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Theory of Rapidly Oscillating Electron Angular Distributions in Slow lon-Atom Collisions
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A general expression for the ionization amplitude in slow ion-atom collisions is derived. The
expression is inverted to obtain adiabatic electronic wave functions at complex values of the internuclear
distance. It is shown that beating betweenand = components of electronic wave functions gives
rise to rapid oscillations of electron angular distributions with ion veloegity These rapid oscillations
measure the real part of that eigenvalue whose imaginary part gives the well-known Wannier exponent.
[S0031-9007(98)05440-4]

PACS numbers: 34.80.Dp

The cold-target recoil-ion  mass-spectrometrydata on parameters of relatively simple diatomic and tri-
(COLTRIMS) imaging technique has been used toatomic quasimolecules have been reported in Ref. [6].
obtain energy and angular distributions of electronshas been found that the values of parameters of diatomic
ejected from atoms in a variety of atomic processes [l]quasimolecules extracted from experimental data are close
Distributions of electrons produced by slow ion-atomto those of the united atom limit. The remarkable simi-
collisions are of particular interest since there is as yetfarity in behavior of cross sections and reasonable values
no consensus as to the physical mechanisms that transfefr extracted parameters indicate that the range of appli-
energy from heavy, charged ions with velocity to  cability of the theoretical approach extends far beyond
electrons such that the electrons acquire energy greatly ione-electron systems. Ogurtsov and co-workers [6] have
excess ofy?. shown that it is possible to describe the core of few-

The Sturmian theory [2] and its antecedents [3,4]electron systems by proper effective charges.
indicate two or three mechanisms that may operate, but To develop a theory for all electron velocities, note that
definitive predictions of the electron distributions haveadiabatic potential curves,(R) at real R are different
proved elusive. Experimental evidence [1,4] qualitativelysheets of the same analytic functiatR) on a multi-
supports one of the three mechanisms of Ref. [4], namelysheeted Riemann surface in the compkeplane, and the
electron promotion to continuum states along the top ofnalytic functione(R) over the complexk plane com-
the potential barrier between target and projective speciepletely describes collisions. This aspect is exploited in
In this Letter we develop a general theory for electronboth the advanced adiabatic and the Sturmian theory, but
distributions and show how to extract key parameter®nly the Sturmian technique gives a complete description
from the data. The theory is used to extract detailof electron spectra [2]. In this Letter we use the Sturmian
relevant to Born-Oppenheimer potential energy curvesheory to solve an inverse problem, namely, we recover
e(R) for diatomic molecular energy levels. HerR,is  potential curves(R) and corresponding adiabatic (Stur-
a coordinate measuring the separation between target andan) eigenfunctions on the Riemann surface in the com-
projectile cores. Atomic units with = m, = i = 1 are  plex R plane from ionization amplitudes.
used throughout. As was discussed in Ref. [4], slow electrons are top-of-

In slow ion-atom collisions, adiabatic potential curvesbarrier electrons and are related to the harmonic oscillator
e,(R) related to bound states may be extracted from theegion of e(R) in the complexR plane. It was shown
velocity and impact parameter dependencies of inelag7] that the threshold “Wannier law” is associated with
tic and elastic cross sections [5]. Theory is less welthe imaginary part ofs(R). Here, we show that fast
developed for ionization processes. The advanced adi@scillations in the electron spectra, “Wannier oscillations,”
batic description [3] of fast electron distributiofis>> v)  are associated with the real partgfR) in the harmonic
gives some information about the potential cureé®) in  oscillator region.
the complexR plane for relatively smallR. The sim- The electron ionization amplitudd(k) is given by
plicity of expressions suggest that several parameters dfie projection of the time-dependent Schrddinger wave
quasimolecules (i.e., energy of the level coupled with d@unction ¥ (z,r) on the time-dependent plane wave
continuum, effective charge of the core, and characteristic
internuclear distances) could be determined directly from A(k) = ||m P(r,r)explik - r + ikzz/z)d3r. (1)
analysis of the electron energy spectra [6]. It is important
that a determination of most parameters can be made ugve assume that nuclear motion can be treated classically,
ing only relative (not absolute) values of differential crossand the time-dependent internuclear distaR¢e = |R|
sections which can be measured very accurately. Sonie defined by the relative motion of the nuclei. The
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computation of ¥(z,r) in the Sturmian representation eigenfunctionss,(w;q) [7],
employs several steps.
Firsty, a time-dependent scaling transformation [Ho(@) + p,()V(@)]S.(@w;q) = @S, (0;q), (2)

8] with scaled coordinatesq =r/R and scaled . .
Eirlle r= ['R2()d’ s i?\trodrlfced In this where p,(w) are the Sturmian eigenvalues. The Stur-

space the Galilean invariant solution has the formmians are proportional to the adiabatic wave functions

i . @&, (R; q) taken at the specific internuclear distan@es=
V(z,r) = R3/? exr[% il—lf]go(q',q). The wave function P ”((w) a) P
14 L]

¢(7,q) is the solution of a Schrddinger equation with
a Hamiltonian that depends on the scaled timenly Sy(w;q) = Vdp,/do ®,(R;q).
through a factorR (7) multiplying the potential.

