atom limit. The remarkable sim
larity in behavior of cross sections and reasonable val
of extracted parameters indicate that the range of ap
cability of the theoretical approach extends far beyo
one-electron systems. Ogurtsov and co-workers [6] ha
shown that it is possible to describe the core of fe
electron systems by proper effective charges.

To develop a theory for all electron velocities, note th
adiabatic potential curveśnsRd at real R are different
sheets of the same analytic functiońsRd on a multi-
sheeted Riemann surface in the complexR plane, and the
analytic function´sRd over the complexR plane com-
pletely describes collisions. This aspect is exploited
both the advanced adiabatic and the Sturmian theory,
only the Sturmian technique gives a complete descript
of electron spectra [2]. In this Letter we use the Sturmi
theory to solve an inverse problem, namely, we reco
potential curveś sRd and corresponding adiabatic (Stu
mian) eigenfunctions on the Riemann surface in the co
plex R plane from ionization amplitudes.

As was discussed in Ref. [4], slow electrons are top-
barrier electrons and are related to the harmonic oscilla
region of ´sRd in the complexR plane. It was shown
[7] that the threshold “Wannier law” is associated wi
the imaginary part of́ sRd. Here, we show that fas
oscillations in the electron spectra, “Wannier oscillations
are associated with the real part of´sRd in the harmonic
oscillator region.

The electron ionization amplitudeAskd is given by
the projection of the time-dependent Schrödinger wa
functionCst, rd on the time-dependent plane wave

Askd ­ lim
t!`

Z
Cst, rd expsik ? r 1 ik2ty2dd3r . (1)

We assume that nuclear motion can be treated classic
and the time-dependent internuclear distanceRstd ­ jRj
is defined by the relative motion of the nuclei. Th
© 1998 The American Physical Society
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r-
ns
computation ofCst, rd in the Sturmian representation
employs several steps.

Firstly, a time-dependent scaling transformatio
[8] with scaled coordinatesq ­ ryR and scaled
time t ­

Rt R22st0ddt0 is introduced. In this
space the Galilean invariant solution has the for
Cst, rd ­ R23y2 expf ir2

2R
dR
dt gwst, qd. The wave function

wst, qd is the solution of a Schrödinger equation with
a Hamiltonian that depends on the scaled timet only
through a factorRstd multiplying the potential.

Secondly, the wave functionCst, rd is written as a
Fourier transform and expanded in the terms of Sturmi
n

m

an

eigenfunctionsSnsv; qd [7],

fH0sqd 1 rnsvdV sqdgSnsv; qd ­ vSnsv; qd , (2)

where rnsvd are the Sturmian eigenvalues. The Stu
mians are proportional to the adiabatic wave functio
FnsR; qd taken at the specific internuclear distancesR ­
rnsvd,

Snsv; qd ­
p

drnydv FnsR; qd .

The complete time-dependent wave functionCst, rd in the
Sturmian representation has the form
Cst, rd ­
R23y2

p
22piy

exp

∑
ir2

2R
dR
dt

∏ Z `

2`
dv exp

∑
2iv

Z t

R22st0ddt0

∏ X
n

Snsv; ryRdBnsvd , (3)
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wherey is the relative collision velocity andBnsvd is an
expansion coefficient. Taking into account thatRstd ,
yt ! `, ast ! ` and using

lim
t!0

s2pitd23y2 exp

∑
i
t

sq 2 q0d2

∏
­ d3sq 2 q0d (4)

gives a simple expression for the ionization amplitude,

Askyd ­
1

p
2py

lim
t!0

Z `

2`
dve2ivt

X
n

Snsv; kydBnsvd ,

(5)

whereky ; kyy. The Galilean invariant cross section is

d3sydk3 ­ jAskydj2 . (6)

The expansion coefficientsBnsvd are solutions of
coupled equations [7]. (For example, in the case of th
straight-line approximation, they are coupled differenc
equations, and if the impact parameter equals zero, th
become coupled differential equations.) We write th
solutions of the coupled equations in the form

Bnsvd ­
1

rnsvd
exp

∑
2

i
y

Z v

2`

dv0

rnsv0d

∏
Fnsy; vd (7)

and introduce a new variabley ­
Rv

2`

dv0

rn sv0d in order to
obtain

Askyd ­
1

p
2py

Z `

2`
dye2is1yydy

3
X
n

Snfvsyd; kygFnfy; vs ydg . (8)

Considering thatFnfy; vs ydg is a slowly varying function
of y, calledFns yd, and using the inverse Fourier transfor
mation gives the Sturmian functions in terms of a Fourie
integral over ionization amplitudes;X

n

Fns ydSns y, kyd ­
1

p
2p

Z `

0
d

µ
1
y

∂
3 exp

µ
i

1
y

y

∂
Askyd

p
y . (9)

Equation (9) is the solution of the inverse problem i
ion-atom collisions; namely, it shows how to recove
Sturmian (adiabatic) eigenfunctions fromAskyd.
e
e
ey
e

-
r

n
r

Since cross sections relate tojAskydj2 rather than to
Askyd in Eq. (9), it is useful to develop expressions th
more directly relate to experiment. In the case of fa
electronssk ¿ yd we may use adiabatic wave function
at largeky . They have the form [3]

Fnsv; kyd ,
Csvyr2

ndr1y2
n

ky

expsi
p

2v kydYnsknd ,

(10)

whereYnsk̂d is the angular part of the wave function. W
find that

Askd ­ y21y2
X
n

s
dRns´d

d´
exp

∑
i
y

Z ´

Ens2`d
RnsEddE

∏
3 Fns´dYnskd , (11)

where´ ­ k2y2 and RnsEd is the function reciprocal to
the adiabatic eigenvalueEnsRd. This formula coincides
with the expression for the electron distribution amplitud
Askd derived by Solov’ev [3], and used in Ref. [6] to
extract´sRd from the velocity dependence of fast electro
spectra.

Since slow electronssk ø yd are saddle point elec-
trons, consider Eq. (8) in the vicinity of the saddle poin
Near the saddle point, the potential has the harmonic
cillator structure

V sqd ø 2C0 2 C2
1sq2

k 2 q2
'y2d , (12)

where

C0 ­ s
p

Z1 1
p

Z2d2 2 Z1Z2, C1 ­
s
p

Z1 1
p

Z2 d2

sZ1Z2d1y4 ,

(13)

where k and ' denote components parallel and pe
pendicular to the internuclear axis, andZ1 and Z2 are
nuclear charges. The corresponding adiabatic wave fu
tions are just the well-known harmonic oscillator stat
FnjnhmsR; qd. These states are labeled by the harmon
oscillator quantum numbernh corresponding to motion in
directionsqk parallel to the internuclear axis, the quantu
2299
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numbernj corresponding to eigenstates in the coordina
q', and the projectionm of angular momentum on the in-
ternuclear axis. Since Im

p
R . 0, the wave function

F00msR; kyd ø 21y8p23y4sC1

p
Rd3y41my2

3 expfiC1

p
Ry2 k2

kgkm
'

3 expf2sC1y2d
p

R k2
'g (14)

is localized on the potential saddle nearky ­ 0.
On the real axis the functionFnjnh msR; kyd of Eq. (14)

is unbounded inkk and does not satisfy appropriate
boundary conditions; thus it does not represent t
adiabatic eigenfunction. For sufficiently large Im

p
R,

however, the function is exponentially damped an
vanishingly small at the end points. Along the real axi
the function FsR; ky d represents the atomic Rydberg
states for sufficiently largeR. The Rydberg region is
separated from the harmonic oscillator region by a ser
of branch points called the superT s series [7]. These
branch points play an important role, via the stationa
phase approximation, in the theory of ionization of atom
2300
te

he

d
s,

ies

ry
s

by both electron and proton impact near threshold
explained in Ref. [3]. For purposes of computing ele
tron distributions, however, we avoid the stationary pha
approximation, thus the branch points play no direct ro
in the calculation.

In the harmonic oscillator region the adiabatic eigenva
ues´00msRd are well represented by the expression

´00msRd ­ 2C0R21 1 sm 1 1 2 iy
p

2dC1R23y2

1 OsR22d . (15)

The first term is eliminated by a phase transformatio
in the time-dependent Schrödinger equation, and t
equation´sRdR2 2 C0R ­ v with R ­ rsvd is solved
for rsvd to obtain

r00msvd ­ v2yfsm 1 1 2 iy
p

2dC1g2 1 Osvd . (16)

The amplitudes corresponding to different channels a
obtained by integrating overy in Eq. (8) using Eqs. (14)
and (16) withFns yd ­ 1. The result is
A00mskyd ø
µp

2
p

∂5y4

a23y2

µ
k'

a

∂m

X1y41my2

√
sgygpd1y2, sgygpd23y2,

k2
' 1 i

p
2 k2

k

a2

!
exp

∑
2

i
y

Z `

0

dv0

rsv0d

∏
, (17)
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where

a2 ­
y

2C2
1

fsm 1 1d2 1 1y2g21y2 ,

Xnsa, b; zd ;
µ

a
z

∂ny2

Kns2i
p

azd

2

µ
2

b
z

∂ny2

eipny2Kns
p

2bzd ,

g ­ 1y
p

2 1 ism 1 1d, andKnszd is the modified Bessel
function. Equation (17) gives a completelyab initio
description of ionization by a top-of-barrier promotion
To extract the velocity and charge dependence, note t
ky occurs only in the combinationkyya; thus, define

k0 ;
ky

a
~

k
y3y2

s
p

Z1 1
p

Z2 d2

sZ1Z2d1y4
(18)

so that

d3s

dk03
­ fsk0d

Ç
e2iyy

Z `

0

dv0

rnsv0d

Ç2
, (19)

where fsk0d is independent ofZ1, Z2, and y. Equa-
tion (19) shows how the distributions scale with charg
and velocity. This scaling is a unique feature of the Stu
mian theory of top-of-barrier electrons and amenable
experimental investigation.