Secondly, the wave functioW’(z,r) is written as a The complete time-dependent wave functibty, r) in the
Fourier transform and expanded in the terms of Sturm[ah‘;turmian representation has the form

Vi) = F 2 e I dR} ]w d exp{ : ft Rz(t’)dt'} S S, (w:r/R)B, () 3)
. = T —_— Pu— w —lw w, w),

—2miv 2R dt —o — " ”
whereuw is the relative collision velocity anft, (w) is an | Since cross sections relate ta(k,)|*> rather than to
expansion coefficient. Taking into account thr) ~  A(k,) in Eq. (9), it is useful to develop expressions that
vt — %, ast — % and using more directly relate to experiment. In the case of fast

, 3 i 5 3 electrons(k > v) we may use adiabatic wave functions
lim (27ri7) ex;{; (@ — qo) } =6°(q—4q0) (4 atlargek,. They have the form [3]

ives a simple expression for the ionization amplitude, C 2),1/2

9 ple express) P @y(wiky) ~ LI i 3 kY, ).
Ak,) = Iim] dwe "> S, (w:k,)B,(w), v

(k) = ==Im | doe Z (0:k,)B,(w) (10)

(5) whereY, (k) is the angular part of the wave function. We
wherek, = k/v. The Galilean invariant cross section is find that

LPo/d = |Ak,). (6) dR,( [
v ) dR,(e) L
The expansion coefficient®,(w) are solutions of Alk) = v g de ex;{v L,(_x)R”(E)dE}

coupled equations [7]. (For example, in the case of the

stra?ght—lin?e approx[irrlatig)n, they a?e coupled difference X Fy(e)Y,(k), (11)
equations, and if the impact parameter equals zero, theyheree = k*/2 and R, (E) is the function reciprocal to
become coupled differential equations.) We write thethe adiabatic eigenvalug,(R). This formula coincides
solutions of the coupled equations in the form with the expression for the electron distribution amplitude

1 i (¢ do A(k) derived by Solov'ev [3], and used in Ref. [6] to
By(w) = 0y(0) ex;{—; ffoo 0, () }Fv(v; ®) (7)  extracte(R) from the velocity dependence of fast electron
, , o do . spectra.
ag? introduce a new variable = [, ;75 in order to Since slow electrongk < v) are saddle point elec-
obtain

. trons, consider Eqg. (8) in the vicinity of the saddle point.
Alk,) = 1 f dye ™11/ Near the saddle point, the potential has the harmonic os-

V2mv cillator structure

X > Slo@):kJF[vie()].  (©) V(g) = —Co = Ci(gi — 41/2). (12)
Considering thaf,[v; ()] is a slowly varying function Where
of v, calledF,(y), and using the inverse Fourier transfor- )  Zi + JZ)?
mation gives the Sturmian functions in terms of a Fourier®0 = W2 + V) = 2125, €1 = (Z,Z)V4
integral over ionization amplitudes; (13)

1 * 1
F,(y)S, (v, ky) = — f d<—> where || and L denote components parallel and per-
2 S k) = 5= | d(5 I p p p

pendicular to the internuclear axis, afd and Z, are
o1 — nuclear charges. The corresponding adiabatic wave func-
X — . X . . .
ex;<z v y>A(k“)\/v ©) tions are just the well-known harmonic oscillator states
Equation (9) is the solution of the inverse problem in®, , ,.(R;q). These states are labeled by the harmonic
ion-atom collisions; namely, it shows how to recoveroscillator quantum number, corresponding to motion in
Sturmian (adiabatic) eigenfunctions froffk, ). directionsg parallel to the internuclear axis, the quantum
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numberng corresponding to eigenstates in the coordinatdy both electron and proton impact near threshold as
q 1, and the projectiom of angular momentum on the in- explained in Ref. [3]. For purposes of computing elec-

ternuclear axis. Since AR > 0, the wave function tron distributions, however, we avoid the stationary phase

Doon(R: k) = 2187 73/4(C\/R)/4+m/2 approximation, thus the branch points play no direct role
] in the calculation.