At the lowest ion velocities thepu top-of-barrier
eigenstate withnj ­ 0, nh ­ 0, and m ­ 1 dominates
the spectrum, but as the energy increases, the popula
of the lowestsg mode withnj ­ 0, nh ­ 0, andm ­ 0
becomes comparable. The contributions of the amplitud
at

-
o

on

s

corresponding tosg and pu ionization must be added
coherently. Adding the two amplitudes coherently give
an electron distribution of the form

d3s

dk3 ~ jAsskyd 1 a expfifyygApskydj2 , (20)

where a is an amplitude determined by the expansio
coefficientBnsvd.

The amplitudeAs ­ A000 is nodeless, butAp ­ A001
has a node whenk' ­ 0. For this reason, the distribution
is not symmetric about thez axis and changes rapidly with
ion velocity. This rapid change can be traced to the rap
change of the phasefyy, where

f ­ 2Re
Z `

R0

f´ssRd 2 ´psRdgdR

­ C1

Z `

R0

R23y2dR ­ 8y
p

R0 . (21)

Our calculations show thatR0 ø 2.2 a.u. and a ø
2.2 a.u. for proton-hydrogen collisions in the 1–15 keV
energy range.

The corresponding electron distributions for 5, 10, an
15 keV collisions at an impact parameter ofb ­ 1.2 a.u.
are shown as density plots in Fig. 1. In these plots, t
z axis is taken along the ion velocity so thatkk 1 kz ,
and the x axis lies in the scattering plane along th
direction of the impact parameter vector. The phasefyy

changes by nearly two multiples ofp over the 5–15 keV
energy range. At 5 keV the electrons are distribute
mainly below thek' ­ 0 axis. At 10 keV the distribution
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FIG. 1. Density plot of the electron distributions,kyy, for
proton impact on atomic hydrogen at fixed impact paramet
b ­ 1.2 a.u. and ion energies of 5 keV (top), 10 keV (middle)
and 15 keV (bottom).

is symmetric aboutk' ­ 0, and for 15 keV it shifts
to positive k'. The observations of rapidly changing
electron distributions and their interpretation in terms o
the interference ofpu andsg amplitudes bring up a novel
point concerning the Wannier theory. Usually the focu
in this theory is on the Wannier exponent, which relie
upon the imaginary part of theR23y2 term in Eq. (15)
[9]. In contrast, the interference effect illustrated in Fig. 1
depends upon the real part of these eigenvalues. T
er
,

f

s
s

his

suggests that the rapidly changing electron distribution
could be exploited to obtain the real part of the top-of
barrier eigenvalues experimentally. Thus, we have th
remarkable result that an energy eigenvalue pertaining
complex values of the internuclear distanceR, according
to Fig. 1, can be extracted from experimental data in muc
the same way that real energy eigenvalue differences a
obtained from Rosenthal and Foley [5] oscillations in
excitation cross sections.

In conclusion, we have shown that parameters of po
tential energy curves for complex values of the coordinat
R are obtained from measured electron angle and ener
distributions. TheR23y2 term in the expansion of the adi-
abatic eigenvaluesf´ssRd 2 ´p sRdg in the harmonic os-
cillator region, which occurs only at complexR, has been
identified.

This work has been supported by the U.S. DOE OBE
through a grant to the Oak Ridge National Laborator
which is managed by Lockheed Martin Energy Researc
Corp. under Contract No. DE-AAC05-96OR22464. The
authors also acknowledge support by the Theoretical In
stitute for Atomic and Molecular Physics at the Harvard
Smithsonian Center for Astrophysics during extende
visits. One of us (J. H. M.) also acknowledges travel sup
port by NATO Grant No. CRG950407.

*Permanent address: Ioffe Physical Technical Institute
St. Petersburg, Russia.

[1] R. Dörner, H. Khemliche, M. H. Prior, C. L. Cocke, J. A.
Gary, R. E. Olson, V. Mergel, J. Ullrich, and H. Schmidt-
Böcking, Phys. Rev. Lett.77, 4520 (1996).

[2] S. Ovchinnikov and J. Macek, Phys. Rev. Lett.75, 2474
(1995).

[3] E. A. Solov’ev, Zh. Eksp. Teor. Fiz.70, 872 (1976) [Sov.
Phys. JETP43, 453 (1976)].

[4] M. Pieksma, S. Y. Ovchinnikov, J. van Eck, W. B.
Westerveld, and A. Niehaus, Phys. Rev. Lett.73, 46
(1994).

[5] H. Rosenthal and H. M. Foley, Phys. Rev. Lett.23, 480
(1969).

[6] G. N. Ogurtsov, A. G. Kroupyshev, M. G. Sargsyan, Yu. S
Gordeev, and S. Yu. Ovchinnikov, Phys. Rev. A53, 2391
(1996).

[7] J. H. Macek and S. Yu. Ovchinnikov, Phys. Rev. A49,
R4273 (1994).

[8] E. A. Solov’ev and S. I. Vinitsky, J. Phys. B18, L557
(1985).

[9] A. R. P. Rau, Phys. Rev. A4, 207 (1971).
2301