X exdiC\VR/2 kjJk" In the harmonic oscillator region the adiabatic eigenval-

X exd —(C, /2)\/E ki] (14)  uesegn(R) are well represented by the expression

is localized on the potential saddle néar= 0. _ -1 . —3/2
On the real axis the functio®,, ,(R:k,) of Eq. (14) £00m(R) CoR™' + (m + 1 = i/V2CIR
is unbounded ink; and does not satisfy appropriate + O(R7?). (15)

boundary conditions; thus it does not represent the ) . L )
adiabatic eigenfunction. For sufficiently large ViR, The first term is eliminated by a phase transformation

however, the function is exponentially damped andn the time-dependent Schrddinger equation, and the

vanishingly small at the end points. Along the real axis equations(R)R> — CoR = @ with R = p(w) is solved

the function ®(R:k,) represents the atomic Rydberg O £ () to obtain

states for sufficiently Iargd?. Th_e Rydber_g region is. poom(@) = @2/[(m + 1 — i/N2)C\ P + O(w). (16)
separated from the harmonic oscillator region by a series

of branch points called the sup@&’ series [7]. These The amplitudes corresponding to different channels are
branch points play an important role, via the stationaryobtained by integrating over in Eq. (8) using Egs. (14)
phase approximation, in the theory of ionization of atomsand (16) withF,(y) = 1. The result is

|
SN kT . oy K+ iN2K i (° do'
Aoons) = (22) a2 (4) Kinempl r/7) 2y 2 e <L [ L] )

p(w’)
I
where corresponding too, and 7, ionization must be added
v coherently. Adding the two amplitudes coherently gives
a’ = o7 Llm + D2+ 1/2]7'2, an electron distribution of the form
al v/2 d30' . 2
X, (a,b;2) = (—) K, (V) S = o(ky) + aexilio/vMak,)P,  (20)
b4

b \"/2 where ¢ is an amplitude determined by the expansion
- <——> e ™2k, (N=bz), coefficientB, ().
N _ N The amplituded, = Ay is nodeless, bull,, = Ag
y = 1/¥2 + i(m + 1), andK, (z) is the modified Bessel has a node wheh, = 0. For this reason, the distribution
function.  Equation (17) gives a completelgb initio s not symmetric about theaxis and changes rapidly with

description of ionization by a top-of-barrier promotion. jon velocity. This rapid change can be traced to the rapid
To extract the velocity and charge dependence, note thghange of the phas¢/v, where

k, occurs only in the combinatiok, /«; thus, define -
+ 2 = —Re es(R) — €4(R)]dR
ok kK W7+ V7)) as) ¢ o [ool®) = on(R)]
a v32 (Z,Z,)V4 o -
so that =C ] R32dR = 8/\/Ry. (21)
Ro
Po 2

© /

= f(k) e—i/uf dw , (19) Our calculations show thatRy =~ 2.2 a.u. and a =
dk” 0o prle) 2.2 a.u. for proton-hydrogen collisions in the 1-15 keV
where f(k’) is independent ofZ,, Z,, and v. Equa- energy range.
tion (19) shows how the distributions scale with charge The corresponding electron distributions for 5, 10, and
and velocity. This scaling is a unique feature of the Stur-15 keV collisions at an impact parameteriof= 1.2 a.u.
mian theory of top-of-barrier electrons and amenable t@re shown as density plots in Fig. 1. In these plots, the
experimental investigation. z axis is taken along the ion velocity so thit + k;,

At the lowest ion velocities thewr, top-of-barrier and thex axis lies in the scattering plane along the

eigenstate withm; = 0, n,, = 0, andm = 1 dominates direction of the impact parameter vector. The phage
the spectrum, but as the energy increases, the populati@manges by nearly two multiples af over the 5—-15 keV
of the lowesto, mode withns; = 0, n,, = 0, andm = 0  energy range. At 5keV the electrons are distributed
becomes comparable. The contributions of the amplitudesiainly below thek; = 0 axis. At 10 keV the distribution
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HY+H - H"4e +H" suggests that the rapidly changing electron distributions
could be exploited to obtain the real part of the top-of-
0.3 v— barrier eigenvalues experimentally. Thus, we have the
remarkable result that an energy eigenvalue pertaining to
complex values of the internuclear distarReaccording
ki to Fig. 1, can be extracted from experimental data in much
- 5 keV the same way that real energy eigenvalue differences are
obtained from Rosenthal and Foley [5] oscillations in
excitation cross sections.

In conclusion, we have shown that parameters of po-
tential energy curves for complex values of the coordinate
R are obtained from measured electron angle and energy
distributions. TheR =32 term in the expansion of the adi-
abatic eigenvalueke,(R) — £,(R)] in the harmonic os-
cillator region, which occurs only at complé&k has been
identified.
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